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Translational efficiency change is an important mechanism for regulating protein
synthesis. Experiments with paired ribosome profiling (Ribo-seq) and mRNA-
sequencing (RNA-seq) allow the study of translational efficiency by
simultaneously quantifying the abundances of total transcripts and those that
are being actively translated. Existing methods for Ribo-seq data analysis either
ignore the pairing structure in the experimental design or treat the paired samples
as fixed effects instead of random effects. To address these issues, we propose a
hierarchical Bayesian generalized linear mixed effects model which incorporates a
random effect for the paired samples according to the experimental design. We
provide an analytical software tool, “riboVI,” that uses a novel variational Bayesian
algorithm to fit our model in an efficient way. Simulation studies demonstrate that
“riboVI” outperforms existing methods in terms of both ranking differentially
translated genes and controlling false discovery rate. We also analyzed data
from a real ribosome profiling experiment, which provided new biological
insight into virus-host interactions by revealing changes in hormone signaling
and regulation of signal transduction not detected by other Ribo-seq data analysis
tools.
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1 Introduction

Translational control is a key component in the regulation of gene expression. It is
critical for growth, maintaining homeostasis, and responding to stress (Hershey et al., 2012).
Aberrant regulation of protein synthesis in humans is implicated in serious diseases such as
Parkinson’s, Alzheimer’s, and cancer (Holland, 2004; Bottley and Kondrashov, 2013;
Ruggero, 2013; Taymans et al., 2015). Plant and animal viruses hijack the host’s
translation machinery to translate viral RNA and make cellular conditions conducive to
viral replication (Reid et al., 2018; Stern-Ginossar et al., 2019). For these reasons,
understanding translational control mechanisms and the role of translationally regulated
proteins is crucial to understanding cellular processes and disease.

High-throughput techniques such as RNA sequencing (RNA-seq) have been widely used
to assess gene expression. These techniques use total mRNA levels as a proxy for protein
abundance. However, protein levels do not always correlate closely with total mRNA (De
Godoy et al., 2008) because measurements of total mRNA alone do not account for
mechanisms of translational regulation that operate upon mRNA post-transcriptionally
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(Baek et al., 2008; Hinnebusch et al., 2016). The rate of protein
synthesis is a better predictor of protein abundance than
measurements of total mRNA (Ingolia et al., 2009), and methods
that quantify both translation rate and total mRNA provide a more
accurate assessment of gene expression. Ribosome profiling (Ribo-
seq) is one such method. In addition to providing a quantitative
measure of translation efficiency, Ribo-seq maps ribosomes to
mRNAs at single nucleotide resolution, allowing the
identification of precise sites of translational control, such as
ribosome pause sites required for protein folding or shifts
between initiation-limited and elongation-limited translation of a
specific mRNA (Flanagan et al., 2022b; a).

Ribo-seq entails sequencing of ribosome-protected fragments
(RPFs): short tracts of mRNA inside the translating ribosome and
thus protected from ribonuclease digestion. RPFs are sequenced
in parallel with total mRNA from the same samples to compare
levels of translation between different treatments after
controlling for transcript abundance. More specifically, both
Ribo-seq and RNA-seq are performed on the same initial
translation-arrested lysate; part of the lysate is digested with
RNase to degrade all mRNA not protected by a translating
ribosome and is then sequenced to produce the RPF counts;
another part of the lysate is sequenced without being digested to
produce the total mRNA transcript counts. Any sample-specific
biological or technical effects incurred prior to RNase digestion
will affect both RPF and mRNA. It is therefore desirable to model
a shared random effect for RPF and mRNA counts from the same
sample.

A common goal in the analysis of Ribo-seq data is to identify
genes that exhibit differential translational efficiency across
conditions, i.e., differentially translated genes (DTGs). The data
matrix to be analyzed consists of both RPF counts and transcript
counts for all genes in each sample (Table 1). Several methods have
been proposed or adopted to analyze such a count data matrix and
detect DTGs. We group these methods into two categories: i)
methods adopted from differential expression analysis of RNA-
seq data, including edgeR (Chen et al., 2014), DESeq2 (Love et al.,
2014), and baySeq (Hardcastle and Kelly, 2010); ii) methods
originally proposed for detection of DTGs in Ribo-seq data,
including xtail (Xiao et al., 2016), RiboDiff (Zhong et al., 2017),
and babel (Olshen et al., 2013).

DESeq2 and edgeR use a conceptually similar model: a
generalized linear model (GLM) based on the negative binomial
distribution with a log link function, where the differential
translational efficiency is represented by an interaction term in
their model. These methods do not accommodate random
effects. Hence, the pairing structure is handled by having a fixed
effect for each sample. However, it is more natural to think of the
sample effects as random because we are interested in generalizing
the conclusion to the whole target population, not just the specific
samples in the study. Also, the random effects model tends to
produce better estimates when the number of observations per
sample is small (Clark and Linzer, 2015), which is the case for
Ribo-seq studies.

BaySeq uses an empirical Bayes method for paired RNA-seq
experiments that models counts from paired samples as beta-
binomial distributed and estimates prior distributions for
mean and dispersion parameters from the data using the
maximum likelihood method. Under this model, DTGs are
identified based on the posterior probability that there is a
difference in ratio for paired counts between treatment
conditions. While able to explicitly model the paired
structure of Ribo-seq, baySeq does not produce effect size
estimates and makes it difficult to represent and interpret
results for complex designs.

RiboDiff implements a method similar to edgeR or DESeq2, but
separately estimates the dispersion trend with respect to the mean
count for total mRNA and RPF, respectively. Xtail uses an ad-hoc
approach to adapt DESeq2 to Ribo-seq: rather than fitting a GLM
with a shared parameter for mRNA and RPF from the same sample,
it fits models to the mRNA and RPF counts separately, and then
compares the estimated log fold change parameters using a
simulation technique motivated by empirical Bayes. Both
RiboDiff and xtail cannot accommodate designs with more than
two treatment conditions or a block effect for paired counts.

Babel constructs a p-value for each pair of mRNA and RPF
counts, i.e., one p-value per gene per sample, which is intended to
test the null hypothesis that the RPF count is as expected given the
mRNA count. Babel then uses an ad-hoc approach to combine the
set of p-values across samples into a single p-value for each gene for
the null hypothesis that the gene does not exhibit differential
translational efficiency. Babel cannot represent experimental

TABLE 1 Example table of paired RPF/mRNA read counts; a subset of genes and samples from the Arabidopsis data described in Section 2.4

Treatment 1 Treatment 2

Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3

Gene RPF mRNA RPF mRNA RPF mRNA RPF mRNA RPF mRNA RPF mRNA

AT1G18560 49 76 87 61 131 71 126 430 113 326 168 330

AT1G63420 83 220 130 182 250 232 104 519 93 472 161 351

AT5G62950 24 69 41 40 121 60 56 279 66 265 88 197

AT2G04780 883 1244 1078 883 1834 860 824 1864 401 2123 897 1343

AT2G39220 106 221 144 142 365 136 238 805 158 1131 295 596

AT4G23240 37 54 39 30 87 26 108 149 87 154 168 194
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designs with more than two treatment conditions and does not
estimate an effect size for translational efficiency.

We propose a fully Bayesian hierarchical GLMM (generalized
linear mixed model) for detecting differential translational efficiency
in Ribo-seq experiments and present a variational Bayesian
algorithm and software tool, riboVI, to fit the model. A
variational Bayesian algorithm is a computationally efficient
method for approximating Bayesian posteriors in order to
conduct inference, and can be particularly beneficial in high-
dimensional applications like the analysis of Ribo-seq. Variational
Bayesian approaches have been used successfully in other
applications to high-throughput sequencing data (Teschendorff
et al., 2005; Zhao et al., 2021).

Our proposed variational Bayesian method improves upon
available methods for detecting DTGs by addressing the
limitations described above. First, our modeling approach is
tailored to Ribo-seq experiments, explicitly models the parameter
of interest regarding translational efficiency, and uses the posterior
distribution to detect DTGs. Second, our Bayesian method naturally
borrows information across all genes and improves the performance
of statistical inference in settings with a small number of replicates
but a large number of variables. Information borrowing across genes
occurs through the hierarchical Bayesian model structure, where
gene-specific parameters share appropriate prior distributions. More
specifically, the posterior estimation of the gene-specific
translational efficiency utilizes information both from data on
this specific gene and the prior distribution shared by all genes.
Third, our model can represent the pairing between RPF and total
transcript counts as a shared random effect. Fourth, our method
more accurately classifies genes that exhibit differential translational
efficiency and exhibits superior false discovery rate control over
other methods.

In the remaining sections of this paper, we specify our model
and outline our variational Bayesian algorithm to fit the model to
Ribo-seq data. We then describe the simulation studies and real data
analysis that we conducted to compare the performance of our
method to existing methods. Finally, we discuss remaining areas for
improvement and future research.

2 Methods

Ribo-seq data can be visualized as a table of counts, with rows for
genes and columns for samples (Table 1). RPF read counts are used
in conjunction with mRNA read counts from the same set of
samples to identify genes that are translated at different rates
(relative to the abundance of transcripts) between treatment
conditions. This can be called differential translational efficiency
analysis.

Because paired RPF and mRNA counts are derived from the
same biological sample and undergo several technical preparation
steps together before being processed in parallel, they are expected to
share some random biological and technical effects in common.
Hence, incorporating such random effects is important to
appropriately analyze Ribo-seq data from paired experimental
designs.

In this section, we first describe our GLMM model that
incorporates a random effect for the pairing, present our

variational Bayesian algorithm for obtaining posterior
distributions, and then describe how to control multiple testing
error. Finally, we describe the experimental procedures for a Ribo-
seq experiment with Arabidopsis plants.

2.1 Model

For g = 1, . . . , G, i = 1, . . . , N, and j = 1, 2, let ygij represent the
read count for gene g, sample i, and preparation j, where j = 1
corresponds to RNA-seq count, and j = 2 corresponds to Ribo-seq
count (RPF). We use the following hierarchical model for the
data:

ygij ~ Pois λgij( ),
log λgij( ) � xT

ijβg + ugi,

ugi ~
iidN 0, σ2u( ).

(1)

Model (1) is a Poisson-log-normal hierarchical model that can be
viewed as an approximation to the Poisson-gamma model, whose
marginal distribution is the negative binomial model that has been
widely used to model RNA-seq data. Instead of using a negative
binomial model directly, we propose to use Model (1) because it
allows incorporating effects due to experimental design
straightforwardly, and the parameters are easy to understand and
interpret.

More specifically, the Poisson mean λgij is modeled by the fixed
effects βg due to treatment and preparation (RPF or RNA-seq) and
random effects ugi, where ugi explicitly represents the sample-specific
random effects shared by each pair of RNA-seq and RPF counts.
Through ugi, our model handles variation due to biological replicates
and accommodates overdispersion compared to a simple Poisson
distribution. For an experiment with two treatment conditions, the
parameter vector βg has four elements and we denote them as (βg0,
βg1, βg2 and, βg3). We let βg0 be the mean expression level (on the log-
scale) for RNA-seq data under the control condition; βg0 + βg1 be the
mean expression level for RNA-seq data under treatment; βg0 + βg2
be the mean level for RPF under control condition; and βg0 + βg1 +
βg2 + βg3 be the mean level for RPF under treatment. Accordingly, we
have xij � (1, I(i ∈ T2), I(j � 2), I(j � 2)I(i ∈ T2))T representing
the experimental design, where I (·) is an indicator function. Group
means for the 2 × 2 design are shown in Table 2.

With this parameterization, translational efficiency is modeled
by βg2 = (βg0 + βg2) − βg0 for the control group and βg2 + βg3 = (βg0 +
βg1 + βg2 + βg3) − (βg0 + βg1) for the treatment group. The log-scale
difference in translational efficiency between treatment and control
is therefore βg3. In other words, the parameter βg3 corresponds to the
interaction effect between treatment and preparation (Ribo-seq and
RNA-seq), and hence it represents differential translational
efficiency between treatments for gene g. With this

TABLE 2 Table of means on the log-scale for the 2 × 2 design for Model 2.1

Preparation Control Treatment

RNA-Seq β0 β0 + β1

RPF β0 + β2 β0 + β1 + β2 + β3
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parameterization, to determine differential translational efficiency
amounts to testing Hg

0 : βg3 � 0 against HA: βg3 ≠ 0 for each gene g.
In an experiment, some genes exhibit differential translational

efficiency while other genes do not. Hence βg3 can be modeled by a
mixture of a continuous distribution and a point-mass at zero across
all genes. We use such a mixture distribution as the prior
distribution for βg3:

βg3 � 1 −Dg( )Wg,

Dg ~iidBern π0( ),
Wg ~iidN μβ3, σ

2
β3

( ).
(2)

In model (2), Bern(π0) represents a Bernoulli distribution with
parameter (π0). The null hypothesis that βg3 = 0 is then
equivalent to the following hypothesis for each gene.

Hg
0 : Dg � 1 (3)

We use Gaussian distributions N(μβp, σ2βp ) as prior distributions for
the remaining βgp parameters (p = 0, 1, 2) because we are not
concerned with testing other sharp nulls. This also simplifies the
algorithm required to fit the model. If testing for differential
expression based on RNA-seq is also of interest, we could use a
mixture distribution of Gaussian and point mass at zero as the prior
distribution for the parameter βg1.

We use conjugate prior distributions for the hyperparameters:

σ2u ~ IG αu, γu( ),
σ2βp ~ind IG αβp, γβp( ),
μβp ~ N 0, σ2μ( ), p � 0, . . . , 3.

(4)

2.2 Variational Bayesian algorithm

Since the Bayesian posterior for our model is not analytically
tractable, we propose a novel variational inference algorithm to
approximate the posterior in order to carry out inference. Our
algorithm extends an existing algorithm for variational inference
with Bayesian generalized linear mixed models to include our
model’s hierarchical structure and the mixture prior for βg3. In
this subsection, we give a brief introduction to variational inference
in general, then describe the algorithm we use to fit our model
specified in Section 2.1.

Variational inference is an alternative to sampling-based
inference like Markov chain Monte Carlo (MCMC) for
approximating an intractable posterior in Bayesian methods.
Variational inference finds a close approximation to the true
posterior by numerical optimization. This is achieved by first
defining a family of distributions of which the variational posterior
q(θ) will be a member and then minimizing the Kullbeck-Liebler
divergence to the true posterior p(θ): KL(q(θ)‖p (θ|y)), where θ
represents the set of model parameters and y represents the data.

Often the family of the variational posterior is defined by
imposing what is called a mean-field assumption: the variational
posterior must be factorizable. This enables the derivation of closed-
form expressions for the optimal values of the individual factors
given the other factors. These expressions form the basis of an
iterative algorithm. During every iteration, each factor is updated to

its optimal value given the current values of the other factors before
recalculating the Kullbeck-Liebler divergence. The algorithm
terminates when the Kullbeck-Liebler divergence converges to a
stable value.

Our algorithm follows this basic structure, and is an extension
and synthesis of work done by Tan and Nott (2013) and Wand
(2014) in order to accommodate the hierarchical structure of our
model and the mixture prior that is key to identifying differentially
translated genes, the scientific questions of interest in Ribo-seq data
analysis.

We define the distributional family of the variational posterior
with the following mean-field assumption: the distribution q(θ)
must satisfy Eq. 7, where βg* � (βg0, βg1, βg2). Referring to our
model specified in Section 2.1, D represents the set {Dg}g≤G and
ϕ represents the set of all hierarchical mean and variance
parameters.

D � Dg{ }
g≤G

(5)

ϕ � μβ, σ
2
u, σ2βp{ }

∀p
, π0{ } (6)

q θ( ) � qϕ ϕ( )qD D( )∏
g≤G

qg βg* , ug,Wg( ) (7)

For readability we will suppress the subscripts on the factors of
the variational distribution wherever context makes it clear which
variational factor is referred to; e.g., q(ϕ) instead of qϕ(ϕ). We use
qm as shorthand for the variational factor associated with
parameter m, and qm* as shorthand for the optimal value of this
variational factor.

We will first describe the method for updating the variational
distribution for parameters where the mean-field assumption alone
implies that the optimal value of the variational distribution has the
same functional form as the prior for that parameter, which we call
conjugate updates. Next, we describe the method of updating the
variational distribution for parameters where this is not the case,
called non-conjugate updates.

For q(D) and q(ϕ) in the factorized distribution in Eq. 7, we can
derive the expression for the optimal value with respect to the other
factors by simplifying Eq. 8. In Eq. 8, qm* can represent the optimal
value for either q(D) or q(ϕ), m can represent either D or ϕ, and
E−m (·) represents the expectation taken with respect to the current
values of all other factors excludingm in Eq. 7 at each iteration of the
algorithm. Because these parameters have exponential family priors
and are conjugate to all the neighboring distributions in the factor
graph of the full join distribution for Model (1), their optimal values
will have the same functional form as their priors (Bishop, 2006; Blei
et al., 2017). The derivations of update expressions for q(D) and q(ϕ)
are given in the supplementary material.

ln qm*( ) � E
−m

ln p y, θ( )( )[ ] + constant (8)

qm* �
exp E

−m
ln p( y, θ( )[ ]( )

∫exp E
−m

ln p( y, θ( )[ ]( )dm (9)

Having outlined the method for conjugate updates, we turn to the
non-conjugate updates. For the factors of ∏

g≤G
q(βg* , ug,Wg), i.e., for

each q(βg* , ug,Wg), we do not arrive at a recognizable distribution
by simplifying Eqs 8, 9 because the priors for these parameters are
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not conjugate to the Poisson distribution we use to model the data.
To arrive at an update expression for the distributions of these
parameters, we further specify an exponential family form for the
variational distribution q(βg* , ug,Wg), shown in Eq.10. This
approach is called non-conjugate message passing, and is
described in detail in Knowles and Minka (2011) and Tan and
Nott (2013). Using the exponential family specification, we are able
to derive an expression for the optimal value of the natural
parameter of the exponential family distribution. This is shown
in Eq. 11, where λg is the natural parameter for the exponential
family and V(λg ) is the variance-covariance matrix of the sufficient
statistic t (κg ). The expansion and simplification required to apply
Eq. 11 in our algorithm are given in the supplementary material.

κg: � βg* ,Wg, ug( )T
q κg( ) � exp λTgt κg( ) − h λg( )( ) (10)

λg ← V λg( )−1z E
−m

ln p( y, θ( )[ ]
zλg

(11)

By combining the conjugate and non-conjugate updates, we
arrive at our complete iterative algorithm, summarized in Algorithm
1. Our algorithm is implemented in a freely available R-package,
riboVI, which can be found at https://github.com/dcannonwalker/
riboVI.

Algorithm 1. riboVI

2.3 Multiple testing

Detecting DTGs amounts to testing for each gene whether βg3 is
0. Since there will be thousands of genes to test in most experiments,
multiple test correction is an important consideration in the
statistical analysis of Ribo-seq data.

For our model, we can calculate the Bayesian false discovery rate
(FDR) using posterior probabilities that each gene is not
differentially translated. If we have a collection of G posterior
probabilities p1, . . . , pG, representing the posterior probability
that each gene is not differentially translated, then we can
calculate Bayesian FDR if rejecting Hg

0 when pg < c, by

F̂DR c( ) � ∑gpgI pg < c( )
∑gI pg < c( ) . (12)

Then Bayesian FDR can be controlled at level α by finding

c* � sup c: F̂DR c( )< α{ } (13)

2.4 Collection of real data

Ribo-seq was performed essentially as described in (Hsu et al.,
2016; Chung et al., 2020; Kanodia et al., 2020). Details of methods
and experimental rationale may be found in Kanodia (2021), and a
more detailed interpretation of results will be described in a
forthcoming publication. Arabidopsis plants (Col-0, dcl2-1/dcl4-
2t) were rub inoculated with sap from uninfected (mock) or
RCNMV-infected Nicotiana benthamiana plants (Kanodia and
Miller, 2022). Ribosome-protected fragments (RPFs) were isolated
from young, uninoculated tissue from infected plants and mock-
infected plants at 5 and 8 days post inoculation (DPI). 5 DPI was the
earliest time point at which viral RNA was detectable in the
uninoculated tissue, and by 8 DPI, RNA levels were nearing their
peak. For each time point, each sample of plant tissue (5 biological
replicates per time point in the infected condition and 4 replicates
per time point in the mock condition) was divided into two halves
for analysis. One half was subjected to RPF isolation, the other was
subjected to RNA-seq analysis of total RNA. Both the RPF pool and
the total RNA pool were sequenced on an Illumina NovaSeq 6000.
The quality of raw sequencing reads was assessed using FastQC
v.0.11.7 (Andrews et al., 2010) and adapters were removed using
Cutadapt v.2.5 (Martin, 2011). RiboToolkit (Liu et al., 2020) was
used to determine the RPF lengths with high triplet periodicity and
assess the frame enrichment, which was very high for 28 nt
fragments. Noncoding RNA sequences were identified for
removal using Bowtie v.1.2 (Langmead et al., 2009). The ncRNA-
unaligned reads were then mapped to Arabidopsis reference genome
(TAIR10) using STAR v.2.5 (Dobin et al., 2013) to yield uniquely-
mapped reads. The vast majority of RPFs were 28 nt in length,
consistent with other reports for Arabidopsis (Hsu et al., 2016;
Chung et al., 2020), and mapped to coding regions.

3 Results

3.1 Simulation studies

In order to evaluate the utility of our proposed method, we
compared the performance of our method riboVI with the six
methods described in the introduction (edgeR, DESeq2, baySeq,
xtail, babel, and RiboDiff) using four sets of simulation studies.
Simulations A, B, and C are model-based simulations representing
progressively larger deviations from our assumed model. Simulation
D is a real data-based simulation where the actual distribution of
data is unknown.

Model parameters for simulation studies A and B are based on
estimates from the real dataset described in Section 2.4. Given these
real-data-based estimates as parameters, counts in these studies are
entirely simulated. We explain the simulation procedure briefly. We
first used edgeR to fit a generalized linear model with the mean (λgij)
modeled as in Eq. 1 and obtained estimates for the fixed effects βg
and the sample effects ugi for each gene (edgeR assumes both are
fixed). Then we used the empirical means and variances of the
estimated βgp (p = 0, . . . , 3) as the means and variances of normal
distributions from which to draw βgp parameters. For approximately
80% of genes in each simulated data set, we set the βg3 parameter to
0 so that there was no difference in translational efficiency between
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treatments for those genes. The remaining 20% of genes retained the
non-zero value simulated from the normal distribution for βg3 and
were considered to be true positives for the evaluation of method
performance. We used the variance of the estimated ugi as the
variance of a normal distribution centered at 0 from which to draw
ugi (i = 1, . . . , 2n). After βg and the ugi were drawn, we calculated the
mean for each combination of sample and preparation (RPF or
RNA-seq) according to Model 1) for each ofG = 10,000 genes. Based
on these means, count data were simulated from Poisson
distributions in Simulation A and from negative binomial
distributions in Simulation B. The dispersion parameters for the
negative binomial distributions in Simulation B were drawn from
the empirical distribution of the gene-specific dispersion
values that edgeR estimated for the same real dataset. For
both simulation studies, we have two settings with sample
sizes n = 2 and n = 4.

Simulation C is inspired by the simulation studies described in
the supplemental materials of the RiboDiff paper (Zhong et al.,
2017). First, we simulated separate means for RPF and mRNA for
each of G = 10,000 genes from a negative binomial distribution. We
then simulated fold changes from a gamma distribution with
parameter values estimated from a real data set, as given in
Zhong et al. (2017). For three randomly selected subsets of genes,
we used the simulated fold changes to modify the means for either
mRNA, RPF, or both, respectively. As in simulations A and B,
approximately 80% of genes in each simulated data set had no
difference in expected translational efficiency between conditions.

Finally, we modified the means for paired mRNA and RPF samples
with a shared random effect simulated from a Normal distribution.
Count data were then generated from a negative binomial
distribution with dispersion parameter as a function of the mean,
as specified in (Zhong et al., 2017), for each gene. We have two
settings with n = 2 or n = 4 per condition.

Simulation D is based on resampling from the real data set
described in Section 2.4. The four samples in the mock condition of
the real data set described in Section 2.4 were used to construct
simulated data sets. In order to produce multiple unique simulated
data sets, for each simulated data set we randomly selected two
samples (n = 2) to form a simulated “treatment” condition and the
other two samples (n = 2) to form a simulated “control” condition.
Then, we simulated fold changes from a shifted gamma distribution
similar to that specified in Xiao et al. (2016) with shape parameter
0.6, scale parameter 0.5, and positive shift of 1.5, which we used to
modify the counts for mRNA, RPF, or both for three randomly
selected subsets of genes, respectively. As in simulations A, B, and C,
approximately 80% of genes in each simulated data set had no
difference in expected translational efficiency between conditions.
Genes with differential translational efficiency (simulated true
positives) had a log-scale change in expected translational
efficiency of at least 0.4 as a consequence of the positive shift
applied to the gamma distribution, representing a further
departure from our model’s assumptions. We replicated this
procedure to produce each simulated data set that included G =
10,000 genes each.

FIGURE 1
Results for simulation study A (A) ROC curves for eachmethodwith two replicates per condition; (B) FDR curves for eachmethodwith two replicates
per condition; (C) ROC curves for the setting with four replicates per condition. (D) FDR curves for the setting with four replicates per condition. Note that
both ROC curves and FDR curves are averaged over 100 simulated datasets for each setting.
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We evaluated each method’s ability to classify DTGs using
ROC curves (receiver operating characteristic curves) by plotting
the true positive rate (TPR) against the false positive rate (FPR).
The ROC curves were averaged over 100 datasets for each
simulation setting and presented in Figures 1–4 for
simulations A–D, respectively. The area under the curves
(AUCs) are shown in Table 3. RiboVI and xtail have similar
detection accuracy for Simulation A, and they outperform the
other methods (Figure 1; Table 3). BaySeq, another method that
models the paired structure, also performs relatively well in
Simulation A, especially when sample size is larger. RiboVI
dramatically outperforms all the other methods in classifying
DTG genes in Simulation B (Figure 2; Table 3). This suggests that
although our assumed model is not exactly negative binomial
(based on which data were generated for Simulation B), RiboVI
still provides outstanding performance possibly due to its ability
to handle overdispersion by including the random sample effect.
The methods based on negative binomial models with fixed
sample effect (edgeR, and DESeq2) do not show advantages in
Simulation B, possibly due to the challenges of estimating several
mean parameters and a dispersion parameter for each gene with a
small number of replicates. RiboVI, xtail, and RiboDiff have
similar detection accuracy for Simulation C, again outperforming
the other methods (Figure 3; Table 3). RiboVI dramatically
outperforms all the other methods in Simulation D where data
were simulated based on a real dataset (Figure 4; Table 3) and
most closely mimic real applications. Overall, the proposed
method (riboVI) exhibits detection accuracy superior or

equivalent to the besting performing method among those
under comparison across all simulation studies.

We also evaluated each method’s ability to control multiple
testing errors by comparing the actual FDR to nominal levels
(Figures 1–4 for Simulations A–D). Tables of actual FDRs at
nominal levels 0.05 and 0.1 are provided in the supplementary
materials. RiboVI, baySeq, DESeq2 and edgeR typically control FDR
to nominal levels or below, although DESeq2 and baySeq can be very
conservative in some settings. RiboDiff, babel, and Xtail do not
control FDR well in general, and their performance is inconsistent
across simulation studies: they can be quite conservative in some
cases but liberal in others. RiboVI performs best in simulations A
and B (see Figures 1, 2), where the actual FDR are very close to the
nominal levels. It does not perform as well in simulations C
(Figure 3) and D (4) but its performance is still acceptable and
better than othermethods. Overall, RiboVI controls FDR close to the
nominal levels and is the best method among all being compared.

3.2 Real data analysis

In addition to our simulation studies, we used riboVI, edgeR,
and xtail to analyze a data set from a real Ribo-seq study on
Arabidopsis plants, investigating the effect of infection by red
clover necrotic mosaic virus (RCNMV). We collected leaves from
the mock-group and infected plants at 5 and 8 days post inoculation
(DPI) and performed Ribo-seq experiments as described in Section
2.4. We selected edgeR and xtail because they are the methods that

FIGURE 2
Results for simulation study B (A) ROC curves for the setting with two replicates per condition; (B) FDR curves for the setting with two replicates per
condition; (C) ROC curves for the setting with four replicates per condition; (D) FDR curves for the setting with four replicates per condition. Note that
both ROC curves and FDR curves are averaged over 100 simulated datasets for each setting.
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are most competitive with riboVI across simulations studies and
because they produce quantitative estimates of translational
efficiency change. These methods are also relatively accessible
and user-friendly for practitioners. Since edgeR and DESeq2 are
based on very similar models and edgeR consistently outperforms
DESeq2 in simulations, we did not include DESeq2 in the real data
analysis.

Prior to analysis, we filtered out genes with a large proportion of
0 counts across all samples, retaining G = 17,388 genes. After
analyzing this dataset using riboVI, edgeR, and xtail, we first
compared the number of genes classified by each method as
exhibiting differential translational efficiency at nominal FDR
levels 0.05 and 0.1. RiboVI identified substantially more genes
than the other two methods at the same nominal FDR level, as

FIGURE 3
Results for simulation study C (A) ROC curves for the setting with two replicates per condition; (B) FDR curves for the setting with two replicates per
condition; (C) ROC curves for the setting with four replicates per condition; (D) FDR curves for the setting with four replicates per condition. Note that
both ROC curves and FDR curves are averaged over 100 simulated datasets for each setting.

FIGURE 4
Results for simulation study D (A) ROC curves; (B) FDR curves. This real-data based simulation includes two replicates per condition, and both ROC
curves and FDR curves are averaged over 50 simulated datasets.
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TABLE 3 Mean area under the ROC curve (AUC) for each method and simulation study, with either n = 2 or n = 4 replicates per condition. Standard deviation is
included in the parenthesis next to the corresponding mean.

Simulation study A Simulation study B Simulation study C Simulation study D

method n = 2 n = 4 n = 2 n = 4 n = 2 n = 4 n = 2

1 babel 0.6 (0.007) 0.6 (0.006) 0.576 (0.008) 0.598 (0.007) 0.615 (0.077) 0.651 (0.09) 0.628 (0.024)

2 baySeq 0.88 (0.007) 0.907 (0.008) 0.692 (0.008) 0.746 (0.007) 0.861 (0.026) 0.891 (0.031) 0.751 (0.016)

3 DESeq2 0.8 (0.007) 0.86 (0.007) 0.646 (0.01) 0.748 (0.007) 0.864 (0.032) 0.895 (0.035) 0.718 (0.021)

4 edgeR 0.824 (0.018) 0.865 (0.015) 0.696 (0.007) 0.752 (0.007) 0.878 (0.035) 0.907 (0.036) 0.732 (0.035)

5 riboVI 0.908 (0.005) 0.928 (0.004) 0.827 (0.007) 0.864 (0.006) 0.903 (0.014) 0.939 (0.01) 0.841 (0.007)

6 RiboDiff 0.866 (0.005) 0.894 (0.005) 0.691 (0.007) 0.747 (0.007) 0.894 (0.019) 0.935 (0.024) 0.755 (0.013)

7 xtail 0.906 (0.004) 0.933 (0.004) 0.713 (0.008) 0.771 (0.007) 0.904 (0.034) 0.941 (0.03) 0.718 (0.021)

FIGURE 5
Overlap in DTGs identified by each method at 5 or 8 days post inoculation and FDR = 0.05: (A) 5 DPI; (B) 8 DPI.

FIGURE 6
Overlap in DTGs identified by each method with FDR = 0.05 and including only genes with absolute estimated log2 translational efficiency change
>0.5: (A) 5 DPI; (B) 8 DPI.
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shown in Figure 5. This is consistent with the results from
simulation studies, where riboVI demonstrated the best
power and FDR control. Nearly all genes identified by edgeR
or xtail at a given FDR level were also identified by riboVI. We
also considered the absolute value of the estimated translational
efficiency change parameter, or βg3 in Model (2.1), as a way
to identify genes whose change in translation is more likely to
be associated with substantial effects on the biological system.
Hence, we retained only the genes with an estimated
translational efficiency change with an absolute value greater
than 0.5 (in log2 scale) in addition to the FDR threshold for
the functional analysis next. Overlap in genes detected by the
three methods using this additional criterion is shown in
Figure 6.

To investigate the functions of genes identified by each
method, we performed GO enrichment analyses. GO analysis
was conducted with the Panther Gene List Analysis webserver
(http://www.pantherdb.org/) (Mi et al., 2019; Thomas et al.,
2022) where gene IDs, grouped by their expression level and
time point (5 dpi and TE up, 5 dpi and TE down, etc.), were tested
for statistical overrepresentation as compared to the default gene
set for Arabidopsis thalianamaintained by PantherDB and in the
context of biological processes. Revigo tree maps from the GO
analysis are presented in supplementary figures. RiboVI
identified more genes exhibiting differential translational
efficiency, which enabled the detection of more specific GO
terms as being over-represented than the other methods. For
example, at 5 DPI riboVI was the only method which identified
enough genes as being significantly up-translated to return
significantly over-represented GO terms. For genes that
showed a decrease in translational efficiency at 5 DPI, both
riboVI and xtail identified enough for GO analysis, but all
22 GO terms found by xtail were also found by riboVI, while
riboVI found an additional 222 overrepresented GO terms that
were not identified by xtail.

The larger number of overrepresented GO terms found by
riboVI facilitates the interpretation of results, in part because the
increased specificity of GO terms from riboVI helps provide a
detailed explanation of the biological system under study. For
example, GO analysis of xtail-identified genes revealed an
overrepresentation of signal transduction (GO:0007165), when
analysis of riboVI-identified genes revealed not only signal
transduction (GO:0007165) but also hormone-mediated
signaling pathway (GO:0009755) and regulation of signal
transduction (GO:0009966) thereby providing a more detailed
understanding of the system. GO analysis of riboVI identified
genes at 5 DPI also revealed terms not identified at all by analysis
of xtail identified genes. Specific examples include terms such as
cytoplasmic translational initiation (GO:0002183) and rRNA
processing (GO:0006364). These findings, unique to riboVI,
make biological sense considering single-stranded positive
sense RNA viruses first co-opt host translation factors upon
infection to produce viral proteins for replication. The results
for genes identified at 8 DPI were similar in the sense that riboVI
returned more numerous and specific terms which are
biologically meaningful. More specific biological insights will
be presented in a separate paper.

4 Discussion

In this paper we propose a Bayesian hierarchical model for Ribo-
seq data anaysis that incorporates a random sample effect to
accommodate the experimental design factors. We derive a
computational algorithm to fit our model and compare the
performance of our method to the other methods available for
analyzing Ribo-seq. Based on a variety of simulation studies where
data were not generated based on our model, our method riboVI
outperforms the other methods with higher power for detecting
genes that exhibit differential translational efficiency and better
control of FDR.

In an analysis of real data, riboVI identifies more genes as
exhibiting differential translational efficiency than xtail or edgeR at
the same nominal FDR. This is not surprising based on simulation
results that show riboVI has better power and controls FDR to the
desired level. The biological inferences for the detected DTGs need
to be validated using complementary evidence. In this paper, we
apply functional analysis of the detected DTGs through GO
enrichment analyses, which show that riboVI identifies a larger
number of more specific GO terms than the other two methods. The
additional GO terms that riboVI identifies are associated with
functions likely to be affected by viral infection, which makes
biological sense. The increased information derived from the GO
enrichment analysis of the riboVI gene set facilitates the
interpretation of results and helps provide a more detailed
understanding of the biological system. In future research,
benchmark Ribo-seq data sets may be generated and further
validate our method’s performance.

A barrier to applying current Ribo-seq analysis methods such as
xtail and RiboDiff is their inability to represent experimental designs
with more than a single treatment with two conditions. As the
complexity of Ribo-seq experiments grows, these methods will not
be able to perform the requisite analysis. Our method riboVI is based
on a GLMM framework and can easily incorporate different design
structures. Note that our current code implementation is limited to
2-treatment comparisons, and we are developing this extension to
our codebase, which we hope to release in a follow-up version of the
riboVI package.

While riboVI has higher power than other methods for detecting
DTGs, we notice that its estimated translational efficiency changes
tend to be smaller than other methods. This is likely due to the
shrinkage effect on the parameter βg3 from our model. This effect is
more pronounced when only a small proportion of genes in a data
set exhibit substantial changes in translational efficiency. One area
for future research is to improve the accuracy of βg3 estimates, and
this might be done by modifying the mixture prior for βg3 in Model
2.1. Also, with Bayesian posterior inference, we can modify the
hypothesis to test and aim to only identify those genes with a large
enough translational efficiency change.

In summary, our method provides a useful advancement over
available methods for differential translational efficiency analysis of
Ribo-seq data. It demonstrates superior power and FDR control to
detect DTGs in comparison with other methods in both simulation
studies and in applications to real data. We provide an R package
called riboVI which is freely available at https://github.com/
dcannonwalker/riboVI.
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