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DNA has become a popular choice for next-generation storage media due to its
high storage density and stability. As the storagemediumof life’s information, DNA
has significant storage capacity and low-cost, low-power replication and
transcription capabilities. However, utilizing long double-stranded DNA for
storage can introduce unstable factors that make it difficult to meet the
constraints of biological systems. To address this challenge, we have designed
a highly robust coding scheme called the “random code system,” inspired by the
idea of fountain codes. The random code system includes the establishment of a
random matrix, Gaussian preprocessing, and random equilibrium. Compared to
Luby transform codes (LT codes), random code (RC) has better robustness and
recovery ability of lost information. In biological experiments, we successfully
stored 29,390 bits of data in 25,700 bp chains, achieving a storage density of
1.78 bits per nucleotide. These results demonstrate the potential for using long
double-stranded DNA and the random code system for robust DNA-based data
storage.
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1 Introduction

In the age of information, the volume of data is exponentially increasing, driving the need
for more efficient storage devices. DNA, as the storage medium of organisms, has been
naturally selected through billions of years of evolution. Its double-stranded structure is
highly stable and can efficiently perform the functions of replication, retrieval, and
transcription of information under the catalyst of biological enzymes. Scientific research
has shown that DNA has a storage density of approximately 10̂19 bits per cubic centimeter,
which is significantly higher than that of electronic storage devices (Fontana and Decad,
2014; Extance, 2016) (Semiconductor Industry Association, 2020). Moreover, DNA requires
very little energy for long-term storage (Orlando et al., 2013). (Dong et al., 2020). However,
the high cost of DNA synthesis and sequencing remains a major challenge for molecular
storage (Antkowiak et al., 2020). Nevertheless, as technology advances, the cost of DNA
storage is rapidly decreasing, making it an increasingly viable option for next-generation data
storage.
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The feasibility of large-scale DNA storage was first
demonstrated by Church in 2012 (Church et al. 2012). The
proposed coding scheme mapped two bases to one binary bit for
data storage, where A or C was mapped to binary 0, and G or T were
mapped to 1. Although the storage information density reached only
0.83 bits per nucleotide, the proposal marked the beginning of DNA
storage research. Later, Goldman et al. (Goldman et al., 2013)
utilized quadruple redundancy to achieve reliable DNA storage,
but this reduced the information storage density due to excessive
redundancy. In recent years, scholars have developed finely designed
coding schemes to obtain the maximum information capacity while
satisfying biological constraints. Furthermore, different molecular
strategies have been proposed to increase the logical density of DNA
storage, such as using the distribution of base content or chemically
modified DNA nucleotides (Tabatabaei et al., 2022) (Anavy et al.,
2019). However, chemically modified DNA nucleotides require
precise synthesis and sequencing, increasing the cost and
introducing more instability cases.

Currently, the main method of DNA storage is still using basic
transcoding rules (i.e., converting [A, T, C, G] to [00, 01, 10, 11]).
With these rules, Erlich et al. (Erlich and Zielinski, 2017) reported a
coding strategy called DNA Fountain in 2017, which demonstrated a
theoretical coding potential of 1.98 bits per nucleotide. The fountain
code technique is widely used in DNA storage due to its ratelessness
and the ability to pre-screen biological constraints. Biological
constraints limiting DNA storage typically refer to
homopolymers (consecutive repeating bases), GC content (the
ratio of the number of G or C bases in the DNA strand to the
total number of all bases), and micro-satellites (short tandem
repeats). According to Schwartz et al. (Schwartz et al., 2012),
when the homopolymer exceeds 4, the probability of insertion
and deletion errors in the DNA strand increases significantly
during Illumina sequencing analysis. Ananda et al. (Ananda
et al., 2013) showed that when the homopolymer exceeds 4, the
error rate during PCR amplification, synthesis, and sequencing also
increases. Schwartz et al. (Schwartz et al., 2012) reported that high
(above 0.55) or low (below 0.45) GC content would lead to an
increase in error rate during PCR. When micro-satellites are present
in the DNA strand, interfering term errors are generated during
PCR, which can cause unstable DNA structures.

In DNA data storage, many different approaches can be used to
encode data into codewords. DNA coding is a key step in DNA
storage and can directly affect storage performance and data
integrity. However, since errors are prone to occur in DNA
synthesis and sequencing, and non-specific hybridization is prone
to occur in the solution, how to effectively encode DNA has become
an urgent problem to be solved (Xiaoru and Ling, 2021).

The LT encoder’s degree selected by the robust soliton
distribution is small, it is not guaranteed that all K sub-packets
will be encoded through (1+ε)*K coding (where ε is the redundancy
coefficient and K is the number of segment packets obtained by
dividing the original data) (Schwarz and Freisleben, 2021).
Moreover, the vast majority of data generated by the fountain
code encoder cannot be screened by biological constraints, which
reduces the encoding efficiency. The base 64 encoder (Zhang et al.,
2020) can satisfy the GC content and homopolymer, but reduces the
encoding and storage density because of it is balance code. GCNSA
can construct a larger set of non-data bits under the same DNA

sequence length and coding conditions, and can address more DNA
sequences with fewer bases, thus improving the density of DNA
storage. To sum up, GCNSA is mainly used for non-data bit
encoding (Cao et al., 2023). The MFOL decoder is programmed
to construct the DNA storage codes by reducing the error rates of
DNA coding sets with GC-content, Hamming distance, and No-
runlength constraints (Rasool et al., 2021).

In order to improve the reliability and efficiency of the encoder,
we propose a random code (RC) system inspired by random matrix
theory and the pseudo-random number generators of electronic
computers. The RC system consists of three main components:
random matrix, Gaussian preprocessing, and random equilibrium.
Firstly, we use a pseudo-random number generator to create a
random matrix, which is then subject to Gaussian preprocessing
using the XOR elimination algorithm. This preprocessing step
results in a generated matrix, which is a submatrix of the original
random matrix with optimal decoding success rates. This ensures
that all chunks of data are included in the generated matrix.
Additionally, we propose a random equilibrium algorithm to
ensure that the generated DNA sequence can pass the biological
constraints screening successfully. The random equilibrium
algorithm is applicable to any file format, even those with
extremely high 0/1 rates (such as more than 80% consecutive 0s
or 1s).

To demonstrate the compatibility of the RC algorithm, we
successfully stored a 29,390-bit.txt document in a 25700bp
plasmid double strand using our system. Our experimental
results confirm that the RC system has excellent robustness and
reliability, as well as high information storage density. In fact, our
biological experiments verified that the storage density of RC is
above 1.78 b t/nt.

2 Materials and methods

2.1 RC algorithm steps

(1) Splitting the target storage document into K sub-packets based
on the data capacity of the generated DNA strands.

(2) Using adapter as seeds injected into a pseudo-random generator
to generate 0/1 random matrices of specified dimensions.

(3) Gaussian preprocessing is performed on random matrices with
Gaussian XOR elimination, and select the generated matrix.

(4) Based on the generatedmatrix, which labels the chunks involved
in the XOR operation according to the elements are 1, and thus
generates the droplet.

(5) Random equilibration of data based on biological constraints
such as homopolymer and GC content, to obtain the final
storable DNA strand.

The DNA strand in our experimental validation consisted of the
following main components. For more encoder steps, see the
Encoder section in the Supplementary Material.

Adapter (20 nt): as pseudo-random number generator seeds,
which can also be used for information retrieval and PCR
amplification primers.

Times (6 nt): used to record the number of times the pseudo-
random number generator generates a random matrix.
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Data payload (639 nt): used to store the droplet after the
generated matrix guide, after the corresponding chunks are XOR.

XOR Equilibrium (10 nt): Make the DNA strand meet the
biological constraints.

XOR re-equilibrium (2 nt):same as XOR Equilivrium.
XOR Check (3 nt): Bitwise XOR of the whole chain (as Figure 1

shows).

2.2 Random matrix degree distribution
function

In the random matrix, each row has K elements, the elements
can choose to take the value of 0 or 1 (each with 50% probability),
and a single element to take the value of the binomial distribution
(p = 0.5). If the probability distribution of the randommatrix degree,
that is, the probability distribution of the sum of the vector elements
of each row of the matrix for 1, the distribution function conforms to
the normal approximation of the binomial distribution, noted as X ~
N (K/2, K/4), and its probability density function is:

F x( ) � nπx���
2π

√
σ
e − x−μ( )2

2σ2
( ), (1)

where variance ?2 = K/4 and the mathematic expectation μ = K/2.
Gaussian preprocessing s are assumed to partition the original

data into K copies. The matrix size can be solved by reaching K*K
dimensions. However, to cope with the possible errors in DNA
synthesis and storage sequencing, logical redundancy needs to be
added. Assuming m strands are added as redundancy, the final
coded DNA strands reach (K + m). The degree distribution matrix
reaches (K + m)*K dimensions. Among the (K + m) strands, K
strands are randomly selected to form the K*K dimensional degree
distribution matrix with maximum probability solvable, which
becomes the focus of our study. Since the degree distribution
matrix operation is a XOR or operation, not a linear system of
equations solution in the traditional sense, it is not possible to use
the coefficient matrix as a non-singular matrix as the only
determination condition for the matrix solvability. We here use
Gaussian heteroskedastic elimination variation (the algorithm
complexity is K3) to construct it as a triangular matrix. If all n
elements of the main diagonal are 1, then the system of equations has
a unique solution. If 0 exists in the first n elements of the main
diagonal, then the system of equations has no unique solution.

We utilized singular value decomposition, random sample, and
correlation alignment for comparison. It is finally found that the
solution solved using random sampling is optimal within a certain
constraint time to achieve the maximum success rate of sample
decoding. Stochastic equilibrium in the RC algorithm.

When the stored DNA strand length increases, the randomly
generated water droplet data will be more difficult to pass the
screening, taking the homopolymer condition as an example,
assuming that the probability of occurrence of homopolymers is
expressed as Q(m, l).

Q(m, l) is the probability to observe up to an m-nt
homopolymer run in a random l-nt sequence.

It is assumed that m homopolymers occur at completely random
locations and the corresponding probability distribution conforms
to the binomial distribution. P denotes the probability of occurrence

of m homopolymers and q = 1-p, the probability of non-occurrence
of homopolymers. According to Feller (WilliamFellerWrited, 1958)
et al. the probability can be approximated as

qm p, l( ) ≈
β

xl+1
, (2)

where x is:

x � 1 + q × pm + m + 1( ) × q × pm( )2, (3)
and β is:

β � 1 − p*x
m + 1 −m*x( )*q. (4)

According to previous studies, for practical purposes, the
probability distribution of Q, which can be approximated by
qm+1 , and we approximate the distribution of observing up to
m-nt homopolymer runs as the product of four independent events:

Q m, l( ) ≈ qm+1 p � 0.25, l( )[ ]4. (5)
According to the formula it is seen that when m = 4 and l = 700,

Q = 0.025%, which means that when the length of the synthesized
DNA strand is 700 nt, the probability of randomly synthesizing each
strand with the presence of more than 4 base repeats is: 99.75%.

To optimize these problems, Abdur Rasool et al. (Rasool et al.,
2023) proposed a computational evolutionary approach based on a
synergistic moth flame optimizer (MFO), which took the Levy flight
and opposition-based learning mutation strategies by constructing
reverse-complement constraints. However, with the expansion of
the data scale, it will become extremely difficult to solve the MFO
matrix.

2.3 Random equilibrium

We address this situation using a random equilibrium approach.
Our idea is to focus on chains that do not pass the biological
constraint filter, and the vast majority of randomly generated chains
during encoding fail to pass the biological condition filter. This keeps
cycling the generation of random chains, which reduces the coding
efficiency. If the chains are actively trained to satisfy the constraints,
the coding efficiency will be greatly improved. We first inject the
seed (adapter) into the random number generator. By randomly
generating random bases with the same length as the target chain,
the generated random bases and the target bases do the
heteroskedastic operation to play the role of equalization, and
through multiple equalization to achieve the purpose of meeting
the biological constraints. After simulation experiments, it was
found that the training of 25 pieces of 645 nt data information
can be completed by 10 nt of random equalization space, so that
100% of them pass the biological condition screening
(homopolymer<4, GC content 45%–55%). In the biological
experimental validation, we set up 10 nt of XOR equalization
sites. The GC content, homopolymer and minimal satellites
(Micro-satellites) of the DNA strand were first used as screening
conditions. If the DNA strand fails the screening, a random DNA
strand is generated by a pseudo-random number generator. This
random DNA strand has the same length as the target DNA strand.
The two strands are subjected to a XOR operation. After the
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operation, the result of the dissimilarity is again judged by the
constraint. If it is not satisfied, the pseudo-random number
generator is used again to generate a random base sequence for
the hetero-or equalization until the constraint is satisfied or the
coding space of the pseudo-random number generator is exhausted.
If a strand satisfying the constraint is generated, the number of times
the pseudo-random number generator is generated is recorded in
the XOR equalization bit and biosynthesized with the overall DNA
data information.

2.4 Decoding steps

When decoding, first sequencing the nucleotides, finding the
forward and reverse primers according to the sequencing results,
screening to get the target DNA chain sequence, and judging
whether insertion and deletion errors occur according to the
length of the chain; after that, according to the function of each
part of the DNA chain, reducing the information of the DNA
chain; according to the Times information, using Adapter as the
seed, using the pseudo-random number generator to generate a
random matrix Then, add Data payload as the augmentation
matrix and solve the matrix using Gaussian XOR elimination
method to get the original data information. For more details of
the decoder, please check Encoder in the Supplementary
Material.

The Gaussian XOR elimination method (Schreiber, 1982) used
in this decoding method will traverse each row of data in the matrix,
and the rows with related information will be XORed, which can
effectively avoid the problem of missing information XOR in
fountain code BP decoding. At the same time, the XOR Check
bit of 3 nt is set, and the target data can be detected in units of 3 nt.
When it is found that the information does not match, the error
chain can be effectively eliminated to prevent the error chain from
disturbing the calculation during the decoding process.

2.5 Experimental material

The experimental material used is PUC57 plasmid, which has
the advantages: Firstly the length can be in the range of 50-1.5 k
Bp. Longer strands mean that more data can be stored without
wasting toomany common primers and search addresses, which will
make the storage density higher; Secondly in the form of double-
stranded loops, the structure is more stable, avoiding the formation
of some secondary structures and having better robustness. Thirdly
it can be implanted into living organisms, allowing more efficient
and low-cost intra-organismal replication.

3 Results

3.1 The general principle and features of
the RC

A fountain can be seen as the circulation of a large number of
droplets. When we need a glass of water, we simply fill it up at the
fountain, without caring which droplet is actually used. Fountain

codes function well for electromagnetic communication because the
communication is synchronous between the transmitter and
receiver, thus giving the information source a chance to send
more data packets for successful data recovery (Ping et al., 2022).
However, DNA-based data storage is heterochronic, so it is
necessary to ensure the information we synthesize has an optimal
decoding success rate.

The general principle of RC is to guarantee the droplets achieved
the optimal decoding effect. It overcomes the inherent problems of
LT codes, improves the coding efficiency. We can use the pseudo-
random number generator to get the random matrix fleetly. Then
got the generated matrix by Gaussian preprocessing, and this matrix
can generate the droplets which have the optimal decoding success
rate. Random equilibrium prevents information from being
discarded, so that the data can smoothly pass the screening of
biological constraints and thus be stored for a long time.

The basic process of DNA storage we designed is to first perform
binary extraction and segmentation of the files to be stored. Next, the
binary information is transcribed into base sequences that satisfy the
biological constraints by the RC encoder. Then the base sequences
are biologically synthesized and stored. When the information is
required, the DNA is sequenced and the information is recovered by
a decoder (as Figure 2A shows).

The basic algorithm of RC encoder is: Firstly, the specified seeds
are injected into the pseudo-random number generator to generate a
0/1 random matrix of T*k dimension (T depend on the random
space capacity, k is the number of segment packets); Secondly,
Gaussian preprocessed the random matrix to get the generation
matrix of (k + m)*k dimension (m is the redundancy) with the
optimal decoding rate. Finally according to the generation matrix,
got the droplets (as Figure 2B shows).

3.2 The degree of RC

In the coding scheme of fountain codes, the degree, which refers to
the number of sub-packets involved in coding, is a critical parameter.
If the degree is too high, it leads to increased correlation among
information sub-packets, resulting in higher coding complexity. On
the other hand, if the degree value is too low, there is a higher
probability of sub-packet loss during transmission due to the low
participation rate of sub-packets in coding.

When compared to LT codes, it is evident that the degree of the
RC system is sampled in the form of a normal distribution, with a
variance of σ2 =K/4 and an expectation of μ =K/2 (as Figure 3 shows).
The mean value of the degree is higher, indicating that the RC system
possesses stronger information relevance and redundancy compared
to LT codes.

3.3 Random equilibrium

To ensure that the generated data meets biological constraints, it
needs to be screened before biochemical synthesis of DNA
molecules. One way to achieve this is by using a pseudo-random
number generator to obtain multiple random sequences that are as
long as the droplets. Then, XOR operations can be performed
between the random sequences and the droplets to increase the
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probability of the droplets satisfying the biological constraints. After
simulation experiments, it was found that the training of 25 pieces of
645 nt data information can be completed by 10 nt of random
equalization space, so that 100% of them pass the biological
condition screening. In the biological experimental validation, we
set up 10 nt of XOR equalization sites. This approach can help to
reduce the error rate during synthesis, storage, PCR, and sequencing.

3.4 Data recover

Errors such as deletion, insertion, and substitution can occur
during DNA storage, synthesis, PCR, or sequencing. Among these
errors, insertion and deletion errors at a single site can alter the
overall length of the DNA strand and significantly affect the
robustness of DNA storage and decoding success rate. To address

FIGURE 1
Structure of the oligos. Black labels, length in nucleotides. 5′ is the phosphoric acid group of DNA, and 3′ is the hydroxyl group.

FIGURE 2
(A) DNA storage flow chart. Our experiment stored the historical experience of the Communist Party of China’s century-old struggle, the full text of
2,927 Chinese characters. The binary file is converted into DNA data by RC encoder, and then synthesized the DNAwhichmeet the biological constraints
by random equilibrium. It can be recovered into binary file data by PCR and sequencing. (B) the RC decoder flow chart. We use the pseudo-random
number generator to get the generated matrix, it labels the chunks involved in the XOR operation according to the elements are 1, and thus
generates the droplet.
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these errors, researchers commonly add error-correcting codes such
as Reed-Solomon (RS) code, low-density parity-check code (LDPC),
or checksum Recovery Correction (CRC). However, these methods
have limited roles and can only ensure error recovery within a
certain range. Moreover, they cannot correct insertion and deletion
errors (Lenz et al., 2019). In fountain code, if the error is not
corrected or identified, the file cannot be recovered (Zhang et al.,
2021). Zihui Yan et al. (Yan et al., 2022a). (Yan et al., 2022b)
proposed a DNA error correction method called DNA segment
Levenshtein-Marker (DNA-LM). The codeword length computing
complexity is constrained in linear time. But DNA-LM increases the
redundancy and reduces the information coding density.

Thus, logical redundancy must be set up to ensure error
tolerance. In DNA sequencing, third-generation sequencing has
high throughput sequencing capability and low accuracy. Qu G

et al. (Qu et al., 2022) analyzed the sequencing results using the
Clover clustering method, which shows quickly and accurately
clustered the sequencing results. In this study, we used the solid-
phase phosphoramidite triglyceride method for accurate DNA
synthesis and Sanger sequencing for high sequencing accuracy
(as Figure 4 shows), which is known as the golden key to DNA
sequencing (邱超孙含丽,, 2008). Based on the reliable synthesis and
sequencing technology, we used the XOR check method to perform
error checking and achieved the best detection efficiency.

Based on the error correction results, the decoding success rate
of RC is higher than that of LT and YYC within the logical
redundancy coverage when it comes to insertion, deletion, and
loss errors (as Figure 5 shows). This is because RC has a larger
degree average, allowing it to cover most of the sub-packet
information with minimal logical redundancy. Consequently, RC

FIGURE 3
The degree distribution curves of different coding methods. (A) Ideal soliton’s degree distribution. (B) Robust soliton’s degree distribution with
different parameters. (C) Random code’s degree distribution.

FIGURE 4
700bp storage information Sanger sequencing partial results.
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has a higher information correlation, and its decoding success rate
drops sharply when the error rate exceeds the logical redundancy
range.

Here, we stored a summary of the historical experience of the 19th
Central Committee of the Communist Party of China, which was
adopted at the 6th Plenary Session of the 19th Central Committee of
the Communist Party of China. The summary contained a total of
2,939 characters, which were transcoded into 29,390 bits. We used RC
to generate 25 chains of 700 base pairs, including adapters, resulting in
a storage density of 1.78 bits per nucleotide. In this experiment, we
used K = 23, and added m = 2 redundant chains.

For our biochemical experiments, we designed 20 nt pre- and
post-adapters for use with 660 nt data information. We chose the
PUC57 plasmid as the DNA storage vector and ampicillin for
bacteriophage sample resistance. The sequencing primers M13 F/
R were used for sequencing. Firstly, we synthesized the designed
DNA sequence, then we cleaved the plasmid at a specific site using
restriction endonuclease, added the synthesized target sequence to
the plasmid, and finally sequenced using the Sanger method. If any
errors were found in the sequencing result, we repeated the synthesis
process until the sequencing result was correct. We then performed
PCR amplification and dried the samples into powder for long-term
storage.

To validate the coding scheme, we dissolved the synthesized
sample powder in pure water to obtain a sample content of 50 mol/
μL. We then sent the samples to two different companies, Wuhan
AuGCT DNA-SYN Biotechnology Co., Ltd. and Shenggong
Bioengineering (Shanghai) Co., Ltd., for sequencing verification.
Wuhan AuGCT DNA-SYN Biotechnology Co., Ltd.’s sequencing
results showed no errors and could be decoded correctly. However,
Shenggong Bioengineering (Shanghai) Co., Ltd.’s sequencing results
had one base substitution error in one strand as confirmed by XC
verification. Despite this error, the data information could still be

recovered normally after deleting the affected strand. A comparison
of the experimental results is presented in the following Table1.
Table 2 shows the simulation results of different storage file formats.

The experimental results demonstrate that the RC system
achieves higher logical density and stronger information recovery
compared to the LT code. The RC system has also shown significant
improvements in sub-packet selection and error recovery, meeting
the requirements of adequate and reliable sub-packet capture.
Furthermore, the random equalization technique used in the RC
system satisfies biological constraints, making it an effective solution
for DNA data storage.

4 Discussion

4.1 DNA long chain storage

As genetic material, DNA exists naturally in the form of long
double-stranded chains. For example, in humans, the 24 pairs of
chromosomes contain varying lengths of base pairs, with the first
chromosome containing 249,250,621 bp and the shortest
chromosome, the 21st, containing 48,129,895 bp. The base
complementary pairing in DNA duplexes is stable and provides
high replication and transcription efficiency. Additionally, the
double-stranded structure provides a natural backup under the
rule of complementary pairing, making information storage more
reliable. Therefore, the use of longer DNA double strands as carriers
is the future direction of DNA storage. Wang, P. H. et al.
Compressed the address information to increase the information
part (Wang et al., 2022). Lin K N et al. used T7 promoter to generate
longer sequences, but the complexity of the experiment is increased
due to additional transcription and reverse transcription processes
(Lin et al., 2020).

FIGURE 5
Recovery rate of different encoding methods in case of insertion and deletion errors. Where the logical redundancy additions are 25%.
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As shown in Table 1, most current biological storage media use
single-stranded oligonucleotide sequences with chain lengths
ranging from 100 to 200 nt. For example, in 2020, Zhang Y
(Zhang et al., 2020) stored 171 English letters and symbols
(185 Bytes) in a DNA double strand of 834 B P using the Base
64 code table and loaded it into pGH-plasmid. However, due to the
limitation of the code list, punctuation, and special characters

cannot be stored, and its generality is limited. Moreover, Zhang
Y (Zhang et al., 2020) only stored one strand, without any
addressing, retrieval, or error correction functions. In this paper,
we propose a method that uses 25 DNA double strands of 700bp to
perform multiple functions, such as compiling, storing, retrieving,
and error-checking information, thereby opening up a new coding
method for DNA long-strand storage. As the length of DNA

TABLE 1 Comparison of DNA-based storage coding schemes.

Refs Length
(nt)

Bits per base
including
primers

Bits per base
excluding
primers

Random
access

Coverage Code Contents Storagecapacity

Church et al.
(2012)

115 0.6 0.83 No 3,000× 1 bit to 1 base English text, JPG
images, computer

code

650 KB/630 KB

Goldman
et al. (2013)

117 0.19 0.33 No 51× Rotating encoding Text file, JPEG
file, MP3 file

739 KB

Grass et al.
(2015)

158 0.86 1.14 No 372× Reed–Solomon
coding

Text from the
Swiss Federal

Charter

83 KB

Organick
et al. (2018)

150–200 0.81 1.1 Yes 4–11× Reed–Solomon
coding

high-definition
video, images,
audio, and text

200.2 MB/33 KB

Bornholt
et al. (2017)

120 0.57 0.85 Yes 40× rotating encoding Three JPG files 151 KB

Erlich and
Zielinski
(2017)

152 1.18 1.57 No 10.5× DNA fountain
encoding

Text file, SVG
file, Video file

2 MB

Jeong et al.
(2021)

152 1.17 1.53 No 600× DNA fountain
encoding

JPG file 513.6 KB

Choi et al.
(2020)

85 1.78 3.37 No 250× One character Text file 854 B

Anavy et al.
(2019)

152 - 1.57 No - Standard
Σ4 +DNA-level

zip file bilingual
Bible

6.42 MB

Reed–Solomon +
Fountain

1.76 Composite Σ5 +
DNA-level

Reed–Solomon +
Fountain

1.96 Composite Σ6 +
DNA-level

Reed–Solomon +
Fountain

Zhang et al.
(2020)

834 1.77 1.96 No - Base 64 Text file 185B

Ping et al.
(2022)

200 - 1.75–1.78 No - YYC + .jpg and.txt 1 GB

Reed–Solomon
coding

Cao et al.
(2022)

162 1.29/1.22 1.41 Yes 35× DNA constraint +
fountain encoding

+ RS

Mp3, mp4, txt,
jpg, pdf files

480 KB/83.3 KB

This work 660 1.68 1.78 No - Random code Mp3,mp4, txt,
jpg, pdf files

8.805 KB

Frontiers in Genetics frontiersin.org08

Yang et al. 10.3389/fgene.2023.1179867

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1179867


sequences increases, their biological constraints become more
stringent. Cases of homopolymer and sequence duplication occur
more frequently, and balancing local GC content becomes more
difficult. To address these issues, this paper proposes a random
equilibrium approach that provides a unique and efficient solution
for screening long DNA sequences against biological constraints.

4.2 Degree of the fountain code

In the coding scheme of fountain codes, the selection of sub-
packets is a critical factor that affects the success rate of decoding. LT
codes (Luby, 2002) select the degree by robust isolated sub-
distribution, while Maymounkov (2002) use an Online codes
technique to increase the probability of sub-packet participation
in the operation by adding an internal code. Shokrollahi (2006) use
Raptor codes to get the internal coding range using a fixed
distribution function. The Yin-Yang codes strategy (Ping et al.,
2022) catches two sub-packets at a time, which corresponds to a
constant degree of 2, where LT codes do not guarantee that all sub-
packets of the original data participate in the coding. Online codes,
Raptor codes, and Yin-Yang codes can guarantee that all sub-
packets participate in encoding, but there is no guarantee that
the redundant chain can cover all sub-packets, considering
logical redundancy. Additionally, Yin-Yang code only encodes
each sub-packet once, requiring 100% redundancy to cover all
sub-packets if we add logical redundancy. LT codes still have a
problem similar to YYC due to their small degree value. However,
the RC has a larger degree, which means each chain contains more
sub-packet data, making it possible to guarantee the addition of a
small amount of logical redundancy to complete the decoding of
information. To determine the logical redundancy that can cover all
sub-packets, we use Gaussian XOR elimination to obtain the
generated matrix. It is essential to note that this operation is
performed only on the random matrix, and it is unnecessary to
add droplets. That is, A ⊕ x = b, where only Gaussian XOR is
performed on A. The generated matrix is screened to ensure the
maximum decoding success rate and reduce the coding complexity.

As the algorithmic complexity of XOR or Gaussian elimination
is K̂3, we have used plasmids as DNA storage media in this
experiment. Plasmids can accommodate longer DNA strands and
provide more storage space, thereby effectively reducing the value of
K for the same amount of data. This allows the encoder to run with
lower algorithmic complexity.

The large degree average of RC provides an advantage in
ensuring that the minimum redundant solution space covers all
sub-packets after performing Gaussian precomputation, resulting in

a maximum information decoding rate. This resolves the issue of
insufficient sub-packet selection and low decoding rates commonly
seen in fountain codes.

4.3 Screening for biological constraints

When the DNA sequence generated by the encoder fails to meet
biochemical constraints, LT codes and Yin-Yang codes discard it
and generate a new sequence. However, this approach leads to
inefficiency as the vast majority of generated DNA sequences are
discarded, reducing storage density. By using random equilibrium,
we can proactively improve the DNA sequence’s biological
constraints, thereby reducing the need for sequence discarding
and increasing storage efficiency.

In the Fountain code system, some chains are assigned higher
importance than others. For example, if a particular sub-packet is
encoded into only one chain, then that chain is considered more
important than others that have redundant information. Similarly,
during the decoding process, a specific chain may be required to
trigger the decoding, making it more important than other chains.

However, biological constraints can limit the efficiency of
decoding, as important chains may fail to pass the biological
constraints screening. This can result in overall low decoding
efficiency. To overcome this issue, random equalization can be
used, which assigns equal importance to all chains. This
approach helps to ensure that important chains are not lost due
to biological constraints, leading to better decoding efficiency.

Adding random equalization bits to the Fountain code system
results in a decrease in overall information density, but it has the
advantage of reducing the encoded address space. Previous studies
have compensated for discarded chains that did not pass biological
constraints by expanding the encoded address space to generate
more droplet data. For instance, the Erlich team (Erlich and
Zielinski, 2017) used 16 nt (4 bytes) of coding space to store seed
information. However, as a vast majority of the generated droplet
data was discarded, a total of 72,000 oligonucleotide sequences were
generated, which utilized less than 0.00168% of the seed space.

In contrast, in this study, 25 chains were encoded with a Times
space of 6 nt, resulting in an information space utilization of 6.1%,
which will increase as the chain length increases. Therefore, it can be
observed that adding random equalization significantly helps to save
address space, which is one of the ways to improve information
storage density.

Biological constraints have led previous scholars to attempt
to regulate the encoding of binary data using code tables. These
code tables are designed to transcode binary data into base data

TABLE 2 RC’s simulation results of different storage file formats.

File name File data
format

Storage
space

Number of
chains

Length of a
chain (nt)

redundancy
(%)

Bits per base
including primers

the sound of silence .mp3 3072 Kb 20,357 700 3 1.72

Mona Lisa Smile .jpg 6757 KB 43,309 700 3 1.77

The founding of the People’s
Republic of China

.mp4 44775 KB 287,003 700 3 1.77

Frontiers in Genetics frontiersin.org09

Yang et al. 10.3389/fgene.2023.1179867

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1179867


using specific rules that can help balance factors such as GC
content and homopolymers (Ping et al., 2022). (Cao et al., 2022).

(Zhang et al., 2020). However, the use of these code tables can
lead to a reduction in information storage space and the creation
of additional constraints during decoding due to their specialized
design.

Random equalization has the advantage of preserving the
optimal solution obtained by Gaussian XOR elimination, even in
the presence of unbalanced homopolymer or GC content.
Compared to previously reported methods such as fountain
codes and yin-yang codes which discard the solution when they
fail, this scheme improves the stability and decoding success rate of
DNA strands even further. In the future, it is inevitable that long
DNA double strands will be used for biological storage, maximizing
the material advantage of DNA and fully utilizing its super high
information storage density. However, as chain length increases,
biological constraints become more difficult to satisfy. The use of
stochastic equalization makes it possible to meet biological
constraints for DNA strands of any information condition and
length. Some research has been done on information equalization
and encryption of long DNA chains.
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