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Background: Insulinoma is the most common functional pancreatic
neuroendocrine tumor (PNET) with abnormal insulin hypersecretion. The
etiopathogenesis of insulinoma remains indefinable. Based on multiple
bioinformatics methods and machine learning algorithms, this study proposed
exploring themolecular mechanism from ion channel-related genes to establish a
genetic diagnosis model for insulinoma.

Methods: The mRNA expression profile dataset of GSE73338 was applied to the
analysis, which contains 17 insulinoma samples, 63 nonfunctional PNET (NFPNET)
samples, and four normal islet samples. Differently expressed ion channel-related
genes (DEICRGs) enrichment analyses were performed. We utilized the
protein–protein interaction (PPI) analysis and machine learning of LASSO and
support vector machine-recursive feature elimination (SVM-RFE) to identify the
target genes. Based on these target genes, a nomogram diagnostic model was
constructed and verified by a receiver operating characteristic (ROC) curve.
Moreover, immune infiltration analysis, single-gene gene set enrichment
analysis (GSEA), and gene set variation analysis (GSVA) were executed. Finally, a
drug–gene interaction network was constructed.

Results: We identified 29 DEICRGs, and enrichment analyses indicated they were
primarily enriched in ion transport, cellular ion homeostasis, pancreatic secretion,
and lysosome. Moreover, the PPI network and machine learning recognized three
target genes (MCOLN1, ATP6V0E1, and ATP4A). Based on these target genes, we
constructed an efficiently predictable diagnosis model for identifying insulinomas
with a nomogram and validated it with the ROC curve (AUC = 0.801, 95% CI
0.674–0.898). Then, single-gene GSEA analysis revealed that these target genes
had a significantly positive correlation with insulin secretion and lysosome. In
contrast, the TGF-beta signaling pathway was negatively associated with them.
Furthermore, statistically significant discrepancies in immune infiltration were
revealed.

Conclusion: We identified three ion channel-related genes and constructed an
efficiently predictable diagnosis model to offer a novel approach for diagnosing
insulinoma.
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Introduction

Pancreatic neuroendocrine tumors (PNETs) are rare neoplasms
derived from intrapancreatic endocrine cells, comprising 2%–10% of all
pancreatic tumors. PNETs are heterogeneous tumors and can be
generally classified as functional and nonfunctional, depending on
the differentiation of secreting hormones or not (Chen et al., 2020).
Insulinoma (islet β-cell origin) is the most common subtype of
functional PNET, leading to recurrent hypoglycemia due to
unadjustable endogenous hyperinsulinism. Abnormal insulin
hypersecretion is a necessary condition of insulinoma diagnosis.
Although the benign form of insulinoma is common and malignant
insulinoma only account for approximately 6%–10% of all insulinoma
(Liu et al., 2018), the deferred or erroneous diagnosis of hypoglycemia
and other customary symptoms usually raises the seriousness and
mortality of insulinoma (Yang et al., 2015). Actually, patients with
insulinoma are often misdiagnosed for long periods (Imamura, 2010).
Indeed, the accurate diagnosis of insulinoma is a significant challenge
based on the varied clinical presentations, nonspecific biochemical tests,
and low-specificity clinical diagnostic model (Giannis et al., 2020), and
it is also difficult to identify insulinoma in an early stage from
nonfunctional PNET (NFPNET) (Karakose et al., 2020).
Nonetheless, although we have made many advances in the
awareness of insulinoma with their hyperinsulinism and clinical
symptoms, the molecular mechanisms of regulating these processes
and the genetic diagnostic model remain unclear.

The synthesis, storage, and secretion of insulin from islet β-cells
are modulated by complicated mechanisms, including endocrine,
paracrine, and complex signaling pathways (Pisani et al., 2016). The
ion channel widely distributes in biological membranes and plays a
vital role in tightly regulating intracellular homeostasis, hormone
secretion, and signal transduction. The anomalous modulation of
ion channels can result in diverse diseases, including diabetes and
cancers (Singh et al., 2018; Jacobson and Shyng, 2020). Insulin
secretion follows ATP production, membrane depolarization, and
ultimately opening of voltage-gated calcium ion channels. This is the
classical signaling pathway in the modulation of the secretion of
insulin (Volta et al., 2019). The islet β-cells can perceive the
ascendance of serum glucose and trigger the cellular glucose
uptake, leading to an increase in producing ATP and other
metabolites. The increase in ATP promotes voltage-gated calcium
ion activation and exocytosis of insulin-containing granules. T.
Stuhlmann reported that VRAC, a volume-regulated anion
channel, can promote insulin secretion by regulating the
depolarization of islet β-cells to respond to glucose induction
(Stuhlmann et al., 2018).

Furthermore, the increasing glucose evokes an anionic flux by
stimulating a volume-sensitive chloride channel of the islet β-cells
(Li et al., 2007). Diazoxide, an agonist of ATP-sensitive potassium
channels (KATP), can suppress insulin secretion and reverse
hypoglycemia in patients (Barrosse-Antle et al., 2017). It was
reported that some non-steroidal anti-inflammatory drugs
(NSAIDs) might cause adverse reactions of hypoglycemia by
disturbing varied ion channel functions in islet β-cells (Li et al.,
2007). The sympathetic and autonomic parasympathetic fibers also
regulate the secretion function of islet β-cells, while ion channels are
pivotal in mediating the signal transmission of neural synapses
(Alvarsson et al., 2020).

Together, it is indicated that the ion channels might play a
central regulatory intermediary and executor in multifarious insulin
secretion signals. The regulation of various ion channel activities
effectively influences the excitability and insulin secretion of islet β-
cells (Park et al., 2014). In contrast, the activity of particular ion
channels and intracellular ion concentrations is also modulated by
insulin (Peng et al., 2022). Although insulinoma and NFPNET arise
from intrapancreatic islet cells, they show extreme heterogeneity
(Quevedo et al., 2020). Along these lines, we hypothesized that the
heterogeneity of ion channels might involve uncontrollable insulin
secretion of insulinoma compared with NFPNET. It might provide a
novel insight and a therapeutical target for insulinoma in the future.
However, our understanding of the specific molecule characteristic
and difference of ion channels within insulinoma and NFPNET is
limited. Hence, a novel diagnostic model based on molecular
mechanisms, especially the ion channel-related genes, is needed.

Nowadays, along with the advancement of high-throughput
sequencing and microarray technologies, bioinformatics has
played a vital role in life science research, which was utilized to
analyze the differentially expressed mRNA and predict the potential
therapeutic targets in a particular disease. Bioinformatic analysis is
an efficacious approach to discovering biomarkers and
etiopathogenesis of diseases, and it could provide an estimable
foundation for further studies (Peng et al., 2022). Therefore, in
this research, we analyzed the Gene Expression Omnibus (GEO)
(Clough and Barrett, 2016) dataset with bioinformatic methods and
machine learning to identify the target ion channel-related genes
among insulinoma and NFPNET groups. Furthermore, a predictive
diagnostic model was established and evaluated.

Materials and methods

Data source of microarray

The procedure of analysis for this research is shown in Figure 1.
The inclusion criteria were set as the test specimens included should
be derived from humans, and these independent expression profiles
contain the largest sample size. GSE73338 was enrolled in this study,
which was downloaded from the GEO database. There were
63 NFPNET, 17 insulinoma, and four normal islet samples’
mRNA expression profiling in GSE73338. Then, they were
divided into a training set (NFPNET and insulinoma) and an
internal validation set (insulinoma and normal islet) because
NFPNET and insulinoma samples contain the largest sample
size. Additional details are provided in Table 1.

Identifying differently expressed ion
channel-related genes

The differently expressed genes (DEGs) between the insulinoma
and NFPNET samples were identified from normalized and
preprocessed data using the GEO2R tool (Barrett et al., 2013).
The screening threshold was stated at |log2 Fold
Change| >0.585 and p < 0.05. The 186 genes participating in the
ion channel pathway were downloaded from the GeneCards
database (https://www.genecards.org/). The R limma package was
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utilized to identify the differently expressed ion channel-related
genes (DEICRGs) with the threshold as p < 0.05.

Enrichment analyses of GO, DO, and KEGG

Gene Ontology (GO) enrichment [including biological
process (BP), cellular component (CC), and molecular
function (MF)] analysis and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway analysis were applied by
utilizing the R clusterProfiler package (Yu et al., 2012). The
false discovery rate (FDR) was calculated via
Benjamini–Hochberg (BH) adjustment. The cutoff criterion
was q-value <0.05. We utilized the R DOSE package to apply
the enrichment analysis of disease ontology (DO) terms (Yu
et al., 2015). Finally, the R ggplot2 and pathview packages were
utilized to visualize the significant results of these enrichment
analyses.

FIGURE 1
Flowchart of the study.

TABLE 1 Details of the GEO data.

Dataset Platform Number of samples (insulinoma/NFPNET/normal
islet)

GSE73338 GPL20945 18.5K human oligo microarrays obtained from the Ohio
State University Cancer Center

84 (17/63/4)

GEO, Gene Expression Omnibus.
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Machine learning of lasso and support
vector machine-recursive feature
elimination

Ulteriorly, machine learning, such as the lasso regression and
support vector machine-recursive feature elimination (SVM-
RFE) algorithm, was used to screen the feature genes from
DEICRGs. Lasso regression and the optimal parameter λ were
determined through 10-fold cross-validation via the R glmnet
package with “family = binomial, measure = deviance” and with
all other parameters arranged to default (Engebretsen and
Bohlin, 2019). Meanwhile, the SVM-RFE method, an effective
feature selection technique, was also implemented for
distinguishing feature genes from DEICRGs with the R
e1071 package (Jiang et al., 2020). Our study identified the
best feature genes via the SVM-RFE algorithm based on a
maximum 5×CV accuracy and a minimum 5×CV error value
simultaneously.

Protein–protein interaction network and
hub gene analyses

The protein–protein interaction network (PPI) was predicted
and constructed on the biological database of STRING (https://
string-db.org/). We uploaded the DEICRGs to the STRING database
to build a PPI network and utilized Cytoscape 3.9.1 software to
visualize and further analyze it. The hub genes were identified via the
cytoHubba plugin.

Recognition of target genes

We defined the uniformly present genes in the hub gene set and
feature gene set from two machine learning models described
previously as target genes.

Construction of a diagnostic model and
evaluation of the diagnostic efficiency

We constructed a diagnostic model with a nomogram based
on the target genes by utilizing the R rms package. The
calibration curve was established to assess the calibration of
the nomogram model by mean absolute error and
1,000 bootstrap samples using the R CalibrationCurves
package. Decision curve analysis (DCA) was performed to
evaluate the value of net benefits in the nomogram model at
the different high-risk thresholds. Finally, whether the
nomogram model had favorable predictive effects was
evaluated by the clinical impact curve (CIC). Then, a receiver
operating characteristic (ROC) curve was applied to further
assess the diagnostic efficacy of the model in distinguishing
insulinoma from NFPNET via the R glmnet and pROC
packages. Additionally, we applied the insulinoma samples
and normal islet samples from GSE73338 as the validation
set to verify the efficacy of the diagnostic model.

Immune infiltration analysis

The deconvolution algorithm of CIBERSORT (Newman et al.,
2015), which can assess the percentage of 22 infiltrating immune cell
subtypes, was used to calculate the immune infiltration of
insulinoma and NFPNET tissues via the CIBERSORT R script
v1.03. Then, the correlation between each subtype of immune
cells and target genes was estimated with Pearson’s correlation
analysis and visualized. Furthermore, we obtained 28 immune-
related cell gene sets and utilized the single-sample gene set
enrichment analysis (ssGSEA) via the R GSVA package to
explore the different infiltration enrichment scores of each
immune cell subtype in each sample (Barbie et al., 2009;
Charoentong et al., 2017). The R limma package was applied to
analyze the different infiltration enrichment scores between
insulinoma and NFPNET groups. Finally, the results of ssGSEA
were visualized with a heatmap and boxplot.

Gene set enrichment analysis and gene set
variation analysis

Following this, we focus on elucidating the potential roles of
target genes in insulinoma. A single-gene gene set enrichment
analysis (GSEA) for each target gene was performed separately
via the R clusterProfiler package. First, all samples were split into
the low-expression and high-expression groups according to the
expression level of each specific single target gene. Then, GSEA was
performed to estimate the significantly different pathways of KEGG
within these two groups. Gene set variation analysis (GSVA) is a
nonparametric unsupervised method. It was performed to
demonstrate the differential enrichment of KEGG pathways and
GO terms between these groups similarly. In this study, the R GSVA
package was utilized with the gene sets of c2. cp.kegg.symbols.gmt
and c5. go.symbols.gmt. They were downloaded from the official
site. The threshold standard for statistically significant terms was set
as p < 0.05.

Drug–gene interaction network and
visualization

We utilized the DGIdb (Edwards et al., 2011) and DrugBank
(Wishart et al., 2018) databases to predict existing or/and possibly
related drug substances for investigating the drug–gene connection.
Furthermore, the data visualization of the drug–gene interaction
network was constructed with Cytoscape software.

Results

Recognition of DEGs

The mRNA expression profile dataset GSE73338 was normalized.
Then, 650 DEGs (containing 259 up-expressed DEGs and 391 down-
expressed DEGs) were identified from the GSE73338 dataset, and a
volcano plot and heatmap are shown in Figures 2A,B.
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Enrichment analyses of the DEGs

The KEGG and GO analyses of the DEGs were executed to
indicate their potential biology functions. As displayed in the
KEGG cluster (Figure 3A), the DEGs mainly participate in
regulating the synthesis, secretion, and action of various
endocrine hormones, such as aldosterone, cortisol, thyroid,
and growth hormone. In particular, the DEGs are directly
involved in managing insulin secretion and the cAMP
signaling pathway, which is proven to promote insulin
secretion from islet β-cells activated by glucagon. In the GO
category, most of the DEGs are located in the synaptic
membrane, cell–cell junction, and Golgi lumen, which
specifically participate in the regulation of hormone levels,
hormone transport, modulation of chemical synaptic
transmission, signal release, channel activity, and hormone
binding (Figure 3B). Furthermore, we found that many DEGs
are closely associated with potassium ion transport, calcium ion
transport, ion channel complex, and voltage-gated ion channel
activity (Figure 3C). This indicates that the ion channel activity
might play a crucial role in modulating insulin secretion from
insulinoma.

Recognition of DEICRGs of insulinoma

The 186 genes that participate in the ion channel pathway
are presented in Supplementary Material. A total of
29 DEICRGs were identified from the GSE73338 dataset,
including 14 up-expressed DEICRGs and 15 down-expressed
DEICRGs (Table 2). Then, the heatmap and correlation
coefficient diagram of DEICRGs are shown in Supplementary
Figure S1 and Figure 4.

Function enrichment analyses of the
DEICRGs

The biology functions of DEICRGs were performed in GO,
KEGG, and DO analyses. Expectedly, the DEICRGs were mainly
located in the biological membrane and played the role of the
transporter of various inorganic ions across the plasma
membrane by regulating the ion channel activity, which
contributed to maintaining the cellular metal ion homeostasis
(Figures 5A, B). The enrichment analysis results via KEGG
pathways show that the DEICRGs are mostly associated with the
calcium signaling pathway, oxidative phosphorylation, synaptic
vesicle cycle, cGMP−PKG signaling pathway, cAMP signaling
pathway, gastric acid secretion, pancreatic secretion, lysosome,
and mTOR signaling pathway (Figure 5C). The R DOSE package
was applied to investigate the function of DEICRGs further. The
results of DO enrichment revealed that DEICRGs might participate
in pulmonary hypertension, congestive heart failure, and renal
tubular transport disease. These results suggest that the primary
functions of DEICRGs may relate to the regulation of ion channel
activity, pancreatic secretion, lysosome, and cell signal transmission.

The machine learning algorithm of lasso and
SVM-RFE

Furthermore, to screen the feature genes from DEICRGs, we
trained two machine learning algorithms of lasso and SVM-RFE.
The lasso regression is a machine learning algorithm involving a
linear relationship assumption and an L1 regularization penalty.
First, the lasso regression with the minimum binomial deviance was
performed through 10-fold cross-validation. Genes with non-zero
regression coefficients were selected for feature genes of DEICRGs.

FIGURE 2
Identification of DEGs. (A) Heatmap of DEGs; (B) volcano plot of GSE73338.

Frontiers in Genetics frontiersin.org05

Mo et al. 10.3389/fgene.2023.1181307

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1181307


As a result, there were 14 genes included in the simplified lasso
regularization model (Figures 6A,B; Table 3).

SVM-RFE, a powerfulmachine learning paradigm for classification,
regression, and othermachine learning tasks, has often been reported to
outperform other machine learning classifiers (Cai et al., 2020). Then,
the optimal feature gene extraction strategy was applied using the SVM-
RFE machine learning method. When the number of feature genes
reached 12, the model achieved the maximal accuracy of 94.9% and a
minimum error of 5.1% simultaneously. Thus, these top 12 feature
genes are considered optimal and used for further analyses (Figures
6C,D; Table 3).

PPI network and hub gene analyses

A PPI network of the DEICRGs was constructed to explore the
connection within each protein, including 24 nodes and 41 edges. In
this PPI network map, each node represented a protein, and
simultaneously, each edge represented an association between
two proteins (Figure 7A). Then, we used the cytoHubba to select
the PPI network hub genes with the maximal clique centrality
(MCC) method. Finally, we extracted the top 10 hub genes,
which might play a possibly essential role in the PPI network
(Figure 7B).

FIGURE 3
Enrichment analyses of DEGs. (A) KEGG signaling pathway; (B) GO BP, GO CC, and GO MF; (C) details of GO terms (voltage-gated ion channel
activity GO term, ion channel complex GO term, calcium ion transport GO term, and potassium ion transport GO term.

TABLE 2 DEICRGs of GSE73338.

Regulation DEICRG

Upregulated (n = 14) TRPM1、ASPH、ANO10、MCOLN1、WNK2、TRPC6、TRPM3、ATP8A1、ATP2C1、ATP4A、ATP6V1A、ATP6V1B1、ATP6V0C、
and ATP6V0E1

Downregulated (n = 15) SGK2、CLCN5、CLIC2、FKBP1B、ANO1、MCOLN3、ANO3、TRPC4、ATP9A、ATP11C、ATP9B、ATP2A2、ATP2B2、FXYD3、 and
CAMK2G

DEICRGs, differently expressed ion channel-related genes.
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Recognition of target genes

We took an intersection among the three key gene sets screened
by the PPI network (hub genes), lasso model, and SVM-RFE model,
resulting in three target genes (ATP4A, MCOLN1, and ATP6V0E1)
(Figure 7C). Then, the details of three target genes’ expression
between insulinoma, NFPNET, and normal islet groups are
shown in Figure 7D.

Construction and assessment of the
nomogram model for insulinoma diagnosis

Furthermore, a nomogram model was constructed based on the
multivariate Cox analysis of three target genes via the R rms package
(Figure 8A). Then, a calibration curve was used to evaluate the
predictive power of the nomogram model. Then, a calibration curve
was used to evaluate the predictive power of the nomogram model.
The calibration curve indicated that the error between the actual
probability and predicted probability of insulinoma is minimal, with
a mean absolute error of 0.041, suggesting this nomogram model

owns high accuracy in predicting insulinoma (Figure 8B). There are
17 insulinoma samples and 63 NFPNET samples in the
GSE73338 dataset, with the insulinoma samples accounting for
21.25%. According to the previous research, functional PNETs
(containing insulinomas, gastrinomas, glucagonomas, VIPomas,
and somatostatinomas) represent less than 30% of all PNETs and
are associated with particular clinical syndromes (Grozinsky-
Glasberg et al., 2015). Decision curve analysis (DCA) indicated
that the “nomogram” curve was higher than the “all”, “ATP4A”,
“MCOLN1”, “ATP6V0E1”, and “none” curves within the high-risk
threshold from 0 to 0.54. This suggests that the patients could benefit
from the nomogram model, and the clinical benefit of the
nomogram model was mainly higher than that of all of the other
curves (Figure 8C). A CIC on the ground of the DCA curve was
drawn to evaluate the nomogram model’s clinical effects visually.
The “number high risk” curve was close to the “number high risk
with event” curve at a high-risk threshold from 0.2 to 1, which
indicated that the nomogram model has extraordinary predictive
power (Figure 8D). These results, to some extent, also indicated that
these three target genes might play a remarkable role in the process
of insulinoma.

FIGURE 4
Identification of DEICRGs and correlation matrix. The correlation matrix of DEICRGs. (* means p < 0.05; ** means p < 0.01; *** means p < 0.001).
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ROC curve analysis

ROC curves with areas under the curve (AUC) are shown for
investigating the diagnostic effectiveness of the nomogrammodel
between insulinoma and NFPNET by using the identified three

target genes (ATP4A, MCOLN1, and ATP6V0E1). ROC curve
analyses revealed that the AUC was 0.728 for MCOLN1, 0.725 for
ATP6V0E1, and 0.670 for ATP4A (Figure 9A). Additionally, the
AUC was 0.801 [95% confidence interval (CI), 0.674–0.898] for
the nomogram model by utilizing all three target genes

FIGURE 5
Enrichment analyses of DEICRGs. (A) GO BP; (B) GP CC and GO MF; (C) KEGG pathway; (D) DO enrichment.
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simultaneously (Figure 9B). In contrast to normally
differentiated β-cells, insulinoma cells remain continuously
secreting insulin and proinsulin at low blood glucose (Guettier
and Gorden, 2010). Therefore, the insulinoma and normal islet
samples were applied to further verify the accuracy of this

diagnostic nomogram model, with AUC tending to 1.0
(Figures 9C,D). These results suggested that these three target
genes (ATP4A, MCOLN1, and ATP6V0E1) can serve as effective
diagnostic biomarkers for distinguishing insulinoma from
NFPNET and normal islets.

FIGURE 6
Machine learning. (A) the log(λ) value was optimally selected by 10-fold cross-validation and plotted by the partial likelihood deviance; (B) Processes
of lasso regression for identifying variables andmapping each variable to a curve; (C) the accuracy (5× CV) is highest as 0.949when the number of feature
genes is 12; (D) the error (5× CV) is lowest as 0.051 when the number of feature genes is 12.

TABLE 3 Feature genes of lasso and SVM-RFE.

Machine learning
algorithm

Feature gene

Lasso CLCN5、FKBP1B、ASPH、MCOLN1、ANO3、TRPM3、ATP9A、ATP8A1、ATP11C、ATP9B、ATP4A、FXYD3、
CAMK2G、and ATP6V0E1

SVM-RFE CAMK2G、ATP6V0E1、ASPH、MCOLN1、ATP8A1、ATP4A、CLIC2、ATP9B、ATP11C、ANO3、ATP2C1、and WNK2
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Immune infiltration analysis

The heterogeneous tumor cells, immune cells, inflammatory
cells, and intratumoral capillaries contribute to the tumor

microenvironment heterogeneity, which is well known to
modulate tumor growth and function (Bice et al., 2017). The
intrapancreatic infiltration of immune cells and autoimmune
attack with disorder immune homeostasis could destroy islet cells

FIGURE 7
PPI network and recognition of target genes. (A) PPI network of the DEICRGs, each node represented a protein, each edge represented an
association between two proteins, and the bigger sizes of the edge mean the higher MCC scores; (B) PPI network of the top 10 hub genes; (C) Venn
diagram for recognizing target genes. (D) mRNA expression MCOLN1, ATP4A, and ATP6V0E1 in GSE73338 between NFPNET, insulinoma, and islet
groups.
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(Nelson et al., 2020). Then, we applied two disparate algorithms to
identify the heterogeneous infiltration of immune cells in
insulinoma.

The CIBERSORT algorithm explored the dissimilarity of
immune infiltration between insulinoma and NFPNET tissues. As
shown in Figure 10A, insulinoma tissue had a lower ratio of
dendritic cells resting within the 22 immune cells of the
CIBERSORT algorithm. Next, the correlations between each
subpopulation of immune cells and three target genes were
displayed based on Pearson’s correlation coefficient. The
outcomes revealed that M2 macrophages and follicular helper
T cells were significantly positively associated with MCOLN1. On
the contrary, the resting memory CD4 T cells were negatively
associated with MCOLN1. ATP6V0E1 was positively related to
CD4 naive T cells but negatively with follicular helper T cells.
Moreover, resting dendritic cells were negatively correlated with
ATP4A (Figure 10B).

Furthermore, we used the ssGSEA to identify immune cell
subtypes that are differentially represented in the tumor
microenvironment among insulinoma and NFPNET tissues,
while the immune-related gene set of 28 immunocyte subtypes
was derived from 37 studies of microarray data (Charoentong
et al., 2017). Then, the heatmap of the infiltration enrich scores

based on each sample is shown in Figure 11A. As shown in
Figure 11B, the memory CD4 T cells, immature B cells, and
immature dendritic cells are significantly enriched in insulinoma
tissue. However, the insulinoma group exhibited a lower infiltration
enrichment score of eosinophils, memory B cells, monocytes, and
natural killer cells.

Single-gene GSEA and GSVA of target genes

Since ATP4A,MCOLN1, and ATP6V0E1might be pivotal in the
ion channels for insulinoma and participate in regulating the
secretion of various hormones, we selected these three target
genes separately for further single-gene GSEA and GSVA
analyses. The conclusions were primarily consistent with the
previous results.

Based on the mRNA expression of each target gene, we
separated all enrolled insulinoma and NFPNET samples into
high-expression and low-expression groups. Then, the single-gene
GSEA analyses were performed via KEGG pathways. As shown in
Figures 12A,B, the activity of insulin secretion, lysosome, protein
processing in the endoplasmic reticulum, and glycosaminoglycan
degradation was upregulated in the MCOLN1 high-expression

FIGURE 8
(A) Nomogram model predicting insulinoma based on three target genes. The nomogram is used by summing all points identified on the scale for
each variable. The total points projected on the bottom scales indicate the probabilities of insulinoma; (B) calibration curves for the nomogram with the
mean absolute error = 0.041; (C) DCA of the nomogram model and each target genes (“all”means diagnosis-all strategy; “none”means diagnosis-none
strategy) and the nomogram model had a higher net benefit at a given high-risk threshold mostly; (D) CIC of the nomogram model.
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group. In comparison, the activity of the cell cycle, protein digestion
and absorption, steroid hormone biosynthesis, and TGF-beta
signaling pathway was downregulated. Furthermore, the
upregulation of ATP4A (Figure 12C) and ATP6V0E1
(Figure 12D) is associated with a higher activity of the pancreatic
secretion pathway. The lysosome, which may take part in managing
insulin secretion and degradation of islet cells, is also correlated with
ATP6V0E1 (Figure 12D).

Interestingly, the upregulation of three target genes was
simultaneously related to the lower activity of the TGF-beta

signaling pathway (Figures 12E–G). Taken together, we
hypothesize that the upregulation of three target genes might be
correlated with the upregulated activity of insulin secretion,
lysosome, and pancreatic secretion. Correspondingly, the TGF-
beta signaling pathway might play a vital role in insulinoma.

The GSVA analysis was performed via the GO function and
KEGG pathways. The results of GO functions illustrated that the
pathway activities of positive regulation of hypersensitivity, myeloid
dendritic cell chemotaxis, toll-like receptor-4 binding, and
regulation of cardiac vascular smooth muscle cell differentiation

FIGURE 9
Validation of the nomogram model with the ROC curve. (A) ROC and AUC of each target gene between insulinoma and NFPNET groups; (B) ROC
and AUC of the nomogrammodel between insulinoma and NFPNET groups; (C) ROC and AUC of each target gene between insulinoma and normal islet
groups; (D) ROC and AUC of the nomogram between insulinoma and normal islet groups.
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were significantly downregulated in the MCOLN1 high-expression
groups (Figure 13A). In the KEGG pathway category, the glyoxylate
and dicarboxylate metabolism pathway had a higher activity, but the
primary immunodeficiency pathway was downregulated
(Figure 13B). Similarly, the activities of various pathways were
changed significantly with the perturbance of ATP4A and
ATP6V0E1, and the details are provided in Figures 13C–F.

Drug–gene interaction network

The DGIdb and DrugBank databases were applied to
investigate the potential drug–gene interplay to distinguish
existent or/and possibly related pharmaceutical materials.
Exploring potential therapeutic drugs for targeting ATP4A,
MCOLN1, and ATP6V0E1 might offer a definite treatment

FIGURE 10
Immune infiltration analysis of the CIBERSORT algorithm. (A) Violin plot of the expression levels of 22 immunocyte subtypes in insulinoma and
normal groups (* means p < 0.05); (B) Heatmap of the correlation coefficient between each target gene and each immunocyte subtype.
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approach to symptom improvement of insulinoma. The
integrated drug–gene interaction network is displayed
integrally (Figure 14). Finally, we distinguished 15 potential
sanative drugs in total.

Discussion

Insulinoma, featured with abnormally secreting insulin contrary
to the NFPNET, can repeatedly lead to severe hypoglycemic neuro-

FIGURE 11
Single-sample gene set enrichment analysis for immune infiltration. (A) Heatmap based on the infiltration enrichment score of each sample; (B)
boxplot of 28 immunocyte subtypes between insulinoma and NFPNET groups.
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glycogenic and sympathetic overexcitement symptoms (Metz and
Jensen, 2008). The irreversibly severe impairment of the central
nervous system function is the most significant hazard of
insulinomas due to extraordinary hypoglycemia. Recently, the
diagnosis of insulinoma mainly depends on clinical symptoms
and the assessment of serum glucose, insulin, C-peptide, and β-
hydroxybutyrate levels (Dauben et al., 2019; Giannis et al., 2020).
The single-photon emission computed tomography (SPECT) is also
applied to diagnose insulinoma by administering exendin-4 (a GLP-
1 peptide analog), which has 95% sensitivity (Jansen et al., 2019).

Unfortunately, the diagnosis of insulinoma is often delayed due to
varied clinical presentations, low-specificity clinical diagnostic
models, and the costly equipment of SPECT (Dauben et al.,
2019; Giannis et al., 2020). Hence, early and accurate diagnosis
and treatment are crucial for a better prognosis (Wu et al., 2017).

As previously described, ion channel-related genes might be
involved in the peculiarity of insulinoma with unregulated insulin
secretion, which is different from normal islet cells and NFPNET. In
the present study, we first identified the DEGs between insulinoma
and NFPNET samples. Then, a total of 650 DEGs were explored, and

FIGURE 12
Single-gene GSEA of each target gene. (A) Top five upregulated and top five downregulated KEGG pathways ranked by the enrichment score from
single-gene GSEA of MCOLN1; (B) insulin secretion pathway from single-gene GSEA of MCOLN1; (C) top five upregulated and top five downregulated
KEGG pathways ranked by the enrichment score from single-gene GSEA of ATP4A; (D) top five upregulated and top five downregulated KEGG pathways
ranked by the enrichment score from single-gene GSEA of ATP6V0E1; (E–J) insulin secretion pathway from single-gene GSEA of MCOLN1, ATP4A,
and ATP6V0E1.
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the results of enrichment analyses indicated that many ion channel-
related pathways were involved. As expected, these findings are
consistent with our prolepsis and promote us to further research.
Furthermore, we identified 29 DEICRGs, which are mainly enriched

in functions including cellular metal ion homeostasis and pathways
such as the cAMP signaling pathway, calcium signaling pathway,
and lysosome. It was reported that L-arginine can promote insulin
secretion in β-cells through the GPRC6A stimulation of cAMP

FIGURE 13
Single-gene GSVA of each target gene. (A) GSVA of MCOLN1 with the GO category; (B) GSVA of MCOLN1 with the KEGG pathway; (C) GSVA of
ATP4A with the GO category; (D) GSVA of ATP4A with the KEGG pathway; (E) GSVA of ATP6V0E1 with the GO category; (F) GSVA of ATP6V0E1 with the
KEGG pathway (*means p < 0.05; **means p < 0.01).
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pathways (Pi et al., 2012), and incretin hormones increase the cAMP
of β-cells (Kaihara et al., 2013). The upregulation of the cAMP
concentration can activate protein kinase A and/or GEFII to
accelerate insulin vesicle exocytosis (Zhao et al., 2010).
Additionally, both the calcium channel and lysosome participate
in the regulation of insulin secretion (Ning et al., 2008; Asadi and
Dhanvantari, 2020). Therefore, we logically assume that the
heterogeneous expression of ion channel-related genes between
insulinoma and NFPNET may contribute to the heterogeneity
ability of insulin secretion.

Machine learning algorithms outperform standard logistic
regression in constructing precise classification and prediction
models of diseases (Ross et al., 2016). An integrated algorithm of
lasso regression and SVM-RFE was utilized to screen out the
featured genes with the highest prediction accuracy. Then, three
target genes (ATP4A, MCOLN1, and ATP6V0E1) were finally
derived from the intersection of featured genes and hub genes. A
nomogrammodel that exhibits extraordinary predictive efficacy was
established and confirmed with the calibration curve, DCA, and
CIC. The ROC curve was applied to evaluate the availability of the
nomogram model with the 0.801 AUC (95% CI 0.674–0.898).
Moreover, the insulinoma and normal islet samples were also
used to verify the model’s accuracy, with the AUC tending to
1.0. In summary, these outcomes suggest that ATP4A, MCOLN1,
and ATP6V0E1 are crucially ion channel-related genes in
insulinoma, and the diagnostic model based on these genes was
highly efficient.

MCOLN1, located in the lysosome, is an unselective cation
channel and plays an essential role in modulating various
intracellular processes containing endocytosis, exocytosis,
lysosomal adaptation, and autophagy (Qi et al., 2021).
MCOLN1 provides a negative feedback accumulation of

mTORC1 to prevent immoderate wastage of mTORC1 activity
within the starvation and other stress states by regulating the
Ca2+ flux of lysosomes and the mTORC1-dependent autophagy
pathway (Sun et al., 2018). Autophagy, intra-lysosomal proinsulin
degradation, and insulin secretory granule transport are strictly
governed, which are essential to maintain insulin homeostasis
(Fujitani and Watada, 2012; Li et al., 2022). Numerous reports
have suggested that the activation of mTORC1 promotes protein
translation and insulin synthesis, and triggers pancreatic β-cell
proliferation and growth. The pancreatic β-cell-specific mTOR-
knockout mice tend to have an abnormal mitochondrial function
and reduced insulin secretion (Mori et al., 2009; Asahara et al.,
2022). Since then, we speculate MCOLN1 might be involved in
mediating insulin secretion by regulating the lysosomal function,
autophagy, and mTORC1 activation. Then, we applied MCOLN1-
specific single-gene GSEA to explore the critical mechanisms.
Exhilaratingly, the up-expression of MCOLN1 is significantly
positively associated with the activation of lysosome and insulin
secretion, which corresponds with the literature and supports our
hypothesis.

ATP6V0E1 belongs to the V-ATPase family and encodes the
membrane-bound subunit e of V-ATPase, a multisubunit enzyme
that mediates the acidification of eukaryotic intracellular organelles
(Stransky et al., 2016). Lysosomal acidification mechanisms based
on the V-ATPase and the counter ion transporter are critical for
proper lysosome function (Mindell, 2012). Over-expressed
ATP6V0E1 of macrophages partially rescued TcdB-triggered
downregulation of lysosomal proton pump subunits and
lysosome neutralization (Chan et al., 2022). Lysosomal acidity
and autophagic flux of pancreatic β-cells are suppressed by
exposure to persistent lipotoxicity. These can be reversed through
lysosome acidification by delivering lactic and glycolic acid into

FIGURE 14
Drug–gene interaction network of target genes, the ellipse shape means target genes, the rectangle shape means drugs, and the red color means
up-expression.
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lysosomes, resulting in restoring autophagic flux and insulin
secretion of pancreatic β-cells (Zeng et al., 2019). Recently, the
gastric proton pumpH+/K + -ATPase, encoded by ATP4A, has been
reported to affect pancreatic secretion (Wang et al., 2015). ATP4A
promotes the exocytosis of insulin vesicles by triggering the closure
of KATP channels and regulating the calcium influx through
voltage-dependent calcium channels. The knock-down of ATP4A
in the insulinoma cell line MIN6 led to decreased glucose-stimulated
insulin secretion (Schallschmidt et al., 2018). In our study, single-
gene GSEA indicated that both ATP6V0E1 and ATP4A are
positively associated with the pancreatic secretion pathway.
Meanwhile, ATP6V0E1 is also positively correlated with the
lysosome. These outcomes are consistent with previous literature
reviews and show a regulatory role of ATP6V0E1 and ATP4A in
insulin secretion.

Interestingly, the upregulated MCOLN1, ATP6V0E1, and
ATP4A were conformably associated with decreased activity
of the TGF-beta signaling pathway. It has been suggested that
the inhibitor of TGF-beta receptor I can significantly stimulate
C-peptide secretion and promote human islet β-cell
proliferation by suppressing the activity of the TGF-beta
signaling pathway (Xiao et al., 2016). Z. Zi reported that the
degradation of TGF-beta in lysosomes is important for
suppressing TGF-beta signaling (Zi et al., 2012). In summary,
MCOLN1, ATP6V0E1, and ATP4A might enhance the insulin
secretion of insulinomas by participating in regulating the
function and TGF-beta signaling pathway.

In the CIBERSORT algorithm for immune infiltration analysis,
we found that the fraction score of resting dendritic cells was
significantly lower in the insulinoma group with a trend of
increased M2 macrophages. Moreover, MCOLN1 was positively
correlated with M2 macrophages, whereas ATP4A was negatively
correlated with resting dendritic cells. Additionally, compared with
NFPNET, the results of ssGSEA revealed that the infiltration-enriched
scores of natural killer (NK) cells were significantly lower in
insulinoma tissues, and insulinoma tissue seemed to have a
tendency to have a lower infiltration-enriched score of activated
dendritic cells. At present, there is no direct research evidence for
the relationship between insulinoma and different types of dendritic
cells. Mclaughlin R.J suggested that dendritic cells induce the
posttranslational modification of islet autoantigens and trigger the
autoimmune injury to islet βcells (McLaughlin et al., 2016).
Furthermore, dendritic cells can efficiently phagocytize enterovirus-
infected Min6 mouse insulinoma cells in vitro (Schulte et al., 2010).
Therefore, we hypothesized that insulinoma tissue might have a lower
infiltration of dendritic cells to escape immune damage, which is an
interesting result that needs to be confirmed by further studies. It is
well known that M2 macrophages perform an anti-inflammatory,
prooncogenic, and immune-suppressive role within the tumor
immune microenvironment (Pathria et al., 2019). Recent reports
suggest that M2 macrophages can promote the immune escape of
tumors by repressing the anti-tumor activity of cytotoxic CD8+ T cells
(Peranzoni et al., 2018). Group VIA Ca2+-independent phospholipase
A2 (iPLA2β) plays an impellent role in islet β-cell programmed cell
death (Lei et al., 2010), whereas M2 macrophages accelerate the
diminution of iPLA2β (Ashley et al., 2016). NK cells, a classic
subtype of cytotoxic lymphocyte for innate immunity, take various
approaches to kill carcinoma cells straightly (Kalluri, 2016).

Consequently, insulinoma might exhibit a lower level of
antineoplastic immune injury. The identified three target genes
might partially contribute to the heterogeneous immune
microenvironments of insulinomas and depress the immune attack
in consideration of the correlation of these genes with immunocytes.

Our study also had some limitations. Significantly, the datasets
and samples of mRNA expression profiles of insulinoma are few
within the GEO database due to the low incidence and difficulty of
diagnosis, which need to be verified in other datasets in future.
However, it is very fortunate that the diagnostic model was also
influential in distinguishing insulinoma and normal islets, which
would partially enhance our model’s credibility. In addition, in
future, further experiments need to be carried out to corroborate
our outcomes. Integrating these target genes with other clinical
diagnostic models and targeting them might also be considerable
and valuable.

Conclusion

We identified three target ion channel-related genes (MCOLN1,
ATP6V0E1, and ATP4A) through integrated bioinformatics and two
machine learning algorithms. We also constructed an efficiently
predictable diagnosis model for identifying insulinoma, whichmight
offer a novel approach for diagnosing insulinoma in clinical practice.
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