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Introduction: The acquisition of high-resolution digital pathology imaging data
has sparked the development of methods to extract context-specific features
from such complex data. In the context of cancer, this has led to increased
exploration of the tumor microenvironment with respect to the presence and
spatial composition of immune cells. Spatial statistical modeling of the immune
microenvironmentmay yield insights into the role played by the immune system in
the natural development of cancer as well as downstream therapeutic
interventions.

Methods: In this paper, we present SPatial Analysis of paRtitioned Tumor-Immune
imagiNg (SPARTIN), a Bayesian method for the spatial quantification of immune
cell infiltration from pathology images. SPARTIN uses Bayesian point processes to
characterize a novel measure of local tumor-immune cell interaction, Cell Type
Interaction Probability (CTIP). CTIP allows rigorous incorporation of uncertainty
and is highly interpretable, both within and across biopsies, and can be used to
assess associations with genomic and clinical features.

Results: Through simulations, we show SPARTIN can accurately distinguish
various patterns of cellular interactions as compared to existing methods.
Using SPARTIN, we characterized the local spatial immune cell infiltration
within and across 335 melanoma biopsies and evaluated their association with
genomic, phenotypic, and clinical outcomes. We found that CTIP was significantly
(negatively) associated with deconvolved immune cell prevalence scores
including CD8+ T-Cells and Natural Killer cells. Furthermore, average CTIP
scores differed significantly across previously established transcriptomic classes
and significantly associated with survival outcomes.

Discussion: SPARTIN provides a general framework for investigating spatial
cellular interactions in high-resolution digital histopathology imaging data and
its associations with patient level characteristics. The results of our analysis have
potential implications relevant to both treatment and prognosis in the context of
Skin Cutaneous Melanoma. The R-package for SPARTIN is available at https://
github.com/bayesrx/SPARTIN along with a visualization tool for the images and
results at: https://nateosher.github.io/SPARTIN.
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1 Introduction

While the staining and examination of tissue samples has
been a ubiquitous medical practice for decades, it has only been
relatively recently that high-resolution pathology images of such
stainings have begun to be explored through the lens of formal
quantitative models (Heindl et al., 2015). A considerable amount
of work has thus far been put into building and training statistical
and machine learning models capable of accurate classifications
of overall tissue samples as well as subsections of tissue samples
(Amgad et al., 2019; Lu et al., 2020; Bian et al., 2021; Negahbani
et al., 2021). In the context of cancer this work, often referred to
as Histopathological Image Analysis or Digital Pathology,
encompasses a broad collection of methods and goals ranging
from developing models to assist in the quantitative scoring and
staging of cancer biopsies to the classification of cells in tumor
biopsies (Komura and Ishikawa, 2018). The value of these
methods have important implications for basic science and
translational research. Given the precision with which such
algorithms can assess biopsies at a cellular level, it is now
possible to uncover structures and associations which might
not immediately apparent to human pathologists. This degree
of precision also allows for rigorous modeling and examination of
intratumoral heterogeneity with respect to their genomic
determinants and clinical characteristics (Saltz et al., 2018; Li
et al., 2019a).

Several research works in the past decade provide evidence
regarding the importance of this line of investigation, especially
for quantifying tumor-immune cellular interactions in cancer.
Pagès et al. (2010) proposed immune reaction as the seventh
hallmark of cancer, and laid out different associations between
various types of immune cells and outcomes of interest. Among
the different types of immune cells, the most well-studied are
lymphocytes. Lymphocyte infiltration is both a meaningful
prognostic indicator that can help inform treatment and
predict survival across different types of cancer, including in
colorectal cancer (Idos et al., 2020), breast cancer (Denkert et al.,
2015; Dieci et al., 2018), and melanoma (Fu et al., 2019). This has
led to increased interest in computational Tumor Infiltrating
Lymphocyte (TIL) assessment, a sub-field of digital pathology
devoted to developing computational methods to assess
lymphocyte infiltration in biopsy images. Thus far, results that
have emerged from this research have provided additional
evidence regarding the importance of tumor infiltrating
lymphocytes and their spatial features in the assessment of
pathology images. Saltz et al. (2018) specifically examined the
presence of lymphocytes across biopsies in several types of
cancer, and found that certain summarization metrics of
lymphocyte clusters were significantly associated with survival
in certain types of cancer. Lu et al. (2020) also found that various
spatial features of tumor infiltrating lymphocytes present in a
sample of breast cancer biopsies were significantly associated
with survival both marginally and after adjusting for other
factors. Further, they found that these associations actually

differed by tumor subtype. In addition to this, they found that
certain spatial features of tumor infiltrating lymphocytes were
also significantly associated with gene expression data.

From an analytical perspective, digital pathology research can
be broadly classified along two axes: the type of quantitative
models, and the scale of the assessment. Quantitative models
range from primarily machine-learning in nature to primarily
statistical. The most obvious way this difference manifests is in
the models and methods used. Machine learning approaches tend
to use tools like deep learning and convolutional neural networks
and focus on predictive accuracy (Khosravi et al., 2018), while
statistical approaches tend to use specialized model-based spatial
methods and focus more on the quantification of uncertainty
(Seal et al., 2022). The scale of assessment, on the other hand,
relates to how much of the biopsy is used. Some methods operate
on sub-regions of the biopsy images while others operate at the
level of the entire biopsy (Ertosun and Rubin, 2015; Li et al.,
2019b).

In theory, these two qualities-type of research and scale of
assessment-are independent. In practice, methods that use
machine learning approaches tend to operate on whole biopsy
images or data, while statistical approaches tend to operate on
sub-regions of images, or substantially smaller biopsies as with
multiplex imaging data analysis (Seal and Ghosh, 2022). There
has been limited work to build off of the cell classification abilities
of modern machine learning methods at the level of full biopsy
imaging. There are two probable reasons for this. First, many
statistical methods designed for usage with spatial data rely on
the definition of a window in which the analysis occurs. For
biopsies, such a window is not readily defined, except in
deliberately chosen sub-regions. While such issues can be
avoided by using methods that do not rely on an explicit
window, this tends to introduce additional computational
challenges that may not scale to the biopsy level, especially as
biopsy size and resolution increases. Second, even if one were to
define a singular window for the entire biopsy, applying spatial
methods across the entire space may prove problematic. In
addition to being computationally intensive, it is not clear that
measures of various local spatial characteristics summarized at
the biopsy level are able to capture the heterogeneity across the
biopsy, and thus may not be informative enough to be useful in
practice. For these reasons, there has been limited work in
development of spatial statistical models that use cell
classification data from full biopsy images. To the author’s
knowledge, the most notable attempts to do so have been Li
et al. (2019b)’s work which utilized data classified by the
ConvPath pipeline (Wang et al., 2019).

In order to address these issues, we propose SPARTIN (SPatial
Analysis of paRtitioned Tumor-Immune imagiNg) pipeline.
SPARTIN is unique in the spatial pathological imaging analysis
literature in that it uses spatial statistical models to assess the
association between tumor cells and immune cells across an
entire partitioned biopsy, rather than select sub-regions. This
allows for rigorous quantification of uncertainty in the style of
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Li et al., 2019b while still allowing for the assessment of full images in
the style of Saltz et al. (2018). We accomplish this by partitioning the
cell-level imaging data of each biopsy into non-overlapping sub-
regions, which can then be modeled to capture the local infiltration
patterns using techniques from spatial point process theory. Spatial
point processes have long been used in the domain of ecology to
rigorously investigate spatial relationships between various
organisms (Högmander and Aila, 1999; King et al., 2012). More
recently, methods from this field have been successfully applied
within the biomedical domain to functional neuroimaging and
magnetic resonance imaging data (Kang et al., 2011; Ray et al.,
2015). Briefly SPARTIN uses whole slide images of biopsies that are
partitioned into sub-regions using an iterative clustering algorithm
and a Bayesian spatial marked point process model is then fit on
each sub-region (see Figure 1). We discuss the constructions and

justifications behind the choice of models underlying SPARTIN in
Section 2. Using our model parameters, we construct a measure of
local immune cell infiltration, termed Cell Type Interaction
Probability (CTIP) that allows rigorous incorporation of
uncertainty and is highly interpretable (on a probability scale)
both within and across biopsies, and can be used to assess
associations with genomic and clinical features. We evaluate the
performance of SPARTIN on simulated data across multiple
scenarios of cell interactions (Section 3.1) and show that our
models are able to reliably distinguish positive interaction from
negative and null interaction under a variety of scenarios (minimum
AUC 0.85, maximum 0.97).

We demonstrate the utility of SPARTIN on a Skin Cutaneous
Melanoma dataset consisting of 335 biopsies obtained fromThe Cancer
Genome Atlas (TCGA) Genomic Data Commons Data Portal (Section

FIGURE 1
Overview of SPARTIN pipeline for single biopy image. Raw biopsy images (A) are preprocessed into cell types (tumor cells or immune cells, colored
black and red respectively) and locations. The points are intensity thresholded, removing excess white space from the image and producing a more
closely fitted window (B). Next, the biopsy is tessellated into “tiles” consisting of non-overlapping sub-regions containing comparable numbers of tumor
cells (C). Bayesian Spatial point process models are fit on each tile (D), and tile-specific Cell Type Interaction Probability (CTIP) is calculated from the
resulting posterior distributions (E), allowing us to capture heterogeneity in infiltration across the biopsy in a manner that can be aggregated (F) and
appropriately summarized (G).
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3.2). Our scientific goals are to quantify and characterize local spatial
immune cell infiltration within and across melanoma biopsies and
evaluate their association with genomic, phenotypic, and clinical
outcomes. Using local spatial infiltration patterns quantified using
CTIP, we found that CTIP was significantly negatively associated
deconvolved immune cell prevalence scores including CD8+ T-Cells
and Natural Killer cells. Furthermore, average CTIP scores differed
significantly across previously established transcriptomic classes in
melanoma (Akbani et al., 2015). CTIP was also more significantly
associated with increased hazard of death, as compared to existing
measures of spatial interaction. Beyond the inverse association with
survival we found that CTIP was significantly inversely associated with
clinical assessment of TIL abundance. Finally, we discuss the
implications of this pipeline as well as potential future directions for
the work (Section 4).

2 Materials and methods

2.1 Overview of SPARTIN

The overall schematic of the SPARTIN pipeline (for a single
biopsy image) is shown in Figure 1. Briefly, for each whole-slide
image of a biopsy (Panel A), the smallest window that fit all cells
(Tumor and Immune) in the entire biopsy is constructed by
thresholding the image intensity (Panel B). This window is then
divided into “tiles” via a tessellation process that fully partitions the
image into contiguous sub-regions containing similar numbers of
tumor cells (Panel C; zoomed in version in Panel D). A Bayesian
spatial point process model is then fit on each of these tiles
separately, yielding a posterior distribution of the local
interaction parameter (Panel E). For each tile, this local
distribution is compared to a tile-specific null distribution to
compute the local CTIP value, which is then combined to
summarize the overall level of interaction at the biopsy level
(Panel G). Each of these steps in detailed in the ensuing sections.

2.2 Intensity thresholding and partition

2.2.1 Motivation for partition
Each biopsy was partitioned into non-overlapping sub-regions,

each of which was modeled separately as a point process. The
primary motivation for structuring the analysis in this manner
came from prior biological knowledge about tumor composition.
Tumors are heterogeneous entities in many respects, and immune
infiltration is no exception. Tumor biopsies can also be quite large
relative to the scale on which interaction is defined. While we used a
radius of interaction of 30 microns, some biopsies in our sample
comprised tens if not hundreds of thousands of square microns of
tissue. Additionally, setting aside practical computational issues with
fitting a single model on an entire biopsy, such an approach would
also both fail to capture spatial variability in immune infiltration and
fail to allow for a more granular spatial investigation of the immune
infiltration in a given biopsy. A natural way to improve over this
method is to algorithmically partition the biopsy into non-
overlapping sub-regions and fit models on each sub-region. Aside
from better capturing the spatial variability of immune infiltration,

an additional benefit of this method is that it allows for the
parallelization of model fitting across the resulting sub-regions
within a single biopsy. Much like selecting a quadrature when
approximating an integral, calibrating the fineness of the
partition entails a tradeoff between the precision with which one
can assess the spatial heterogeneity within the biopsy and the
computational load that a finer partition entails.

2.2.2 Partition pipeline
In order to partition a given biopsy into non-overlapping sub-

regions, we began with the smallest bounding rectangular window
that contained all cells. We then applied an intensity thresholding
algorithm in order to find the smallest possible window that still
contained all cells. This was accomplished by breaking the full image
up into small (~15 microns2) sub-windows, and computing a
smoothed cell intensity on each sub-window. Sub-windows which
had a sufficiently high intensity were combined to form the overall
window on which the subsequent partition took place. The final
window can thus be thought of as the union of many small square
windows which, due to their size, are able to fit the contours of the
differently shaped biopsies and exclude areas both outside and
within the biopsies where no cells are present. The algorithm
takes in three tuning parameters that determine the resulting
partition. The same values for all three parameters were used
across all biopsies, and the values themselves were selected
through empirical tuning on a subset of the total dataset. For
more details on the parameters themselves, see Supplementary
Section S3.

Next, we applied a voronoi tessellation to the tumor cells within
the intensity thresholded window, partitioning it into tumor cell
specific sub-windows. We then applied a modified version of
K-means to the tumor cells, such that each of the resulting
clusters was constrained to be between a pre-defined range of cell
counts. Finally, each tumor cell specific sub-window within a given
cluster was combined into a tile, corresponding to each of the
clusters from the K-means clustering; see Figure 1 for an
illustration of the process. This results in a set of tiles that fully
partition the intensity thresholded window. This partition uniquely
defines the membership of each of the total cells (tumor or immune)
into one of the resulting tiles. Because each resulting tile has a well-
defined boundary and each cell in the biopsy belongs to exactly one
tile, a hierarchical Strauss model can be fit on each tile to compute a
tile specific value of each parameter in the model. Most notably, this
allows for the estimation of a tile-specific CTIP value, which
captures the local degree of tumor cell-immune cell interaction.
Bymodeling this parameter locally to each tile, we are able to capture
not only the overall level of infiltration in the biopsy, but also the
potentially spatially heterogeneous nature of the infiltration.

It is worth emphasizing at this point the modular nature of our
pipeline. The clustering method does not depend on the details of
the model used, and the model in turn does not depend on details of
the clustering method. Either can be exchanged for a different
algorithm or model without disrupting the rest of the pipeline, so
long as the output of the clustering algorithm is a spatial partition of
the biopsy. Further, while the value ultimately selected to summarize
the local infiltration at the tile level will obviously be informed by the
exact model selected, there is flexibility in the choice of this quantity
as well.
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2.3 Spatial point process models

2.3.1 Data structure
Let N be the number of biopsies, each with Ni tiles. More

formally, after the partition biopsy i can be represented by
Ti1 ∪/∪ TiNi, where each Tij closed subset of R2. Further, let
xij = xij1 ∪ xij2, where each xijk is a set of points in Tij ⊂ R2, and
k = 1 for tumor cells and 2 for immune cells. Then for each element
of the partition of each biopsy, this data can be naturally viewed as
the realization of a marked point process. Broadly speaking, marked
point process models are a family of models that treat the number of
points, their locations, and their discrete classification (often called
their “mark”) as random. We specifically chose to model this data as
a hierarchical Multitype Strauss Process. Hierarchical Strauss
Processes are unique in that they allow for the modeling of both
the tendency of points of different types to be generally close
(positive interaction) as well as generally far apart (negative
interaction).

2.3.2 Model construction
The usage of a Strauss model to study spatial interaction in a

marked point process is natural in this setting, since Strauss
models were originally conceived for this purpose (Strauss,
1975). There are two primary model variants to consider when
modeling multi-type data using the Strauss model: the
hierarchical variant and the symmetric variant. These models
are superficially similar, but differ in important ways. Broadly
speaking the symmetric variant models the interaction between
the different types of points jointly, whereas the hierarchical
variant models the locations of certain types of points conditional
upon the locations of other types. Using the hierarchical Strauss
model thus requires an important choice for each pair of types as
to which type of point will be “dominating,” i.e., conditioned
upon, and thus unaffected by the other type. This choice, which
must be made with a priori information about the nature of the
process, has important consequences for the resulting model fit.
Aside from the differing interpretations depending on the choice,
different choices of dominating vs. non-dominating types will
also result in different conditional likelihoods and thus
parameter values (Högmander and Aila, 1999). It is also worth
noting here that the term “hierarchical” is used differently in this
context than it is often used in more typical statistical modeling.
Rather than referring to mechanisms to account for dependence

in observations or induce shrinkage, here the term refers to the
hierarchical relationship between the dominating and non-
dominating types: the locations of the dominating type do not
depend on the locations of the non-dominating type, but the
locations of the non-dominating type do explicitly depend on
those of the dominating type.

We ultimately chose to use the hierarchical variant of the
multi-type Strauss model over the symmetric variant for two key
reasons. First, in our imaging application treating the locations of
the immune cells as conditional upon the locations of the tumor
cells is a priori biologically plausible. It has been established that
there is an interplay between a tumor and the host’s immune
system whereby the immune system responds to the tumor, thus
shaping its development, and the tumor in turn “escapes” the
immune system and influences its response (Khong and Restifo,
2002; Zhang and Zhang, 2020). While such dynamics are no
doubt of interest, this natural evolution cannot be easily inferred
from a “snapshot” in time that a biopsy presents. Despite this,
conditioning on the locations of the tumor cells to model the
immune response is a reasonable starting point: in order for the
immune system to respond, there must at the very least be a
tumor to respond to. The hierarchical Strauss Model thus serves
as a first order approximation to this complex interplay. Second,
the hierarchical Strauss model allows for the proper modeling of
positive interaction between points of different types, while the
symmetric model does not. Figure 2 depicts examples of different
types of spatial interaction, ranging from negative to positive.
The left and center panels depict the range of interactions that
can be modeled by the traditional Strauss process: either the case
where cells of both types actively avoid the other (left panel) or
are spatially unaffected by the other’s presence (middle panel).
Because we are interested in not just these cases but the case
where points of both types tend to cluster around points of the
other type (right panel), the hierarchical variant is the clear
choice.

The density function of the hierarchical Multitype StraussModel
with two qualitative marks (tumor and immune cells in our setting)
is defined by

f x1, x2( )∝ exp n1β1 + n2β2 + SR11 x1( )γ11 + SR22 x2( )γ22 + SR12 x1, x2( )γ12( )
(1)

where in addition to x1 and x2 as defined above, nt is the number of
points of type t, βt is the first order intensity of points of type t, SRtl(·)

FIGURE 2
An illustration of spatial interaction between cells of different types. The leftmost panel depicts low/negative interaction; the middle panel depicts
null interaction; the rightmost panel depicts high/positive interaction.
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counts the number of pairs of points of types t and l within Rtl of one
another where Rtl is selected a priori based on subject specific
knowledge, and γtl captures the tendency of points of type l to be
near points of type t. It bears mentioning that this model can be
extended to arbitrary numbers of marks (i.e., types of cells). For our
current application, we have focused on tumor-immune
interactions, but it would be trivial to extend the chosen model
to as multiple cell types as were available for a given data set.

2.3.3 Interpretation of parameters
As previously mentioned, γtl can be thought of as the degree to

which points of type l tend to be close to or far away from points of
type t. This allows us to distinguish between the mere relative
abundance of different types of points (which is captured by the
β1 and β2 parameters) and the actual spatial associations between the
different types of points. This distinction is important in situations
where there are substantial numbers of points of both types but no
positive spatial association (and possibly a negative one). For
examples, see Section 3.1 for results from the simulation study.
When t = 1 and l = 2, this association is interpreted conditionally
upon the locations of the type 1 points. Under the hierarchical
Strauss model, γ12 ∈ (−∞,∞), with γ12 ∈ (−∞, 0) implying negative
interaction, γ12 ∈ (0, ∞) implying positive interaction, and γ12 = 0
implying no interaction at all. As one might intuitively expect, larger
values of γ12 correspond to more positive interaction, and smaller
values correspond to a more negative interaction. Due to
mathematical constraints on the density, we must have
γ11, γ22 ∈ (−∞, 0]. This constrains interaction between points of
the same type to be modeled as negative or null, i.e., as in panels
1 and 2 of Figure 2. Since this constraint is unlikely to be satisfied in
the context of a tumor biopsy, we set γ11 = γ22 = 0, in effect assuming
no interaction between cells of the same type. Based on prior
biological knowledge, we set R12 = 30 microns. The need to
select values of R11 and R22 is obviated by setting γ11 = γ22 = 0.

2.4 Model fitting

Except in the trivial case where γ12 = 0, the normalizing constant
of this distribution is computationally intractable. This motivates the
usage of a pseudolikelihood formulation as outlined by Baddeley and
Turner, 2000. For the density f(·) of the simplified hierarchical
Strauss Model outlined in (1), define the conditional intensity
function at a point u given θ = {β1, β2, γ12} and points x
observed in window A by

λ u|θ, x( ) �
f x ∪ u{ }( )

f x( ) u ∉ x

f x( )
f x − u{ }( ) u ∈ x

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2)

Given this, the pseudolikelihood is defined as follows,

PL θ|x( ) � ∏
xi∈x

λ xi|θ, x( )exp −∫
A
λ u|θ, x( )du( ) (3)

In essence, this provides a computationally tractable alternative
to the likelihood function that can be used in inference. Specifically,
the integral in the pseudolikelihood function can be easily

approximated by summing over a weighted quadrature on A, as
described in Baddeley and Turner, 2000. See Supplementary
Equation S1 for additional details.

Using this approximation of the pseudolikelihood function in
place of the more standard likelihood function, Bayesian analysis
can proceed in the style of King et al., 2012 by simply assigning
priors to the parameters of interest and using techniques to sample
from non-closed form posterior likelihoods. We assigned non-
informative normal priors with mean 0 and variance 106 to γ12,
β1, and β2. In all analysis presented below the quadrature and
weights used to estimate the integral in the pseudolikelihood
function was generated by the spatstat package (Baddeley and
Turner, 2005). Samples from the posterior were taken using
JAGS via the R2jags package (Yu-Sung et al., 2015); see
Supplementary Algorithm S1 for details.

2.5 Cell type interaction probability

2.5.1 Motivation
For ease of exposition, we suppress the subscript in γ12 parameter,

and refer to it as γ• in the following sections. γ•, β1, and β2 allow us to
distinguish between the tendency of cells of different types to be spatially
near one another (captured by γ•) and the relative abundance of the
cells of each type (captured by β1 and β2), as well as the uncertainty
around these various tendencies. However, this does not capture the
difference between the observed spatial association and what one would
expect to observe by chance given a particular configuration of tumor
cells. Even if the locations of the immune cells are completely random
and unrelated to those of the tumor cells, there is still a possibility of a
configuration that may indicate positive interaction when considered in
isolation. In order to properly account for this, the observed distribution
of γ• must be compared to a counterfactual distribution that captures
the tendency when there is no interaction. This motivated the
development of Cell Type Interaction Probability (CTIP).

2.5.2 Definition
Let π(γ): = f(γ•|x1, x2) be the posterior distribution of γ• conditional

upon the observed tumor cells and immune cells, and π0(γ): �
f(γ0|x1, ~x2) be the posterior distribution of the interaction
parameter conditional upon the observed locations of the tumor
cells and ~x2, a set of points distributed as a Poisson Process.
Further, assume independence between the true distribution and the
null distribution. Then we define the CTIP (denoted by r) as:

r � ∫∫ I γ> γ0( )π γ( )π0 γ0( )dγdγ0, (4)

where I(·) denotes the indicator function, and both π(γ) and π0(γ0) are as
defined above. By construction, the observed parameter is independent
from the null parameter, since immune cells drawn from a Poisson
process should not yield any information about immune cells realized
under either positive or negative interaction. More concretely, by the
definitional independence of ~x2 from x2, it follows trivially that
f(γ•, γ0 | x1, ~x2, x2) � f(γ• | x1, x2)f(γ0 | x1, ~x2). This construction
means that CTIP is the expectation of an indicator function, and thus can
be interpreted as a probability. Specifically, it represents the probability
that the observed value of γ• is larger thanwhat wewould observe if there
was truly no underlying interaction.
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2.5.3 Sampling from the empirical null distribution
The problem of estimating CTIP hinges on being able to sample

from the distribution of γ0, since estimation of the posterior can
proceed as described in Section 2.3. In order to estimate the null
distribution of γ0 conditional upon the location of the observed
tumor cells, we used simulation to construct an empirical null
distribution. Recall that when there is no interaction, by
definition γ = 0. This means that the hierarchical Strauss given
in Eq. 1 reduces to two independent Poisson processes with
intensities β1 and β2, which are trivial to simulate.

Given this, the estimation of the null distribution for a given tile
proceeded as follows. First, the first order intensity of the immune
cells was estimated using the standard estimator, β̂2 � log( Iik

Aik
)where

Iik is the number of immune cells observed in tile k of biopsy i and
Aik is the area in square microns of the tile. Second, S simulations of
immune cells were generated from a poisson process with intensity
β̂2, S being selected a priori. Third and finally, each simulated set of
immune cells was superimposed over the actual observed tumor
cells, and samples were drawn from the resulting posterior
distribution. These samples, combined across simulations 1, . . ., S
approximate π0(γ) as previously defined.

2.5.4 Computation of CTIP
Having established the ability to sample from the posterior

distribution as well as the null distribution for γ, estimation of
CTIP can be done via stochastic integration. Note that Eq. 4 is
equivalent to Eγ,γ0[I(γ> γ0)]. Thus, given P posterior samples γ1,
. . ., γP from the posterior π and γ01, . . ., γ0P from the empirical null
π0, (5) can be estimated by

r̂ � 1
P
∑P
j�1

I γj > γ0j( ) (5)

2.5.5 Interpretation
By definition, r ∈ [0, 1]. As previouslymentioned, r can be construed

as the expected value of an indicator random variable with respect to the
joint distribution of π(γ) and π0(γ0). This naturally yields an
interpretation of r as a probability. Specifically, it can be thought of
as measuring the posterior probability that the observed value of γ• is
larger than the value that would be observed given the observed tumor
cells and immune cell intensity if there were no underlying interaction.

2.5.6 Model outputs and summaries
Because models can be fit for each sub-region Tij of biopsy Bi,

CTIP can also be computed for each tile. The result for each biopsy is a
collection of tile specific estimations of CTIP for each biopsy,
{r̂i1, . . . , r̂iNi} for i = 1, . . ., N. These estimates are then summarized
at the biopsy level into a singular value that quantifies the overall level of
infiltration in the biopsy, which can be used in downstream analyses to
investigate the association between biopsy level of tumor-immune
interaction and other patient features of interest-see Section 3.2 for
results. We chose to use the mean value, since even under the
assumption of spatial association between tiles the result is an
unbiased estimate of the biopsy level mean. Because the values
themselves encode the local spatial association for each tile, the result
is an appropriate proxy for the amount of interaction between tumor
cells and immune cells at the biopsy level. We further logit-transformed

the tile level CTIP values prior to computing the biopsy level mean in
order to make the resulting distribution across biopsies closer to a
Gaussian distribution. See Algorithm 1 for the full SPARTIN method.

Input: N biopsies

for biopsy i = 1, . . ., N do

Intensity threshold biopsy i

Partition intensity thresholded biopsy i into Ni tiles

for tile j = 1, . . ., Ni do

Estimate CTIP r̂ij for tile j

end for

Compute m̂i � mean(logit(r̂i1), . . . ,logit(r̂iNi))
end for

return m̂1, . . . , m̂N for usage in downstream analysis

Algorithm 1. SPARTIN algorithm.

3 Results

3.1 Simulations

3.1.1 Simulation overview
To compare our model’s detection of spatial association between

different cell types, we conducted simulation studies in which we
tested the ability of SPARTIN to accurately identify positive
interaction across a range of different simulated cell compositions
and degrees of spatial association. For each of four sets of
simulations, the number of simulated tumor cells and immune
cells were set a priori at Ts and Ls. These levels across the four
simulations were, respectively, 20 and 50, 50 and 20, 50 and 50, and
100 and 100. Further, interaction was controlled by a parameter ϕ ∈
[−1, 1], with −1 indicating the most negative possible interaction
using our simulation method and 1 indicating the most positive
possible interaction using our simulation method. For each of the
four settings, 50 data sets were simulated for
ϕ = ±1, ±0.8, ±0.6, ±0.4, ±0.2, and 100 were simulated for ϕ = 0.
Because the goal was classification as either positive interaction or
non-positive (i.e., null or negative) interaction, we used AUC as our
summary metric. This is a natural choice, since CTIP is interpreted
as the posterior probability of positive interaction. As a benchmark
for performance, we compared CTIP to the G-cross function, a
commonly used non-parametric statistical method for assessing the
spatial relationship between different types of points in marked
point processes (Van Lieshout and Baddeley, 1999).

3.1.2 Simulations of negative interaction
For a given combination of Ts and Ls, the simulations of positive

interaction and simulations of negative interaction proceeded
differently. For the simulations of negative interaction (ϕ ∈ [−1,
0]), Ts tumor cells and Ls immune cells were simulated as
independent poisson processes in regions of the window that
overlapped to varying degrees. The overlap was controlled by ϕ,
such that the processes overlapped on (100 · (1 + ϕ))% of the window
in which the simulation occurred. Note that when ϕ = −1 there was
no overlap, and when ϕ = 0 there was complete overlap and the
simulation reduced to generating two independent Poisson
Processes within the same window.
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3.1.3 Simulations of positive interaction
For the simulations of positive interaction (ϕ ∈ (0, 1]), Ts tumor

cells were simulated under a Poisson process. After their locations
were determined, Ls immune cells were simulated. For each immune
cell li, a Bernoulli random variable Ci~Bern(ϕ) was drawn. If Ci = 1, li
was simulated within 30 microns of a randomly selected tumor cell.
Otherwise, liwas simulated from a Poisson process. Thus, the level of
interaction was again controlled by ϕ, with ϕ = 0 again
corresponding to two independent Poisson Processes and ϕ = 1
corresponding to a situation in which all immune cells are within
30 microns of at least one tumor cell.

3.1.4 Simulation assessment
Because CTIP is most naturally interpreted as a probability, in

order to classify a given collection of points as indicating positive or
negative interaction in practice a cutoff value must be chosen above
which CTIP is considered to indicate positive interaction and below
which it is not. This leads to a natural tradeoff: if the cutoff is too low,
then many cases where there is no positive interaction will be
incorrectly classified as having positive interaction. If the cutoff is
too high, the opposite will occur. This tradeoff can be visualized
across different thresholds using a receiver operating characteristic
(ROC) curve, which can in turn be summarized by the area under

the curve (AUC). AUC ranges between 0.5 and 1, with 0.5 indicating
total inability to correctly discriminate between different outcomes
and 1 indicating perfect ability to discriminate. AUC is therefore a
natural choice for a metric to assess the ability of CTIP to distinguish
between positive and non-positive interaction between cells of
different types.

As a benchmark for performance, we examined the performance
of the G-cross function in discriminating positive interaction from
non-positive interaction. The G-cross function is a non-parametric
estimate of the cumulative distribution functions of minimum
distances from cells of one type to those of another. In this
application, the G-cross function evaluated at a specific distance
yields a non-parametric estimate of the probability that a tumor cell
will have at least one immune cell within that distance. We chose to
evaluate the G-cross function at a distance of 30 microns in order to
be consistent with the modeling of CTIP.

3.1.5 Results
For examples of simulated data as well as visualizations of

results for CTIP, see Figure 3. Across the different simulation
settings, accurate classification was achieved using CTIP. The top
panels depict a sample of simulations across a range of
interaction values, from ϕ = −1 to ϕ = 1. The bottom left

FIGURE 3
Simulated examples and results. Top row: examples of simulations of positive and negative interaction for different values of ϕ, all from simulation
setting 1. Bottom left: box plots of CTIP across all simulated compositions for different values of ϕ on logit scale. Bottom right: ROC curves and associated
AUC for classification (positive interaction vs. non-positive interaction) for different simulation settings and the two methods investigated (CTIP and
G-cross).
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panel shows the distribution of the estimated CTIP values for
each set of simulations across each of the four sets of simulations
and the values of ϕ, plotted on the logit scale. The bottom right
panel shows the AUC for each of the four simulation settings
across all values of ϕ. The results of these simulations
demonstrate that CTIP reliably distinguishes between a broad
ranges of interaction levels, across a similarly broad range of
relative abundances in cell types. The lowest overall AUC (0.85)
was achieved in simulation 3, while the highest was achieved in
simulation 1 (0.96). For the G-cross function, the highest overall
AUC was achieved in simulation 2 (0.8), while the lowest was
achieved in simulation 1 (0.73)—see Supplementary Figure S4 in
the supplementary materials for more detailed results for the
G-cross function, and Supplementary Section S5 for additional
simulation results examining the relative performance when
model assumptions are violated.

3.2 Application

We applied the SPARTIN pipeline to a data set consisting of
335 high definition images of SKin Cutaneous Melanoma
(SKCM) biopsies stained using hematoxylin and eosin,
obtained from The Cancer Genome Atlas (TCGA) Genomic
Data Commons Data Portal. SKCM is an appealing target for
the investigation of immune cell infiltration for several reasons.
SKCM has been shown to be particularly responsive to
immunotherapy in some cases (Achkar and Tarhini, 2017;
Franklin et al., 2017). It is possible that the ability to quantify
immune infiltration at a large scale may allow for more detailed
investigation into the scenarios in which this treatment may be
most effectively deployed. It is also well established that SKCM
has an unusually high mutational load amongst the various
cancer types (Berger et al., 2012). The ability to quantify
spatial infiltration patterns may allow for further downstream
investigations into not only genomic associations of this
occurrence but associations with other phenotypic and clinical
outcomes as well.

3.2.1 Cell classification model
3.2.1.1 Whole-slide image (WSI) retrieval and obtaining
training labels

WSI from 20 different patients were used as our primary
training and testing data. The images were imported from The
Cancer Genome Atlas (TCGA) Genomic Data Commons Data
Portal, which is a repository of validated datasets from various
National Cancer Institute Programs: https://www.cancer.gov/
tcga. Also known as the gigapixel pathology image, one image
slide contained two tissue smears stained with hematoxylin and
eosin, imported in a vendor specific format. The imported image
for classification is scanned at the “high”magnification level in a
microscope of ×40. The pixel size for images was approximately
0.25 microns per pixel. Manual marking of a minimum of ten
samples from each of the classes, i.e., Tumors, Immune,
Macrophage, and other cell was performed by a pathologist
on all slides. Care was taken to ensure that the samples were as
diverse as possible, to account for all possible morphologies of
the same cell type across all cases. In total, 1,250 annotations

were made in all the images, with each annotated cell labelled by
a pathologist. The reasons for the comparatively smaller
labelled dataset available lie in the large size of the slide, and
pathologist availability; the large size makes parsing through
difficult and explains the diversity of labelled structures in each
image.

3.2.1.2 Whole-slide image (WSI) nucleus segmentation
Before nuclear segmentation and extraction can be performed

on the WSIs, certain pre-processing steps are carried out to ensure
staining uniformity across images. A representative and
generalizable stain vector estimation for each of the stains being
used in the image is estimated, to normalize the staining intensities
across all the images. In our application, vectors from hematoxylin,
eosin and residual stains were estimated from a standard image,
selected by the clinician. These vectors are then applied across all
images to keep the stain detection parameters uniform across the
dataset (Bankhead et al., 2018).

Due to the variations in staining procedures across the dataset, it
is difficult to accurately isolate whole cells on the slide, as the
cytoplasmic boundaries are not well-defined due to lack of
membrane staining. As heterogeneity in nuclear morphology has
been shown to be a good discriminator, only the nucleus is
segmented out of each cell in every image for classification
purposes, using Qupath (Yuan et al., 2012). Watershed
segmentation is used to obtain separated and contoured nuclei
from the hematoxylin color channel of the whole slide image, in
a patch-based manner (Bankhead et al., 2018). The separate
hematoxylin channel is obtained by performing color
deconvolution to separate out the stains used in the slide
(Ruifrok and Johnston, 2001). It was observed that an average of
200,000 cells were segmented out per image, and morphological and
intensity features such as spatial location, eccentricity, circularity,
and stain intensities were computed. All pertinent image analysis
and nuclear segmentation was performed using Qupath, an open-
sourced software platform that can be used for a range of
pathological image analysis applications (Bankhead et al., 2017).

A Random Forest model is a type of ensemble learning method,
where the weak predictive power of multiple decision trees is
aggregated to produce an accurate result (Breiman, 2001). Our
four-class classifier model was developed with the pathologist
labelled dataset of 1,250 morphologically diverse cells, each
belonging to Tumor, Immune, Macrophage, or other cells
(including cell types such as stromal cells). 5-fold cross-validation
was used to assess model accuracy and the receiver operator
characteristic curve AUC for each class, with proportional
representation of all 4 classes ensured. After adjusting for
multiple parameters, including the number of decision trees, the
accuracy was obtained in the range of 87%–91%.

This step allowed for a preparation of a dataset for each cell
with its spatial location using global coordinates and class of the
cell, which is then used for further downstream analysis. The
training, testing, and classification of cells from the WSIs was
performed on MATLAB version 2017A. For visualizations of
distributions of cell counts across biopsies, see Supplementary
Figures S1–S3. For this analysis, only data for tumor cells and
immune cells were kept to quantify the immune cell infiltration
using SPARTIN.
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3.2.2 SPARTIN analyses of SKCM
While we are broadly grouping immune cells together for the

purposes of this analysis, it is important to note that within the
microevironment of melanoma there is a great deal of heterogeneity
in the types of immune cells present. Tumor Infiltrating
Lymphocytes (TILs) receive a disproportionate amount of
attention in cancer literature due to the well-established
prognostic value of the presence. However, in the context of
melanoma this focus can obscure the tremendous amount of
variability in the types of immune cells present in the
microenvironment. Even referring to TILs as a monolith
obfuscates the different cell types captured under this umbrella,
many of which serve different purposes (Mukherji, 2013; Weiss,
2016; Antohe et al., 2019). The richness of the immunological aspect
of the melanoma microenvironment makes it a logical target of
analysis via the SPARTIN pipeline.

3.2.2.1 CTIP quantification
In order to compute CTIP, models were fit in using the

methods described in Section 2. The same settings were used for
all biopsies across the pipeline. Each biopsy was partitioned
such that the resulting tiles would have approximately 75 tumor
cells per tile, with the minimum possible tumor cells per tile
being 50 and the maximum being 100. For an analysis of the
sensitivity to the biopsy level estimation of CTIP to the number
of tumor cells per tile as well as the clustering algorithm used,
see Supplementary Section S6. The CTIP quantifications are
shown in Figure 4 Panel A wherein we have highlighted three

biopsy images (top row). In the middle row, the color of each tile
indicates the value of CTIP estimated for that tile. More varied
colors across a given biopsy are indicative of more spatial
variation in CTIP, and thus infiltration. CTIP was
summarized at the biopsy level by taking the empirical mean
across all tiles for a given biopsy, which are plotted in the
bottom row. As can be seen, the range of CTIP was
0.26–0.99 with a median CTIP value of 0.69 and an
interquartile range of 0.19. This points to the fact that SKCM
has high level of immune cell infiltration and these results are
consistent with the conventional wisdom that melanoma is a
generally more immunogenic cancer relative to other variants
(Mukherji, 2013; Fu et al., 2019).

3.2.3 Genomic associations
We conducted a focused analysis on CTIP and genes that are

associated with immune activity. Bhattacharya et al., 2018 have
collected and classified a list of 1,793 unique genes associated with
various aspects of human immune activity. Notably, this includes
genes related to processes that involve or are directly related to
immune cells of interest including CD8+ T-cells, Natural Killer cells,
and B cells. Of these, gene expression data was available for 1,305 genes
across 330 patients. We assessed the univariate association between
biopsy level mean logit-CTIP and these genes using Spearman
correlation. The advantage of Spearman correlation as opposed to the
more standard Pearson correlation is that the former does not assume a
linear relationship between the underlying variables of interest. Such
assumptions can be problematic, particularly when there is no strong

FIGURE 4
Visualization of selected biopsies, and distribution of CTIP across all biopsies analyzed. Selected examples of actual biopsies, both raw spatial data
and with tessellations and CTIP by tile. The leftmost biopsy pictured has among the lowest mean estimated CTIP in the sample (0.4), while the rightmost
has among the highest (0.94). Themiddle biopsy has averagemean CTIP (0.7), but also exhibits more spatial variation than the left or right biopsy. Bottom:
distribution of mean CTIP by biopsy for all biopsies investigated. This illustrates the between-biopsy variation in overall levels of infiltration.
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reason a priori to believe the relationship between the two variables is of a
particular form. However, like Pearson correlation Spearman correlation
is defined to lie in [−1, 1], with each extreme indicating the same
directionality and strength of association as Pearson Correlation. After
applying a Bonferroni correction, we found that 28 genes were
significantly associated with CTIP. See Figure 5 for a volcano plot of
results; for the complete list of genes, see Table 1. Most notably, mean
logit-CTIP was most significantly negatively associated with CD244, a
gene associated with increased cytotoxicity in natural killer cells (Agresta
et al., 2018). In addition, mean logit-CTIP was significantly negatively
associated with expression of Cathepsin S, a gene associated with
immunosuppression in the tumor microenvironment, and C-C motif
chemokine receptor 8 (CCR8), a gene related to immunosuppressive T
regulatory cells (Fuchs et al., 2020; Weaver et al., 2022).

We also investigated the association between CTIP values and
tumor deconvolution data in order to assess the association between
the presence of specific immune cell types and overall tumor-
immune interaction. Because the specific immune cell types were
not ascertained in the data collection, deconvolution algorithms can
offer an estimation of the relative prevalence of different types of
immune cells. We obtained data from the Tumor Immune
Estimation Resource 2.0 (TIMER 2.0): http://timer.cistrome.org/.
Using data from TIMER2.0, we examined the association between
the prevalence of different types of immune cells including CD8+

T cells, Natural Killer cells, and B cells with biopsy level mean logit-
CTIP. Among the available options from TIMER 2.0, we decided to
use the MCP-counter algorithm (Becht et al., 2016) based on the
analysis of Sturm et al., 2019, since it was judged to be most effective
in detecting the presence and prevalence of the most relevant types
of immune cells. We investigated the association of the score of each

type of immune cell estimated by MCP-counter with biopsy level
mean logit-CTIP using Spearman correlation (as done previously for
gene expression). Significance was assessed using the standard test of
statistical significance of Spearman correlation.

After applying a Bonferroni correction (α = 0.05), we found
that six different immune cell scores as computed by MCP-
counter were significantly negatively associated with biopsy
level mean logit-CTIP: CD8+ T cells, B cells, Monocytes,
Macrophages, Myeloid Dendritic Cells, and Natural Killer
cells. No cell types were significantly positively associated
with biopsy level mean logit-CTIP after the Bonferroni
correction, though the magnitude of the positive association
with Cancer Associated Fibroblasts (CAFs) is notable, and while
not statistically significant still highly consistent with a truly
positive underlying association between biopsy level CTIP and
prevalence of CAFs. See Figure 6 and Table 2 for full details on
specific cell type score associations. CD8+ T cells, B cells, and
Natural Killer cells are generally associated with better
prognosis in SKCM. This would imply, perhaps somewhat
counterintuitively, that higher mean logit-CTIP would be
expected to be associated with poorer survival, and lower
levels of pathology assessment of lymphocyte infiltration.
However, this is precisely what we observed, as discussed in
next Section.

3.2.4 Association with phenotypic and clinical
outcomes
3.2.4.1 Transcriptomic classes and pathology asessments

Akbani et al. (2015) also identified three transcriptomic classes
by applying consensus hierarchical clustering techniques to gene

FIGURE 5
Volcano Plot of Spearman correlations between CTIP and gene expression values. Negative log10 p-values plotted against Spearman Correlation for
ImmPort genes. Colors indicate ImmPort Gene List, which are the collections provided by ImmPort to organize genes into groups of similar function; Red
line indicates Bonferroni correction-see Table 1 for full list of significant genes.
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expression data from 1,500 genes: the “immune” subclass, the
“keratin” subclass, and the “MITF-low” subclass. Most notably
for our current application, the immune subclass was
characterized by overexpression of genes associated with T cells,
B cells, and Natural Killer cells. Of the patients classified using these
methods, 235 were present in our data set. Of these 235, 114 (49%)
were in the immune subclass, 78 (33%) were in the keratin subclass,
and 43 (18%) were in the MITF-low subclass. Figure 7 demonstrates
a clear visual difference between the immune subclass and both the
MITF-low and keratin subclasses. In order to determine if these
apparent differences were statistically significant, we analyzed the
differences in average logit-CTIP between each pair of classes using a
standard two-sided t-test, and found that the mean logit-CTIP in the
immune class was significantly lower than either the keratin or the
MITF-low subclass (p < 10–5 and p = 0.011, respectively). We found
no significant difference between the mean logit-CTIP in the MITF-

low subclass and the keratin subclass (p = 0.21). This is highly
consistent with the results of the deconvolution analysis, which
suggest that the degree of abundance of such cells are inversely
associated with mean logit-CTIP.

In addition to classifying the biopsies into transcriptomic
subclasses, Akbani et al., 2015 had pathologists assess biopsies
for lymphocyte infiltration. Biopsies were scored from 0 to 3 on
lymphocyte distribution, with 0 indicating no lymphocytes
present in the tissue and 3 indicating that lymphocytes were
present in over 50% of the tissue. They were also scored from
0 to 3 on lymphocyte density, with 0 indicating an absence of
lymphocytes and 3 indicating a “severe” presence. These
measures were added to create a Lymphocyte Score, a
measure that ranged from 0 to 6 meant to summarize the
general presence and degree of lymphocyte infiltration in
that biopsy. Of the 235 patients in our sample that were

TABLE 1 Full ImmPort Analysis Results. ImmPort Genes significantly associated with average logit biopsy level CTIP after Bonferroni correction, alpha = 0.05.

Gene Group Spearman Correlation p-value

CD244 Natural Killer Cell −0.29 ≪ 0.0001

CTSS Antimicrobials −0.29 ≪ 0.0001

CCR8 Cytokine Receptors −0.27 ≪ 0.0001

CD3G TCR Signaling Pathway −0.26 ≪ 0.0001

PTPRC TCR Signaling Pathway −0.26 ≪ 0.0001

TLR8 Antimicrobials −0.26 ≪ 0.0001

ITK TCR Signaling Pathway −0.26 ≪ 0.0001

TLR3 Antimicrobials −0.25 ≪ 0.0001

STAT1 Antimicrobials −0.25 ≪ 0.0001

TNFRSF9 TNF Family Members Receptors −0.25 ≪ 0.0001

EREG Cytokines 0.24 ≪ 0.0001

LCK TCR Signaling Pathway −0.24 < 0.0001

PIK3CG TCR Signaling Pathway −0.24 < 0.0001

ERAP1 Antigen Processing and Presentation −0.24 < 0.0001

TNFSF14 TNF Family Members −0.23 < 0.0001

IL6R Interleukins Receptors −0.23 < 0.0001

CIITA Antigen Processing and Presentation −0.23 < 0.0001

ICOS TCR Signaling Pathway −0.23 < 0.0001

DES Antimicrobials 0.23 < 0.0001

APLN Cytokines 0.23 < 0.0001

IFIH1 Antimicrobials −0.23 < 0.0001

RFX5 Antigen Processing and Presentation −0.23 < 0.0001

LYZ Antimicrobials −0.23 < 0.0001

CXCR6 Cytokine Receptors −0.23 < 0.0001

CRABP1 Antimicrobials 0.23 < 0.0001

CYBB Antimicrobials −0.23 < 0.0001
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assessed by the pathologists, 29% had a score of zero, 23% had a
score of two, 10% had a score of three, 13% had a score of four,
15% had a score of five, and 9% had a score of six. Note that by
definition of the component scores, a score of one is not
possible. We performed a linear regression of Lymphocyte
Score on mean biopsy level logit-CTIP, treating Lymphocyte
Score as continuous. We found that a one unit increase in mean
biopsy level logit-CTIP was highly significantly associated with
a 0.45 unit decrease in mean Lymphocyte Score (p ≪ 0.0001).
This result is also consistent with both previous results, and
provide further evidence for the apparent negative association
between mean logit-CTIP and the presence of specific immune
cell types generally associated with positive prognosis.

3.2.4.2 Survival analysis
In order to assess association between logit-CTIP and overall

survival, we fit a Cox Proportional Hazards model using clinical data
as well as CTIP values. Clinical patient data were retrieved from the
TCGA website and matched to biopsy images via TCGA identifier.
In addition to adjusting for mean logit-CTIP, we adjusted for cancer
stage, age in years, and sex. Age in years was standardized by
subtracting the mean value and dividing by the standard deviation.

Using this model, we found that after adjusting for other factors
an increase in normalized logit-CTIP was significantly associated
with increased hazard of death (p = 0.02). See Figure 7 for hazard
ratio estimates and associated confidence intervals. In addition to
this, we found that normalized age was significantly positively
associated with an increased hazard of death (p < 0.05), as was
having stage 3 disease (relative to stage 1, p < 0.05). Having stage
4 disease was positively associated with increased hazard of death,
though not significantly. This is most likely due to the lack of
patients with stage 4 disease in the data set.

In order to assess the performance of CTIP relative to a more
traditionalmeasure of spatial association the samemodel was fitted with
average logit-CTIP exchanged for the average value of the estimated
G-cross function (discussed previously in Section 3.1) as well as the
Mark Connection Function (MCON). The Mark Connection Function
is another natural point of comparison because it is a measure that is
commonly used to investigate spatial associations between points with
discrete marks, it is constrained to lie in [0,1] like CTIP, and it has been
used elsewhere as a comparison point for similar survival modeling
using spatial information (Li et al., 2019b). To produce a single value,
the MCON function was evaluated at r = 30, which is the same as the
radius of interaction used in our computation of CTIP as well as the
G-cross function. Both G-cross and MCON values were logit-
transformed. Because the values remained skewed even after logit-
transform, they were subsequently centered and scaled by subtracting
their respective mean and dividing by their respective standard

FIGURE 6
Volcano plot of association with deconvolution data. Negative log-10 p-values plotted against Spearman Correlation between CTIP and cell type
prevalance scores estimated by MCP. Red line indicates Bonferroni correction, alpha = 0.05.

TABLE 2 Associations with cell prevalence. Cell type associated with average
logit biopsy level CTIP. p-values are presented uncorrected; see Figure 6.

Cell Type Spearman Correlation p-Value

T cell −0.13 0.014

T cell CD8+ −0.23 < 0.0001

cytotoxicity score −0.13 0.015

NK cell −0.17 0.0025

B cell −0.21 < 0.0001

Monocyte −0.19 0.0004

Macrophage/Monocyte −0.19 0.0004

Myeloid dendritic cell −0.18 0.0012

Neutrophil 0.02 0.75

Endothelial cell 0.06 0.26

Cancer associated fibroblast 0.14 0.0094
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deviation.While increased normalized logit-MCONwas also associated
with an increased hazard of death, the association was not significant
(p = 0.057). The G-cross function was associated with a decreased
hazard of death, though the association was also not significant (p =
0.32). Figure 7 summarizes the results across all three models.

This result, along with the other results presented in this paper,
provide evidence of an immune phenotype in SKCM that corresponds
to poor prognosis from a number of different perspectives.With respect
to overall survival, we have demonstrated that adjusting for other
relevant clinical factors, an increase in CTIP is associated with an
increased hazard of death. For gene expression data, average CTIP is
associated with decreased expression of genes related to immune cells
that are generally associated with good overall prognosis. And finally,
we found that average CTIP is significantly lower in biopsies that have
been classified as immune enriched through gene expression clustering,
as well as biopsies that have been assessed by pathologists to have higher
densities and spatial distributions of tumor infiltrating lymphocytes.
These results fundamentally support the notion that CTIP is capturing
an anti-immunogenic phenotype that is associated with poor prognosis,
possibly due to an overall negative association with the presence of
immune cells that are associated with improved prognosis such as CD8+

T Cells and Natural Killer cells.

4 Discussion

The SPARTIN method provides a general framework for applying
traditional spatial statistical techniques to whole biopsy imaging data.
More specifically, it provides a modular algorithmic mechanism for
partitioning the biopsies into more readily analyzable sub-regions that
can be assessed for local spatial patterns using marked point process
models. We have demonstrated the utility of such a method using a
novel characterization of spatial cellular interaction, CTIP, that allows
rigorous quantification of uncertainty and is highly intepretable. We

demonstrate through simulation that CTIP can reliably distinguish
between different patterns of spatial interaction across a range of
different dependencies. We also demonstrate the utility of SPARTIN
through a comprehensive analyses of an SKCM dataset, wherein we
quantify and evaluate the spatial extent of tumor-immune infiltration
and its association with genomic, phenotypic and clinical outcomes.
These results are particularly suggestive in the context of SKCM.
Melanoma has a uniquely rich literature regarding the potential
applications of immunotherapy. While there are many factors that
have contributed to this, not the least of which is the relative accessibility
of skin cancers compared to other types of cancer, the net result is a far
more mature understanding of immunotherapy in the context of
melanoma than other types of cancer (Oble et al., 2009; Nguyen
et al., 2010; Pitcovski et al., 2017). Thus, possible implications of the
spatial immune organization in melanoma for immunotherapy may be
more readily interpreted within the context of Melanoma than other
cancer types, particularly as the ability to distinguish between different
types of immune cells improves.

The SPARTIN pipeline represents a valuable contribution in and of
itself to digital pathology through its ability to model and quantify
immune infiltration across entire biopsies in a way that captures
meaningful variation along with uncertainty quantifications across
patients. However, it also creates numerous opportunities for future
work in this area. As algorithms for cell-level image classification
improve, the opportunities for more and more detailed quantitative
analysis of histopathological imaging data will become both more
numerous and more fruitful. Specifically, as the ability to reliably
distinguish between different types of immune cells will allow for
more granular investigations into the prognoses associated with
interaction between immune cells of different kinds and the tumor.
Moreover, as spatial biology techniques (e.g., spatial multiplex imaging
and spatial transcriptomics) evolve and data becomes abundant, so too
will opportunities for synthesizing data on the relative spatial locations
of different cell types along with cell or spot specific gene/protein

FIGURE 7
Average CTIP by transcriptomic subclass and overall survival hazard ratios. (A) Average logit-CTIP by transcriptomic class according to Akbani et al.
(2015). (B) Hazard ratios from Cox Proportional Hazards models. Points at 1 indicate reference category. Age was standardized by subtracting the mean
value and dividing by the standard deviation. Logit-CTIP was significantly associated with increased hazard of death (p = 0.019), while normalized logit-
MCON was non-significantly associated with an increased hazard of death (p = 0.057) and normalized logit-G-cross was non-significantly
associated with a decreased hazard of death (p = 0.32).
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expression data through rigorous, principled, and complex modeling. It
would be straightforward (particularly in a Bayesian framework) to
model a function of one or all of the parameters of interest as a linear
combination of the local genes/proteins that are known to be relevant to
immune response. Alternatively, future methods in this area could be
developed at the intersection of spatial data and high-dimensional omic
features.

The SPARTIN pipeline could also be generalized for further
investigation not directly related to assessing immune infiltration.
Partitioning each biopsy into non-overlapping sub-regions invites the
application of other tools from the spatial statistical catalogue to other
relevant spatial features of the tumor microenvironment. In fact,
SPARTIN can be utilized even when investigating features of the
tumor that are not spatial in nature. So long as a feature (such as
average tumor cell size) can be quantified at the cellular level and
summarized locally at the level of sub-regions, SPARTIN provides a
framework for mapping the variation of that feature across the entire
biopsy.

One limitation of this analysis is that immune cells weremodeled as
a single agglomerated class rather than as separate cell types belonging
to the same family. While our results paint a consistent picture from
several different angles, the exact mechanism of these various
associations could be further refined by utilizing a more precise
categorization of the various types of immune cells. It is worth
emphasizing, however, that nothing about the structure of our
pipeline depends on the presence of only one type of immune cell
in addition to the cancer cells. The SPARTIN method can be
generalized to multiple types cells through multicategory marked
point process models, though this would raise additional
computational and practical challenges. Another potential limitation
of our analysis that suggests an avenue for future methodological
development is the presence of repeated measurements within
biopsies. Note that the result of fitting models on the partitioned
tumor microenvironment is a set of repeated observations with
some underlying spatial covariance structure related to the spatial
relationships between the different subspaces. For now, we have
ignored this spatial covariance, and instead chosen to summarize the
variation at the biopsy level. While this does take into account local
spatial dependencies (i.e., within tiles), it is possible that incorporating
additional global spatial structure across the biopsy (i.e., between tiles)
could lead to additional gains in efficiency, and possibly insight into the
nature of the spatial variation in immune activation in the tumor
microenvironment. Thus, future work will likely include the
development of methods to efficiently analyze this complex
structured areal data. Finally, it should be noted that the hierarchical
Strauss model makes two important assumptions about the nature of
the data, those of stationarity and isotropy. This essentially amounts to
the assumption that on the level of the tiles for each biopsy onwhich the
models are fit, the point process would be unaffected by horizontal
translation (stationarity) or rotation (isotropy). Because tumor biopsies
do not have a natural orientation in R2, it is plausible to assume
isotropy. Stationarity is somewhat more challenging to justify a priori.
However, because the model fitting takes place on relatively small sub-
sections of the biopsy, i.e., the “tile” specific level, it is quite plausible that
this assumption is at least locally satisfied well enough. Since each tile is
modeled using separate spatial parameters, this accounts for non-
stationarity at a biopsy level and the ultimate measure of interest,
CTIP, still yields a reliable estimate of the degree of interaction between

cell types. Still, future work could involve employing methods that relax
or eliminate these assumptions during the modeling of interaction.

Software is available at https://github.com/bayesrx/SPARTIN.
The website for the project, which features an application that can be
used as a visualization companion to the software can be found at
https://nateosher.github.io/SPARTIN. Using the SPARTIN R
package, data can be exported and visualized on the web
application in order for users to interactively navigate the
patterns of interaction at both the biopsy and individual tile level.
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