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Objectives: This study aimed to explore cell type level expression quantitative trait
loci (eQTL) in adenocarcinoma at the gastroesophageal junction (ACGEJ) and
identify susceptibility and prognosis markers.

Methods: Whole-genome sequencing (WGS) was performed on 120 paired
samples from Chinese ACGEJ patients. Germline mutations were detected by
GATK tools. RNA sequencing (RNA-seq) data on ACGEJ samples were taken from
our previous studies. Public single-cell RNA sequencing (scRNA-seq) data were
used to produce the proportion of epithelial cells. Matrix eQTL and a linear mixed
model were used to identify condition-specific cis-eQTLs. The R package coloc
was used to perform co-localization analysis with the public data of genome-wide
association studies (GWASs). Log-rank and Cox regression tests were used to
identify survival-associated eQTL and genes. Functions of candidate risk loci were
explored by experimental validation.

Results: Refined eQTL analyses of paired ACGEJ samples were performed and
2,036 potential ACGEJ-specific eQTLs with East Asian specificity were identified in
total. ACGEJ-gain eQTLs were enriched at promoter regions more than ACGEJ-
loss eQTLs. rs658524was identified as the top eQTL close to the transcription start
site of its paired gene (CTSW). rs2240191–RASAL1, rs4236599–FOXP2,
rs4947311–PSORS1C1, rs13134812–LOC391674, and rs17508585–CDK13-DT
were identified as ACGEJ-specific susceptibility eQTLs. rs309483–LINC01355
was associated with the overall survival of ACGEJ patients. We explored
functions of candidate eQTLs such as rs658524, rs309483, rs2240191, and
rs4947311 by experimental validation.

Conclusion: This study provides new risk loci for ACGEJ susceptibility and
effective disease prognosis biomarkers.
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Introduction

Many SNPs (single-nucleotide polymorphisms) have been
linked to complex diseases such as diabetes, Alzheimer disease,
and multiple cancers (Wright et al., 2019; Forrest et al., 2022; Wang
et al., 2022). GWASs reveal hundreds of risk loci, most of which are
located in non-coding regions of the DNA, suggesting that
deciphering their biological functions remains challenging (Ong
et al., 2022; Sollis et al., 2023). eQTL is a commonly used method to
explain potential functions of risk loci identified by GWASs (Umans
et al., 2021). This approach is based on the concept that a GWAS
variant in some tissues affects expression at a nearby gene and that
both the gene and tissue might play a role in the disease mechanism
(Gamazon et al., 2015; Ratnapriya et al., 2019). However, previous
studies have mostly investigated eQTLs at the tissue level, leading to
ever growing sample sizes but partially successful in prioritizing
disease risk SNPs and genes (Human genomics, 2015; Battle et al.,
2017). Recent studies have shifted focus on cell type–specific eQTLs
because many disease-associated eQTLs have been observed in
specific cell types, and these eQTLs show strong enrichment for
heritability across complex traits (Hormozdiari et al., 2018; Sarkar
et al., 2019; Cuomo et al., 2020; van der Wijst et al., 2020; Neavin
et al., 2021; Ota et al., 2021; Bryois et al., 2022; Yazar et al., 2022).
Moreover, despite non-coding RNAs, especially long non-coding
RNAs (lncRNAs), being regarded as tissue-specific prognosis
markers and therapeutic targets of many kinds of tumors, eQTL
analyses focusing on non-coding genes still remain exiguous (de
Goede et al., 2021; Statello et al., 2021).

ACGEJ has had a rapidly increasing incidence in western
countries during the past few decades (Chevallay et al., 2018). In
Asia, where squamous cell carcinoma is the predominant type of
esophageal cancer, the rising incidence of ACGEJ has also been
reported (Rashkin et al., 2020; Sakaue et al., 2021). The five-year
survival rates of this cancer are 20–25%, which is lower than that of
esophageal or gastric cancers (Lin et al., 2020). Previous tissue level
studies have identified susceptibility loci and therapeutic genes for
ACGEJ (Abnet et al., 2010; Wang et al., 2010a; Hu et al., 2016; Lott
and Carvajal-Carmona, 2018; Lin et al., 2020; Ku et al., 2021; Lao
et al., 2022). However, most eQTL studies of tumors lack enough
resolution and paired adjacent normal samples (Gong et al., 2018;
Calabrese et al., 2020). Therefore, deciphering tumor-specific eQTLs
may help elucidate carcinogenic mechanisms and inform broadly
applicable risk assessment efforts.

In the present study, we conduct an eQTL study on ACGEJ
using WGS, RNA-seq, and public scRNA-seq data. To increase the
resolution of eQTLs at the cell type level, we use a proportion of the
epithelial cells multiplying genotypes as an interaction term.
Epithelial cell proportions are generated by computational
deconvolution using reference gene expression profiles produced
by scRNA-seq data. To increase the resolution of eQTLs at the
disease level, we estimate effects of epithelial cell–specific eQTLs on
ACGEJ and normal cells. Here, we reveal substantial ACGEJ-specific
effects (ACGEJ-loss/ACGEJ-gain eQTLs) in the genetic regulation
of gene expression. The integration of cell type–specific eQTLs with
GWAS and clinical data identifies susceptibility and prognosis
markers of ACGEJ. The present study provides insights into
tumor-specific eQTLs and identifies risk loci more precisely and
specifically than tissue level studies.

Materials and methods

Biospecimens and clinical data

The biospecimens used in this study were collected from
120 Chinese ACGEJ patients at the Linzhou Cancer Hospital and
Linzhou Esophageal Cancer Hospital (Henan province, China).
Tumor, adjacent normal tissue, and peripheral blood samples
were obtained by surgical resection. ACGEJ was confirmed by at
least two pathologists via histopathological examination. Patients
received no chemotherapy or radiotherapy before surgery. Clinical
data were collected from the medical record of each patient
(Supplementary Table S1).

DNA and RNA sequencing data

Aligned DNA sequences (as bam files) and gene expression
data were obtained from a previous study of our group (Lin et al.,
2020). In summary, blood DNA was extracted using the QIAamp
DNA Blood Midi Kit (QIAGEN), and total RNA was extracted
from tissue samples using the AllPrep DNA/RNA Kit (QIAGEN).
Whole-genome library preparation was carried out using the
TruSeq Nano DNA HT Sample Preparation Kit and 500 ng of
genomic DNA per sample sheared into 350-bp fragments. The
RNA library preparation was carried out using the NEBNext®

Ultra™ Directional RNA Library Prep Kit for Illumina and 3 ng
of RNA per sample as the initial material. Ribosomal RNA was
removed using the Epicenter Ribo-Zero™ Gold Kits. Library
fragments were purified using the kaiao K5500®
Spectrophotometer (Kaiao, Beijing, China). All libraries were
sequenced on an Illumina Hiseq 4000 platform, and 150-bp
paired-end reads were generated.

Differential gene expression analysis

We considered a gene as differentially expressed in tumor and
normal samples if the log2 + 1 transformed TPM (transcript per
million) change was significant in the Wilcoxon test with the
adjusted q-value (FDR, false discovery rate) was <0.05 and the
fold change of mean TPM was >1.2 or <0.8.

SNP calling

Germline mutations were detected using GATK tools (v4.2.0.0)
(Poplin et al., 2018). From biallelic SNPs that passed variant quality
score recalibration, we used PLINK (v1.9) (Purcell et al., 2007) to
remove those with minor allele frequency <0.01 or missing call
rate >5% or those deviating from the Hardy–Weinberg equilibrium
with a p-value <10−6. We further removed SNPs in the Y
chromosome and SNPs with the minor allele observed
in <10 patients. We referred to the GENCODE v23 basic gene
annotation for genomic coordinates of the transcription start site
(TSS) and end site (TES) and converted the SNP coordinates from
hg19 to hg38 using the liftOver function of the R rtracklayer (version
1.46.0) package (Hinrichs et al., 2006).
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Cell type deconvolution, epithelial cell
proportion, and high-resolution gene
expression

To de-convolve cluster-specific cell subsets from bulk RNA-
seq, signature matrices of epithelial, immune, and stromal cells
were calculated using the public scRNA-seq data by CIBERSORTx
(Newman et al., 2019). A total of 3,665 epithelial, 321 immune, and
53 stromal cells were taken from three clusters using the Seurat
(v4.2.0) (Hao et al., 2021) subset function and labeled with the
corresponding cluster identities. Cluster-labeled cells were used to
obtain a single-cell reference matrix that was used as an input and
run on the CIBERSORTx online server using the ‘Custom’ option.
The disable quantile normalization option was used. The default
value for sampling (0.5) was used. Replicates (Ratnapriya et al.,
2019) and minimum expression (0) were used. Additional options
for kappa (999), q-value (0.01), and the number of barcode genes
(300–500) were kept at default values. We obtained consistent
results on cell proportion using some other references and
parameter settings (Supplementary Figures S1A,B) (Sathe et al.,
2020). The CIBERSORTx single-cell reference matrix was used to
impute cell fractions from the bulk RNA-seq of mixture files. The
mixture files (TPM values) were used as the input and run on the
CIBERSORTx online server using the “Impute Cell Fraction”
analysis with the “Custom” option selected, and the S-mode batch-
correction was applied. Cell fractions were run in the relative mode to
normalize results to 100%. The number of permutations to test for
significance was kept at default (100). The estimated epithelial cell
fraction is shown in Supplementary Table S8 and is highly correlated
with that inferred using the ESTIMATE (Supplementary Figure S2A)
(Yoshihara et al., 2013). Mixture files, signature matrices, and cell
fractions were used to obtain cell expressions using the “Impute Cell
Expression” analysis with the “Custom” and “High-Resolution”
options selected. A list of genes was used as the ‘gene subset file,’
and the S-mode batch-correction was applied. Due to the limitation of
CIBERSORTx on low-expressed (mRNA level of most samples <1)
genes, we deleted those genes and transcription factors where the
mRNA levels of most samples was <1 before the differential gene
expression analysis.

Genome-wide identification of epithelial cell
fraction–dependent cis-eQTLs

We used the Matrix eQTL (v2.3) to identify epithelial
cell–specific and ACGEJ-specific eQTL. Patients’ age (grouped
as < or ≥ median), sex, drinking status, smoking status, and
estimated epithelial cell fraction were included as covariates.
Therefore the first two genotype PCs in addition to the first
30 PEER factors for ACGEJ samples and the first three genotype
PCs in addition to the first 10 PEER factors for normal tissue
samples were applied to capture the hidden technical variations and
resultant batch effects. PCs and PEER factors were inferred using the
snpgdsPCA function in the R SNPRelate package (v1.20.1) (Zheng
et al., 2012) and the R peer package (v1.0) (Stegle et al., 2010),
respectively. We applied the LINEAR_CROSS model of Matrix
eQTL to test for the significance of the interaction between the
genotype at a specific locus and the estimated epithelial cell fraction

(as the last covariate in order), so as to identify cis-eQTLs whose
effects depend on the enrichment of the epithelial cells. Consistent
with an earlier study on this matter (Geeleher et al., 2018), this
model effectively controlled p-value inflation (Supplementary
Figures S3A,B) and thus the false-positive rate. Since we used all
SNPs extracted from theWGS data without conducting LD pruning,
a hierarchical multi-test correction procedure (Huang et al., 2020)
was then adopted to adjust the nominal p-values from the Matrix
eQTL, and the SNPs with the adjusted p ≤ 0.01 were considered cis-
eQTLs. We performed the GSEA enrichment analysis of epithelial
cell–specific eQTLs, which revealed the epithelial cell specificity of
our result (Supplementary Figures S3C). Parameters such as the
minimum gene set size (minGSSize), maximum gene set size
(maxGSSize), permutation (nPerm), and p-value cut-offs were the
default values. The p-value adjustment method was set to Benjamini
and Hochberg (BH).

ACGEJ-associated cis-eQTL identification

We looked for significant associations between eQTL genotype
and gene expression conditional on the disease status (ACGEJ/
normal) by combining significant ePairs separately identified in the
ACGEJ and normal samples into an LMM and then testing the
significance of an interaction term between the eQTL genotype and
disease status. To decrease probable redundancy due to LD, we did
not include all the earlier identified cis-eQTLs but only the most
significant one (top eQTL) for each gene in either disease status. As
for genome-wide cis-eQTL identification, we used linear models to
account for the 17 covariates common in the earlier ACGEJ/normal
sample–exclusive cis-eQTL mapping, such as age, sex, drinking and
smoking status, estimated epithelial cell fraction, the first two
genotype PCs, and the first 10 PEER factors. However, now that
the samples had been paired and were therefore non-independent,
we built LMMs using the lmer function from the lme4 R package
(v1.1-30) (Huang et al., 2020). Specifically, we fit two models as
given below—one with and the other without the interaction
between the genotype and disease status (ACGEJ = 1 and
normal = 0):

expression ~ genotype + status + genotype × status

+∑
17

k�1
covariatek + status × covariatek( ) + 1

∣∣∣∣Sample( )

This model allows detecting eQTLs with different effects
between two disease statuses, while avoiding the trouble of
untangling every possible disease-associated confounder. We
applied a permutation-based method (Huang et al., 2020) to
estimate the empirical p-values for the genotype–status
interaction and the required p-value < 0.05 for statistical
significance.

Annotation of SNPs and genes

Germline SNPs were annotated by ANNOVAR (24 October
2019) (Wang et al., 2010b). Genes were annotated by BioMart
Ensembl gene 108 (Durinck et al., 2009).
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Cancer-related gene sets

The Hallmark gene set was downloaded from Human
MSigDB Collections (v2023.1.Hs) (Subramanian et al., 2005;
Liberzon et al., 2015). The version of the COSMIC gene set
was v96, released on 31 May 2022 (Tate et al., 2019). The cancer
susceptibility gene set was downloaded from the CSGs v1.0 in
March 2022 (Shi et al., 2022). The therapeutic gene set was
downloaded from OncoKB (v3.0) (Chakravarty et al., 2017)
(Supplementary Table S2).

Gene set variation analysis

The gene set variation analysis was performed by using the R
package GSVA (v1.42.0) (Hänzelmann et al., 2013) and limma
(v3.50.3) (Ritchie et al., 2015).

GWAS co-localization

GWAS co-localization was performed by the R package coloc
(v5.1.0.1) (Wallace, 2021). The GWAS data sets were
downloaded from published GWAS data sets such as
GCST90018841 (Sakaue et al., 2021), GCST90018848 (Sakaue
et al., 2021), GCST90018849 (Sakaue et al., 2021),
GCST90000514 (Ong et al., 2022), and GCST90000515 (Ong
et al., 2022) and the CCGD-ESCC (Peng et al., 2018) and public
databases such as bbj-a-117 (Nakamura, 2007). The traits of
GWAS that we used included esophageal cancer,
gastroesophageal reflux disease, Barrett’s esophagus, and
gastric carcinoma (Supplementary Table S6).

Bayesian fine-mapping

We performed fine-mapping based on summary statistics and
matched the LD matrix for the top SNP rs658524 and SNPs with
high LD to rs658524 (LD > 0.8) using Fine-mapping (Huang et al.,
2017). We used the expression of CTSW to be the trait and adjusted
this model with the age of the sample, obtaining sex, smoking status,
drinking status, TNM stage, and epithelial cell proportion. We used
the recommended parameters of the tool. Fine-mapping reports the
PIP (posterior inclusion probability) of each variant that is causal in
the specific model. We recorded potentially causal variants in a 99%
credible set according to the fine-mapping PIP (Supplementary
Table S9).

Public scRNA-seq data

The scRNA-seq data were downloaded from the published
article of Nowicki-Osuch et al. (2021). The cells were collected
from the normal gastric cardia data set. We used the clustering result
of the original study. We combined 3,665 glandular epithelial cells,
321 immune cells, and 53 stromal cells as the epithelial, immune,
and stromal cell cluster, respectively.

Cell lines and cell culture

The human ACGEJ cell line OE19 was purchased from the Cell
Resource Center, IBMS, CAMS/PUMC, Beijing, China. The cells
were cultured in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal bovine serum.

CTSW genotyping

The CTSW rs658524G/A genotypes were identified by PCR with
the primers shown in Supplementary Table S3.

Small interfering RNA transfection

Small interfering RNA (Supplementary Table S3) targeting
KLF5 was obtained from GenePharma. The transfection of
siRNAs was performed using the jetPRIME transfection reagent
(#101000046, Polyplus, France).

Real-time quantitative PCR

Total RNA extraction and reverse transcription were performed
using the RNA-Quick Purification Kit (RN001, ES Science) and
PrimeScript RT reagent Kit (RR036A, TaKaRa), respectively.
Quantitative PCR (qPCR) was performed in triplicate using TB
Green Premix Ex Taq II (RR820A, TaKaRa) with the primers shown
in Supplementary Table S3.

Western blot analysis

Total protein was subjected to SDS-PAGE and transferred to the
PVDF membrane (IPVH00010, Millipore). The antibody against
CTSW (ab191083), KLF5 (21017-1-AP), or vinculin (ab219649)
was obtained from Abcam or Proteintech. The membrane was
incubated with the primary antibody and visualized using the
Chemiluminescent Substrate Kit (34580, Thermo Fisher).

Electrophoretic mobility-shift assays

Nuclear proteins were extracted from OE19 cells using the
Nuclear and Cytoplasmic Protein Extraction Kit (P0028,
Beyotime). Electrophoretic mobility-shift assays (EMSA) were
performed using the Chemiluminescent EMSA Kit (#GS009,
Beyotime). The probe sequences are shown in Supplementary
Table S4.

Construction of reporter plasmids and
reporter assays

DNA fragments containing rs658524A or rs658524G (526 base
pairs from the position −454 to +71) produced by DNA synthesis
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were cloned into the pGL3-Enhancer. DNA fragments containing
rs4947311T, rs4947311C (600 base pairs from the position −299 to
+300), rs2240191G, rs2240191T (600 base pairs from the
position −299 to +300), rs309483G, or rs309483A (600 base pairs
from the position −299 to +300) produced by DNA synthesis were
cloned into the pGL3-Promoter. The luciferase reporter assays were
performed according to the manufacturer’s instructions (Promega
E1960).

Chromatin immunoprecipitation–coupled
qPCR analysis

Chromatin immunoprecipitation (ChIP) assays were performed
using the SimpleChIP Plus Sonication Chromatin IP Kit (#56383,
CST). OE19 cells were treated with formaldehyde for cross linking
followed by ChIP with the KLF5 antibody or rabbit IgG. DNA
fragments were analyzed by qPCR with the primers shown in
Supplementary Table S3.

Survival analysis

We followed up with 81 of the 120 ACGEJ patients. The overall
survival time of these patients was estimated by using the
Kaplan–Meier method, and the differences were examined by the
log-rank test. The HR and 95% CI were calculated with the Cox
proportional hazards model, adjusted by clinical data such as age,
sex, smoking status, drinking status, and TNM stage (AJCC/UICC,
STAD, v7).

Statistical analysis

The unpaired t-test and Mann–Whitney test were used for
the independence test between variables of the two unpaired
gene expression groups. The Wilcoxon matched-pairs signed-
rank test was used for the independence test between two paired
gene expression groups (tumor and adjacent normal epithelial
cell). All statistical tests were two-tailed unless specifically
indicated, and a p-value < 0.05 was considered significant.
All the statistical analyses were performed using the R-
4.1.3 software.

Other analyses

The LD r2 between two SNPs was calculated by using the
snpgdsLDpair function in the R SNPRelate package. All statistical
tests were two-tailed, and a p-value < 0.05 was considered
significant, unless specifically indicated. All statistical analyses
were conducted using the R (v 4.1.3) software. Potential
transcription factors of CTSW that might bind to
rs658524 were predicted by JASPAR 2022 (Castro-Mondragon
et al., 2022) and AnimalTFDB (v4.0) (Shen et al., 2023) using the
DNA fragment containing rs658524G (25 base pairs from the
position −84 to −60).

Results

Identification of ACGEJ-specific eQTLs

We first identified 125,164 eQTLs using the SNP set of 120
ACGEJ patients and the gene expression data of their ACGEJ
samples and also identified 108,057 eQTLs using the same set of
SNPs and the gene expression data of their normal tissue samples
separately (Figure 1A). Then, we used a linear mixed model on the
union of these ePairs and identified 2,045 ACGEJ-specific ePairs,
involving 1,993 genes and 2,036 eQTLs (Supplementary Table S5).
We further identified 1,009 (49.6%) ACGEJ-loss eQTLs and 1,027
(50.4%) ACGEJ-gain eQTLs (Figure 2A). ACGEJ-specific eQTLs
consisted of 1,603 (78.7%) SNPs and 433 (21.3%) indels. We found
that the top four eQTLs sorted by counts included A>G (16.4%),
T>C (14.4%), C>T (11.0%), and G>A (11.0%) (Supplementary
Table S5). Of all ACGEJ-specific eQTLs, we found 0.6% (12/
2,036) were overlapped with the GTEx database and 0.2% (4/
2,036) were novel variants (chr1: 144691189T>TA, chr1:
143770602AGGTATATCTTG>A, chrX: 446457G>A, and chrX:
1251859G>GAA).

Meanwhile, we obtained 961 (48.2%) ACGEJ-loss genes and 980
(49.2%) ACGEJ-gain genes. Notably, 52 genes (2.6%) were found
simultaneously in different ePairs under the ACGEJ or normal
condition (Figure 2B). For further exploration of potential
mechanisms of these genes, we annotated these genes and found
that a fair number of genes were pseudogenes and non-coding
RNAs. Of all ACGEJ-loss genes, 545 (53.8%), 174 (17.2%), and 110
(10.9%) were protein-coding genes, lncRNA genes, and
pseudogenes, respectively (Figure 2B). Of all ACGEJ-gain genes,
598 (57.9%), 168 (16.3%), and 91 (8.8%) were protein-coding genes,
lncRNA genes, and pseudogenes, respectively (Figure 2B). We
performed a differential gene expression analysis on 475 genes
passed by quality control and cell-fraction adjustment. We found
that 76.2% (362/475) and 8.4% (40/475) of the genes were
significantly upregulated and downregulated in malignant
epithelial cells, respectively (Supplementary Figure S8B).
Moreover, we found more ACGEJ-gain eQTLs and stronger
eQTL effects closer to the TSS of their paired genes (Figures
2C,D). However, we found more ACGEJ-loss eQTLs and
stronger eQTL effects at ±300 kb than locations close to the TSS
of their paired genes (Figures 2C,D). Furthermore, we found that
regulatory effect sizes and statistical power of ACGEJ-gain eQTLs
were significantly larger than ACGEJ-loss eQTLs on protein-coding
genes, lncRNA genes, or pseudogenes (Supplementary Figures
S4A,B,C,D). These findings indicated that either ACGEJ-gain or
ACGEJ-loss eQTLs were crucial for ACGEJ susceptibility, while
ACGEJ-gain eQTLs might had more power than ACGEJ-loss
eQTLs.

ACGEJ-specific eQTLs potentially regulate
expression of cancer-related genes

We identified ACGEJ-specific eQTLs that were overlapped with
public cancer-related data sets such as the molecular signature
database hallmark, catalog of somatic mutations in cancer, cancer
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susceptibility gene, and MSK’s precision oncology knowledge base.
We found 26, 18, 7, and 131 ACGEJ-loss genes in COSMIC, CSG,
OncoKB, and Hallmark, respectively (Figure 3A). We also found 27,
25, 3, and 170 ACGEJ-gain genes in COSMIC, CSG, OncoKB, and
Hallmark, respectively (Figure 3A). To explore the effect size of
particular ePairs, we exhibited the top eight ePairs of which genes
were included in the COSMIC, CSG, and OncoKB gene sets sorted
by p-values. For instance, ACGEJ cells with rs2074408G had
significantly lower ACACA expression than ones with
rs2074408A (Figure 3B). Another example is that ACGEJ cells
with rs931834G showed significantly lower FOXP1 expression
than ones with rs931834C (Figure 3B). Furthermore, 131 of the
1,009 (13%) ACGEJ-loss genes and 170 of the 1,027 (16.6%) ACGEJ-
gain genes were MSigDB hallmark pathway member genes. We
sorted hallmark pathways by the number of genes in them (Figures
3D,E). For instance, ACGEJ cells with rs1943495636G showed
significantly lower B3GAT3 expression, while ACGEJ cells with
rs1670455A showed significantly higher PAK1 expression
(Figure 3C).

Since we observed eQTL specificity on cell types (ACGEJ or
normal epithelial cells), we performed gene set variation analyses of
ACGEJ-loss and ACGEJ-gain genes to explore potential pathway
level mechanisms of this condition-specific phenomenon. We found
that androgen response, epithelial–mesenchymal transition,
myogenesis, allograft rejection, and inflammatory response
pathways were significantly downregulated in ACGEJ cells, while
pathways such asWnt/beta-catenin signaling, mitotic spindle, G2-M
checkpoint, notch signaling, and unfolded protein response were
significantly upregulated in ACGEJ cells (Figure 4A). Furthermore,
notch signaling, unfolded protein response, and Myc targets were
the top three upregulated pathways, while myogenesis, allograft
rejection, and inflammatory response were the top three
downregulated pathways (Figure 4B).

rs658524G>A mutation reduces CTSW
expression by reinforcing KLF5 binding
ability

To explore regulatory functions of ACGEJ-specific eQTLs, we
annotated these eQTLs with their regulatory distance between each
eQTL and transcription start site of their paired gene and found that
ACGEJ-gain eQTLs were enriched at promoter regions (Figures
2C,D). We then performed functional analyses on the top eQTL
rs658524 of which the distance between rs658524 and the
transcription start site of CTSW was 71 base pairs. Bayesian fine-
mapping analysis revealed that rs658524 was the potential causal
eQTL of CTSW (Supplementary Table S9). We performed
differential expression analysis on adjusted CTSW expression and
found that theCTSWmRNA level of samples with rs658524G/Gwas
significantly higher than for ones with rs658524G/A and rs658524A/
A in normal epithelial cells (Figure 5A). However, we found no
significant difference in CTSW expression between samples with
rs658524G/G and the ones with rs658524G/A and rs658524A/A
(Figure 5A). Furthermore, we found that CTSW expression in
normal epithelial cells were significantly higher than that in
ACGEJ cells (Figures 5A,C), suggesting CTSW was inhibited
during ACGEJ initiation or progression. We predicted potential
transcription factors of CTSW by the affinity score and regarded
KLF5 as the top potential transcription factors of CTSW binding to
rs658524 (Figures 5B,C). The adjusted expression of KLF5 in normal
epithelial cells was significantly lower than ACGEJ cells, suggesting
thatKLF5might suppress the transcription of CTSW as an oncogene
(Figure 5D). To explore the influence of KLF5 on CTSW
transcription, we first performed the reporter assay. We indicated
that rs658524G>A suppressed relative luciferase activity while the
knockdown of KLF5 rescued this suppression (Figure 5E).
Additional EMSA assays showed that the nuclear protein bound

FIGURE 1
Identification of ACGEJ-loss/ACGEJ-gain eQTLs. (A) Flow chart of identification of ACGEJ-loss/ACGEJ-gain eQTLs. Peripheral blood samples were
used to generate SNP data. Tumor and adjacent normal biopsy samples were used to generate gene expression data. Bulk gene expression and public
scRNA-seq data from Nowicki-Osuch et al. (2021) were used to generate epithelial cell proportions. SNP, bulk gene expression, and epithelial cell
proportion data were used to generate eQTLs together with covariates that included clinical data and PEER factors. A mixed linear model was used
to generate ACGEJ-loss/-gain eQTLs.
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FIGURE 2
Distribution of ACGEJ-loss/ACGEJ-gain eQTLs and genes. (A) Exact numbers and proportions of ACGEJ-loss/ACGEJ-gain eQTLs (left) and genes
(right). (B) Functional annotations of ACGEJ-loss (left) and ACGEJ-gain (right) genes. (C) Cell type specificity and distance of eQTL to TSS of their paired
genes. y-axis: eQTL count; x-axis: distance from eQTLs to TSS of their paired genes. Density is highlighted by density regression curve. (D) Cell type
specificity and distance of eQTL to TSS of their paired genes. y-axis: eQTL effect size [−log10 (p-value)] and x-axis: distance from eQTLs to TSS of
their paired genes.
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FIGURE 3
ACGEJ-specific eQTLs acted potentially by regulating the expression of cancer-related genes. (A) Interaction analyses between ACGEJ-loss (blue)/
ACGEJ-gain (red) genes and cancer-related genes. (B) Differential expression of top genes between different genotypes of paired SNPs obtained by
COSMIC, CSG, and OncoKB interaction analyses. * and blank represent p-value < 0.05 and no significance of the Mann–Whitney test, respectively. (C)
Differential expression of top genes between different genotypes of paired SNPs within MSigDB hallmark pathways. *, ****, and blank represent p-
value < 0.05, p-value < 0.0001, and no significance of the Mann–Whitney test, respectively. (D–E) Distribution of ACGEJ-loss (D) and ACGEJ-gain (E)
genes in each pathway of MSigDB hallmark gene sets. Pathways are ranked by gene counts.
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FIGURE 4
Gene set variation analysis of ACGEJ-specific genes. (A)Heatmap of gene set variation analysis of ACGEJ-specific genes. The color depth represents
the level of gene expression variation. ACGEJ cells (left); normal epithelial cells (right). (B). Distribution of ACGEJ-loss (blue)/ACGEJ-gain (red) genes in
each pathway of MSigDB hallmark gene sets. Pathways are ranked by gene counts.
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FIGURE 5
rs658524G>A mutation reduces CTSW expression via KLF5. (A)Differential expression of CTSW expression between normal epithelial cells and ACGEJ
cells. Samples are divided by genotypes. *, ****, and blank represents p-value < 0.05, p-value < 0.0001, and no significance of theWilcoxon test, respectively.
(B) Potential transcription factors of CTSW that might bind to rs658524 are predicted by JASPAR and AnimalTFDB affinity score using DNA fragments
containing rs658524G (25 base pairs from the position −84 to −60). (C) JASPAR and HumanTFDB are used to predict the binding site of KLF5 at
rs658524. (D) Differential expression of CTSW and KLF5 between normal epithelial cells and ACGEJ cells. (E) pGL3-promoter plasmids are transfected into
OE19 24 h after the transfection of siRNA of KLF5. Relative luciferase activity is examined 24 h after the transfection of plasmids with triple repetition. ***
represents p-value < 0.001 of the unpaired t-test. (F) EMSA assay of rs658524. Concentration of unlabeled probes is designed to be 20- or 50-fold of biotin-
labeled probes. (G) Super-shift EMSA assay of rs658524 using the KLF5 antibody. (H) ChIP-qPCR assay of rs658524 using the KLF5 antibody and rabbit IgG
with triple repetition. *** represents p-value < 0.001 of the unpaired t-test. (I) Western blot is performed 48 h after the transfection of siRNA of KLF5.
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FIGURE 6
Co-localization analysis of ACGEJ-specific eQTLs and GWAS loci. (A) eQTLs: upper; GWAS: lower. The horizontal dotted lines represent p-value ≤
0.05 (upper) and p-value ≤ 0.00001 (lower). The vertical dotted lines represent the same peak both in eQTL and GWAS data set. Susceptibility gene
PSORS1C1 is highlighted in red. (B) eQTLs: upper; GWAS: lower. The horizontal dotted lines represent p-value ≤ 0.05 (upper) and p ≤ 0.00001 (lower).
Susceptibility gene LOC391674 is highlighted in red. Top 10 eQTLs within GWAS loci are highlighted. (C) eQTLs: upper; GWAS: lower. The horizontal
dotted lines represent p-value ≤ 0.05 (upper) and p-value ≤ 0.00001 (lower). Susceptibility gene RASAL1 is highlighted in red. (D). eQTLs: upper; GWAS:
lower. The horizontal dotted lines represent p-value ≤ 0.05 (upper) and p-value ≤ 0.00001 (lower). Susceptibility gene FOXP2 is highlighted in red. (E)
Susceptibility gene CDK13-DT is highlighted in red. Top 10 eQTLs within GWAS loci are highlighted.
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FIGURE 7
Twenty-two non-coding prognosis markers. (A) Kaplan–Meier survival curves for patients with different genotypes of SNPs that potentially regulate
non-coding RNA expression.
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to the DNA probe was rs658524A specific, and the band could be
super-shifted when the KLF5 antibody was included in the
incubation mixture (Figures 5F,G), indicating that the protein
bound to rs658524 was likely to be KLF5. ChIP-qPCR detection
in the OE19 cell line with the rs658524A/A genotype
(Supplementary Figure S5A,B) showed significantly stronger
KLF5 binding ability to the rs658524 region than rabbit IgG
(Figure 5H). Knockdown of KLF5 promoted CTSW expression in
the OE19 cell line (Figure 5I). Taken together, these results
demonstrate that rs658524G>A mutation promoted
KLF5 binding ability that caused CTSW downregulation in
ACGEJ where KLF5 was overexpressed.

Identification of ACGEJ-specific
susceptibility and prognosis markers

We performed co-localization analysis of ACGEJ-specific
eQTLs and GWASs to explore the contribution of these eQTLs
to ACGEJ susceptibility. We identified five eQTLs co-localized with
identical GWAS loci, namely, rs4947311–PSORS1C1 (PP4 = 0.32)
(Figure 6A), rs13134812–LOC391674 (PP4 = 0.25) (Figure 6B),
rs2240191–RASAL1 (PP4 = 0.32) (Figure 6C), rs4236599–FOXP2
(PP4 = 0.41) (Figure 6D), and rs17508585–CDK13-DT (PP4 = 0.29)
(Figure 6E, Supplementary Table S6). We also found that
distribution patterns of ACGEJ-specific eQTLs were consistent.
An example was rs13134812—LOC391674, of which the peak of
ACGEJ-specific eQTLs and GWASs appeared at the same zone.
Notably, rs4236599–FOXP2 was also exhibited in two GWAS
datasets with similar patterns (Supplementary Figure S6A).
Furthermore, rs2240191–RASAL1 showed up in two GWAS data
sets with similar patterns (Supplementary Figure S6B). Notably,
functions of these genes might be crucial for ACGEJ susceptibility
and worthy of further study.

We further performed survival analysis of ACGEJ-specific
eQTLs. In total, 55 eQTLs were significantly associated with
overall survival by the log-rank test and the Cox proportional
hazards model adjusted by gender, age, smoking status, drinking
status, and TNM stages (Supplementary Table S7). Nearly half (22/
55) of the genes paired to their survival-associated eQTLs were non-
coding genes, that is, 10 pseudogenes and 9 lncRNA genes
(Figure 7A). An example was rs10407340–vomeronasal
1 receptor pseudogene. Patients with rs10407340G (homozygote
alteration genotype and heterozygote) had better survival than those
with rs10407340A (homozygote reference genotype) (log-rank p =
0.00036, HR = 0.31, and 95% CI = 0.13–0.78) (Figure 7A). We also
visualized overall survival with other genes except for these 22 non-
coding genes (Supplementary Figure S7A). Furthermore, we
performed survival analyses of genes paired with these survival-
associated eQTLs. Patients with rs309483G had better survival than
those with rs309483A with log-rank p being 0.04 and HR being 2.62
(1.05–6.50). We found that patients with high-level LINC01355
(rs309483 paired gene) had better overall survival than those
with low-level LINC01355 [p = 0.005 and HR = 0.34
(0.16–0.73)], which is contrary to the Kaplan–Meier plotter result
[log-rank p = 0.00092 and HR = 1.44 (1.16–1.79)]. The effect size of
rs309483 on LINC01355 expression was −2.76, indicating that
germline alteration rs309483G>A might downregulate

LINC01355 expression and better survival of rs309483G than
rs309483A and suggesting the potential of rs309483–LINC01355
as an ACGEJ-specific prognosis marker.

To explore the functions of these susceptibility and prognosis
markers in ACGEJ, we performed reporter gene assays and found
that rs309483A>G (LINC01355-paired eQTL) (Figure 8A),
rs4947311C>T (PSORS1C1-paired eQTL) (Figure 8C), and
rs2240191T>G (RASAL1-paired eQTL) promoted relative
luciferase activity (Figure 8E). EMSA assays indicated no less
than three nuclear proteins that bound to rs309483 (Figure 8B),
rs4947311 (Figure 8D), and rs2240191 (Figure 8F), suggesting their
roles as enhancers during the transcription of LINC01355,
PSORS1C1, and RASAL1, respectively.

Discussion

Over the last decades, millions of eQTLs have been identified
using bulk RNA-seq and WGS data to explore critical biological
events of complex diseases (Li et al., 2013; Zhu et al., 2016;
Tachmazidou et al., 2019). More and more eQTL studies have
confirmed that regulatory patterns of gene expression exhibit
specificity in particular cell types (Raj et al., 2014; Schmiedel
et al., 2018; Young et al., 2021). However, cell type–specific
eQTLs still remain scarce in tumor studies. In the present study,
we promoted eQTL resolution on cell type level by leveraging
scRNA-seq, bulk RNA-seq, and WGS data (Westra et al., 2015;
Geeleher et al., 2018; Donovan et al., 2020). As a result, we obtained
2,036 ACGEJ-specific eQTLs that might consist of real regulatory
information in ACGEJ. Previous studies have confirmed important
roles of non-coding RNA genes as clinical or prognosis markers in
initiation or progression of solid tumors (Li et al., 2020; Xin et al.,
2021). However, most RNA-seq data obtained by capturing polyA of
mRNA lead to poor coverage on non-coding RNAs. In the present
study, we found that approximately 25% of the ACGEJ-specific
genes were lncRNA genes and pseudogenes, suggesting their huge
potential as ACGEJ-specific therapeutic or prognosis markers. The
GTEx project has revealed tissue specificity of eQTLs in normal
samples (Battle et al., 2017). We found that 0.6% of our results
overlapped with gastroesophageal junction–specific eQTLs of the
GTEx database. Notably, the sampled donors of the GTEx project
(v7) were 83.7% European Americans and 15.1% African
Americans, suggesting that our results were ancestry specific.

Cell type–specific eQTL findings reveal regulatory heterogeneity
between normal and malignant epithelial cells at the
gastroesophageal junction. These ACGEJ-specific eQTL results
may be due to genomic instability, epigenetic reprogramming,
and the tumor micro-environment (TME). Genomic instability
such as copy number variants (CNV) and somatic mutations
may lead to the activation of oncogenes and inactivation of
tumor suppressor genes. Based on a previous study of genomic
and transcriptomic alterations, ACGEJ in Chinese patients have
been profiled as a CNV-dominant tumor (Lin et al., 2020). Driver
genes that may play oncogenic roles, such as CCNE1, ERBB2,
VEGFA, and RICTOR, were amplified, whereas driver genes that
may act as suppressors, such as CDKN2B,MTAP, PTEN, and FAT1,
were deleted both in the ACGEJ and TCGA cohorts (Lin et al.,
2020). Transcription factors that were differentially expressed may
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FIGURE 8
Reporter gene and EMSA assays of survival and susceptibility loci. (A) Reporter gene assays of rs309483. (B) EMSA assays of rs309483; concentration
of unlabeled probes is set to be 50-fold of biotin-labeled probes. (C) Reporter gene assays of rs4947311. (D) EMSA assays of rs4947311; concentration of
unlabeled probes is set to be 50-fold of biotin-labeled probes. (E) Reporter gene assays of rs2240191. (F) EMSA assays of rs2240191; concentration of
unlabeled probes is set to be 50-fold of biotin-labeled probes.
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also lead to these ACGEJ-specific eQTL results. We performed
differential gene expression analysis of 660 transcription factors,
in which the mRNA levels were adjusted by using CIBERSORTx and
filtered by quality control between tumor and normal samples. Of all
passed transcription factors, 75.3% (497/660) and 8.5% (56/600)
were upregulated and downregulated, respectively (Supplementary
Figure S8A). Epigenetic reprogramming could contribute to DNA
accessibility alteration during tumorigenesis and progression
(Hanahan, 2022). Previous studies have indicated that the
epigenetic silencing of promoter regions of genes such as
RASSF1A, TSP1, INK4A, and FBXO32 influenced the progression
of ACGEJ (Abdi et al., 2019). The TME of gastric cancer has been
indicated to be enriched for stromal cells, macrophages, dendritic
cells, and Tregs (Sathe et al., 2020). Cellular stress from the TME,
such as cancer-associated fibroblasts (CAFs), has been indicated to
influence crucial gene expression in gastric cancers to increase
sensitivity to chemotherapeutic treatment (Yang et al., 2022).

To explore the key pathways of ACGEJ-specific genes, we
performed the gene set variation analysis on ACGEJ-specific
genes and found that many cancer hallmark pathways were
significantly up or downregulated in ACGEJ cells. The top
upregulated and downregulated pathways were notch signaling
and myogenesis pathways, respectively. The Notch signaling
pathway has been confirmed to be upregulated in Barrett-like
metaplasia and necessary for maintaining the gastric stem cell
compartment (Kim and Shivdasani, 2011; Quante et al., 2012).
Pro-inflammatory cytokines produced by tumor cells have been
indicated to directly impact myogenesis in several ways (Fearon
et al., 2012).

Previous studies have confirmed that eQTLs probably regulate
genes through TFs (Gaffney et al., 2012; Flynn et al., 2022), therefore
we focused on the potential transcription factors of ACGEJ-specific
genes. We found that rs658524G>A mutation suppressed CTSW
expression by reinforcing the binding ability of KLF5, suggesting
that genomic alteration and overexpressed transcription factors
regulated key genes together.

Previous GWASs toward esophageal and gastric cancer have
identified hundreds of susceptible genes and loci (Buas et al.,
2017; Jin et al., 2020). However, the relationship between these
loci and nearby genes still remains unclear. In the present study,
we undertook co-localization analysis and found five susceptible
ePairs of eQTLs and genes sharing good consistence with
previous GWAS results. We then performed survival analysis
of ACGEJ-specific eQTLs. Notably, nearly half of the survival-
associated genes were non-coding genes. For example, previous
studies have demonstrated the important role of LINC01355 as a
tumor suppressor or activator gene (Ai et al., 2019; Piao et al.,
2022). A high level of LINC01355 led to poor survival of gastric
cancer patients as shown in previous studies (Ai et al., 2019) and
the Kaplan–Meier plotter database, which is contrary to our
results. Moreover, LINC01355 could be significantly inhibited
by drugs such as tozasertib, docetaxel, and Belinostat (Nath et al.,
2019), suggesting the great potential of rs309483–LINC01355
being an ACGEJ-specific survival and therapeutic marker. We
explored functions of rs309483, rs2240191, and rs4947311,
suggesting their potential role as enhancers. Furthermore, we
explored the functions of LINC01355, RASAL1, and PSORS1C1 in
the ACGEJ cell line OE19, revealing their important roles as

oncogenes or suppressor genes in OE19. Notably, future studies
should consider the contribution of eQTLs in non-coding regions
to ACGEJ progression. Such research studies, combined with our
findings, have the potential to inform drug development, risk
assessment, and clinical practice toward reducing the burden of
ACGEJ.

Nevertheless, it is important to acknowledge some limitations of
our study. First, we performed cis-eQTLs not trans-eQTLs because
of our relatively small sample size. Studies have further
demonstrated quite different regulatory patterns of trans-eQTLs
from cis-eQTLs (Liu et al., 2019; Võsa et al., 2021). Contrary to cis-
eQTLs, trans-eQTLs were more likely to impact core gene
expression through peripheral genes mediately. Second, the
adjusted mRNA level of low-expressed genes (TPM < 1) might
not be accurate enough, which may influence the adjustment of
partial non-coding genes.

Conclusion

Our study identified 1,009 ACGEJ-loss and 1,027 ACGEJ-gain
eQTLs, nearly one-fourth of which were associated with the gene
expression of non-coding genes. We also elucidated the enrichment
of ACGEJ-specific genes in cancer hallmark pathways such as notch
signaling and myogenesis. Finally, we identified five potential
susceptibility and one prognosis marker of ACGEJ. Our study
provides new insights into the impact of ACGEJ-specific
germline mutations on irregular gene expression, reinforces the
importance of non-coding genes playing roles in ACGEJ
susceptibility, and may shed light on the prognosis of ACGEJ
patients.
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