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Understanding the genetic structure of the target population is critically important
to develop an efficient genomic selection program in domestic animals. In this
study, 2,973 Americanmink of six color types from two farms (Canadian Centre for
Fur Animal Research (CCFAR), Truro, NS and Millbank Fur Farm (MFF), Rockwood,
ON) were genotyped with the Affymetrix Mink 70K panel to compute their linkage
disequilibrium (LD) patterns, effective population size (Ne), genetic diversity,
genetic distances, and population differentiation and structure. The LD pattern
represented by average r2, decreased to <0.2 when the inter-marker interval
reached larger than 350 kb and 650 kb for CCFAR and MFF, respectively, and
suggested at least 7,700 and 4,200 single nucleotide polymorphisms (SNPs) be
used to obtain adequate accuracy for genomic selection programs in CCFAR and
MFF respectively. The Ne for five generations ago was estimated to be 76 and
91 respectively. Our results from genetic distance and diversity analyses showed
that American mink of the various color types had a close genetic relationship and
low genetic diversity, with most of the genetic variation occurring within rather
than between color types. Three ancestral genetic groups was considered the
most appropriate number to delineate the genetic structure of these populations.
Black (in both CCFAR and MFF) and pastel color types had their own ancestral
clusters, while demi, mahogany, and stardust color types were admixed with the
three ancestral genetic groups. This study provided essential information to utilize
the first medium-density SNP panel for American mink in their genomic studies.
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1 Introduction

American mink (Neogale vison) is a semiaquatic and carnivorous mammal that belongs
to the weasel (Mustelidae) family (García et al., 2010). It is native to North America but has
been farmed in many countries and used as one of the primary fur sources for fur industries
worldwide due to its high-quality fur and various colors (Anistoroaei et al., 2009; Tamlin
et al., 2009; Thirstrup et al., 2015; Zhang L. et al., 2021). With the COVID-19 (coronavirus
disease from 2019) pandemic and the market downturn, the mink industry faces serious
challenges. In Canada, from 2015 to 2020, the number of mink farms dropped from 213 to
63, decreasing mink production from three million to one million per year (Statistics
Canada, 2022). However, the mink industry appears to be on the upturn, as market demand
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and fur prices have increased, based on fur auction reports in recent
years (Oaten, 2021; sagafurs, 2022). With a smaller number of mink
farms, improving the efficiency (e.g., improved disease resilience,
feed efficiency, reproduction performance, and pelt quality) of mink
farms through advanced genomic selection programs could help to
meet the rising market demand and help mink farmers obtain more
economic benefits from the rising pelt prices. Genomic selection has
been applied in the main livestock species, such as dairy cattle
(Wiggans et al., 2017), swine (Miar et al., 2015; Knol et al., 2016), and
poultry (Wolc et al., 2016), to improve genetic merit, but this
breeding strategy has not been utilized in the mink industry to date.

To develop an efficient genomic selection program in domestic
animals, understanding the genetic structure of the target
population is essential (Groeneveld et al., 2010; Wellmann and
Bennewitz, 2019). American mink of different color types show
different performance for some traits. For example, it has been
known that light-colored mink are more susceptible to the Aleutian
mink disease virus than dark color types (Ellis, 1996). Meanwhile,
better reproductive performance was observed in brown color mink
compared with the other color types (Kidd et al., 2009). Thus,
investigating the genetic structure of American mink of various
color types could also help explain variation in performance for
traits of economic interest. The genetic structure of target
populations is usually revealed by exploring domestication
history, genetic diversity, genetic relationship, and genetic pattern
of the populations. Linkage disequilibrium (LD) and effective
population sizes (Ne) are two important parameters for revealing
genetic structure of target population. The LD is defined as the non-
random association of alleles at two or more loci (Slatkin, 2008).
Genetic drift, selection, epistatic combinations, population
structure, and admixture between distinct populations are all
potential causes leading to LD between unlinked markers (Pfaff
et al., 2001; Ardlie et al., 2002; Qanbari, 2020). The magnitude of LD
is used to determine the appropriate density of markers for genome-
wide mapping studies (Goddard and Hayes, 2009), and both
genomic selection and genome-wide association studies (GWAS)
depend on the presence of LD between markers and functional
variants (Bush and Moore, 2012; Hay and Rekaya, 2018). In the
meantime, the extent of LD between unlinked loci can be utilized to
estimate the recent and past Ne (Hill, 1981; Waples and Do, 2010).
The Ne is used to measure the rate of inbreeding and loss of genetic
diversity and quantify the extent of variability in a population and
the effectiveness of selection relative to drift (Charlesworth, 2009;
Ryman et al., 2019). Analysis of molecular variance (AMOVA) is
another popular method of detecting population differentiation
(Excoffier et al., 1992). The AMOVA can explain the genetic
variation patterns of studied populations by quantifying the
contribution of various population structure levels using marker
data from different genotypes (Fitzpatrick, 2009). In addition to
AMOVA, discriminant analysis of principal components (DAPC)
(Jombart et al., 2010) and ADMIXTURE (Alexander et al., 2009) are
also common analyses used to assess the genetic structure of a
population using molecular marker information. In brief, DAPC is a
multivariate method that can identify and describe clusters of
individuals which are genetically related (Jombart et al., 2010;
Deperi et al., 2018; Thia, 2022), and ADMIXTURE can infer the
number of ancestral populations that generated the current
population and the proportions of individual genomes derived

from each ancestral population (Alexander et al., 2009; Alexander
and Lange, 2011; Liu et al., 2020).

The genetic structures of farm and feral American mink were
previously studied using information from different molecular
markers, including microsatellite, mitochondrial DNA, and single
nucleotide polymorphism (SNP) markers. Microsatellite loci were
used to investigate the genetic structures of wild-caught American
mink in Japan (Yukari et al., 2010), Sweden (Zalewski et al., 2016),
and Spain (Lecis et al., 2008). The information from mitochondrial
DNA and 11 microsatellite loci were applied to understand the
genetic structure of introduced American mink in southern Chile
(Mora et al., 2018). Genotypes obtained from 194 SNPs, generated
from the restriction-site associated DNA sequencing method, were
used to investigate the population genetic structure of farm and feral
American mink in Poland and Denmark (Thirstrup et al., 2015).
Data containing 13,321 SNPs, which were detected using the
genotyping-by-sequencing (GBS) approach on 46 scaffolds from
285 black American mink, were used to investigate LD and Ne of
black American mink in Canada (Karimi et al., 2020). Moreover,
100,000 SNPs, which were randomly selected through whole
genome sequencing (WGS) across 51 scaffolds from 100 farm
mink, were used to investigate the genetic structure of American
mink in Canada (Karimi et al., 2021). However, there is no study
investigating the genetic structure of farmed American mink with
various color types using a relatively large sample size (about 3,000)
with genotypic data from a medium-density SNP panel.

Investigation of the genetic structure of American mink using
genotypic data from a medium-density SNP panel will benefit the
future use of this genotyping panel for use in genomic selection, as
well as other genomic studies, such as quantitative trait locus
mapping, identification of signatures of selection, and GWAS.
Meanwhile, one critical factor affecting the accuracy of estimating
population genetic diversity parameters is the sample size
(Bashalkhanov et al., 2009). The sample size in the previous
studies, which investigated the genetic structure of American
mink, were all less than 300 individuals (Lecis et al., 2008; Yukari
et al., 2010; Thirstrup et al., 2015; Zalewski et al., 2016; Mora et al.,
2018; Karimi et al., 2020; Karimi et al., 2021). Small sample sizes
could lead to significant errors in determining allelic richness and
therefore influence the accuracy of the estimators of genetic diversity
in populations (Bashalkhanov et al., 2009). Thus, the main purpose
of this study was to use genotypic data from the first medium-
density 70K SNP panel for American mink with a larger sample size
to 1) investigate the LD pattern and Ne of farm American mink in
Canada, 2) explore the genetic distance and genetic diversity among
various color types of American mink, and 3) reveal the genetic
structure and admixture pattern of farm American mink in Canada.

2 Materials and methods

2.1 Ethics statement

This study was approved by the Dalhousie University Animal
Care and Use Committee (certification#: 2018-009 and 2019-012).
All the mink were raised based on the Code of Practice for the Care
and Handling of Farmed Mink guidelines from the Canada Mink
Breeders Association (NFACC, 2013).
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2.2 Animals and sampling

The individuals used in this study were from two farms,
including the Canadian Center for Fur Animal Research
(CCFAR, n = 1,411) at Dalhousie University, Faculty of
Agriculture (Nova Scotia, Canada) and Millbank Fur Farm (MFF,
n = 1,562) at Rockwood (Ontario, Canada). Mink from CCFAR
included five color types: black (CBL, n = 177), demi (CDE, n = 542),
mahogany (CMA, n = 527), pastel (CPA, n = 152), and stardust
(CST, n = 13). The colors of the studied mink were identified and
assigned to them at their weaning age by experienced technicians at
CCFAR. All individuals from MFF were Black color type (MBL, n =
1,562). There was no migration of mink between the two farms.
There was no regular mating system on both farms, and breeders
were selected based on their phenotypic performances without
considering the color types.

2.3 Sample collection and genotyping

DNA extraction was performed on tongue tissue from animals
using the DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany),
according to the manufacturer’s instructions. The quantity and
quality of DNA were measured with a NanoDrop ND-1000
spectrophotometer (NanoDrop Technologies Inc., Wilmington,
DE). The 260/280 nm readings for all samples ranged from 1.8 to
2.0. All samples were diluted to a final concentration of 500 ng,
checked for DNA quality, and finally genotyped by Axiom
Affymetrix Mink 70K panel (Neogen, Lincoln, Nebraska,
United States) (Do et al., 2023).

2.4 Animals and SNP quality control

Prior to analyses of the genotyping data, animals and SNPs were
excluded from the dataset based on the following criteria using
PLINK software (Purcell et al., 2007): SNPs having a minor allele
frequency lower than 1%, a call rate lower than 90%, an excess of
heterozygosity higher than 15%, and Mendelian error frequency
larger than 5%, SNPs that were out of Hardy-Weinberg equilibrium
with very low probability (1 × 10−5), and individuals with a call rate
lower than 90%. Overall, 2,973 genotyped animals with 24,161 SNPs
remained for the following analyses.

2.5 Population genetic parameters, linkage
disequilibrium, and effective population size

The average minor allele frequency (MAF) and observed
heterozygosity were estimated for each color type and whole
CCFAR population using SNP1101 software (Sargolzaei, 2014).
The nucleotide diversity was conducted for each SNP and color
type and whole CCFAR population based on the method proposed
by Nei and Li (1979) using VCFtools software (Danecek et al., 2011).

Linkage disequilibrium (r2) was measured as proposed by Hill
and Robertson (1968) and calculated according to the following
equation using SNP1101 software (Sargolzaei, 2014):

r2ij �
Pij − PiPj( )2

Pi · 1 − Pi( ) · Pj 1 − Pj( )
in which Pij is the frequency of the two-marker haplotype (i = allele i
at locus 1; j = allele j at locus 2), and Pi and Pj are the frequencies of
allele i at locus 1 and allele j at locus 2, respectively (Badke et al.,
2012).

The LD was calculated in four distance sets with different bin
sizes, which included 100 kb with a bin size of 10 kb, 500 kb with a
bin size of 50 kb, 1,000 kb with a bin size of 100 kb, and 10 Mbwith a
bin size of 1,000 kb. The average r2 of each bin was plotted against
the median size of the bin to show the trend of LD with the increases
in genome distances.

Effective population sizes for various color types were estimated
using SNP1101 software (Sargolzaei, 2014) by the following
equation (Sved, 1971):

Ne � 1
4c

( ) 1
r2

− 1( )

in which Ne is the effective population size; c is the marker distance
in Morgans. Additionally, past effective population size at
generation T was calculated by the approximation T = 1

2c (Hayes
et al., 2003). Effective population size was calculated for 1, 5, 10, 20,
50, 100, 200, and 250 generations ago.

2.6 Genetic distances and genetic diversity

Pairwise genetic distances were calculated using Nei’s (Nei,
1972) method (standard genetic distance method) under the
“StAMPP” package of R (Pembleton et al., 2013). Additionally, a
dendrogram of genetic distance among all color types was produced
through the unweighted pair group method with the arithmetic
mean method in the “poppr” R package (Kamvar et al., 2014) based
on Nei’s distance (Nei, 1972). The pairwise Fst was calculated based
onWeir and Cockerham’s procedures (Weir and Cockerham, 1984)
using the “StAMPP” package of R (Pembleton et al., 2013). The Nei’s
genetic distances matrix of the six color types was also used to
construct the phylogenetic trees using the unweighted pair group
method in the “poppr” R package (Kamvar et al., 2014). In addition,
AMOVA (Excoffier et al., 1992) was performed using
ade4 implemented in the “poppr” R package (Kamvar et al.,
2014) to determine the partition of genetic diversity among
samples at different hierarchical levels.

2.7 Genetic structure and admixture
patterns

Population structure was analyzed by the discriminant analysis
of principal components (DAPC) method using the “adegenet”
package of R (Jombart et al., 2010). The number of clusters in
the population was defined by using the find. clusters function under
the “adegenet” package. This function implements a clustering
procedure used in DAPC by running successive K-means with an
increasing number of clusters (K) after transforming data using a
principal component analysis (PCA). The most suitable number of
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TABLE 1 Average minor allele frequency (MAF), observed heterozygosity, and nucleotide diversity for five color types of American mink in CCFAR, whole CCFAR
population, and whole MFF population.

Color type Number of individuals Average MAF Observed heterozygosity (%) Average nucleotide diversity

CBLa 177 0.220 31.821 0.297

CDEb 542 0.216 31.029 0.307

CMAc 527 0.212 30.594 0.303

CPAd 152 0.236 32.644 0.294

CSTe 13 0.246 34.947 0.283

CCFARf 1,411 0.216 30.576 0.307

MBLg 1,562 0.226 31.938 0.288

aBlack color type mink in the canadian center for fur animal research (CCFAR).
bDemi color type mink in CCFAR.
cMahogany color type mink in CCFAR.
dPastel color type mink in CCFAR.
eStardust color type mink in CCFAR.
fAll mink in CCFAR.
gBlack color type mink in Millbank Fur Farm.

TABLE 2 Summary of the average and standard deviation of r2 between adjacent SNPs on all chromosomes five color types of American mink in CCFAR, whole
CCFAR population, and whole MFF population.

CCFARb CBLc CDEd CMAe CPAf CSTg MBLh

Chra Average r2±SD Average r2±SD Average r2±SD Average r2±SD Average r2±SD Average r2±SD Average r2±SD

1 0.444 ± 0.451 0.403 ± 0.445 0.425 ± 0.447 0.415 ± 0.445 0.415 ± 0.441 0.408 ± 0.438 0.419 ± 0.451

2 0.412 ± 0.446 0.379 ± 0.443 0.395 ± 0.440 0.399 ± 0.441 0.387 ± 0.435 0.369 ± 0.424 0.392 ± 0.445

3 0.354 ± 0.440 0.336 ± 0.431 0.339 ± 0.433 0.340 ± 0.434 0.335 ± 0.425 0.346 ± 0.420 0.341 ± 0.429

4 0.404 ± 0.447 0.396 ± 0.449 0.385 ± 0.443 0.384 ± 0.442 0.367 ± 0.434 0.400 ± 0.440 0.406 ± 0.450

5 0.369 ± 0.365 0.368 ± 0.369 0.346 ± 0.364 0.356 ± 0.365 0.336 ± 0.366 0.368 ± 0.378 0.388 ± 0.379

6 0.432 ± 0.453 0.391 ± 0.445 0.418 ± 0.448 0.415 ± 0.449 0.404 ± 0.442 0.372 ± 0.430 0.422 ± 0.447

7 0.396 ± 0.377 0.393 ± 0.381 0.380 ± 0.378 0.381 ± 0.377 0.375 ± 0.380 0.396 ± 0.383 0.407 ± 0.385

8 0.428 ± 0.378 0.425 ± 0.388 0.412 ± 0.381 0.423 ± 0.382 0.403 ± 0.386 0.382 ± 0.389 0.449 ± 0.392

9 0.345 ± 0.351 0.357 ± 0.360 0.334 ± 0.351 0.342 ± 0.355 0.331 ± 0.355 0.361 ± 0.371 0.357 ± 0.362

10 0.269 ± 0.397 0.268 ± 0.399 0.261 ± 0.390 0.248 ± 0.385 0.263 ± 0.384 0.285 ± 0.387 0.277 ± 0.404

11 0.558 ± 0.386 0.557 ± 0.399 0.531 ± 0.393 0.540 ± 0.391 0.502 ± 0.406 0.533 ± 0.432 0.597 ± 0.397

12 0.504 ± 0.377 0.519 ± 0.394 0.470 ± 0.378 0.499 ± 0.387 0.438 ± 0.387 0.490 ± 0.419 0.545 ± 0.397

13 0.384 ± 0.382 0.397 ± 0.386 0.364 ± 0.380 0.376 ± 0.381 0.368 ± 0.381 0.416 ± 0.396 0.427 ± 0.396

14 0.293 ± 0.401 0.291 ± 0.402 0.266 ± 0.390 0.285 ± 0.393 0.293 ± 0.399 0.340 ± 0.421 0.258 ± 0.372

Mean 0.399 ± 0.404 0.391 ± 0.407 0.380 ± 0.401 0.386 ± 0.402 0.373 ± 0.402 0.390 ± 0.409 0.406 ± 0.408

aChromosome.
bAll mink from the Canadian Center for Fur Animal Research (CCFAR).
cBlack color type mink in CCFAR.
dDemi color type mink in CCFAR.
eMahogany color type mink in CCFAR.
fPastel color type mink in CCFAR.
gStardust color type mink in CCFAR.
hBlack color type mink in Millbank Fur Farm.

r2 = Linkage disequilibrium; SD, standard deviation.
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clusters has the lowest associated Bayesian Information Criterion
(BIC). An α-score optimization was used to determine the number
of principal components to retain. Additionally, an unsupervised
analysis in ADMIXTURE version 1.3.0 (Alexander et al., 2009) was
applied to further assessing the potential admixture among the
various color types. Five-fold cross-validation (CV) procedure
was performed, and the CV scores were used to determine the
best K value.

3 Results

3.1 Population genetic parameters, linkage
disequilibrium and effective population size

The MAF, observed heterozygosity, and nucleotide diversity for
each SNP, color type and whole CCFAR population are present in
Table 1. The average MAF ranged from 0.212 (mahogany) to 0.246
(stardust). The lowest level of observed heterozygosity (30.6%) was
observed in mahogany color type of CCFAR, whereas the stardust
color type of CCFAR had the highest percentage of observed
heterozygosity (34.9%). The overall nucleotide diversity ranged
from 0.283 (stardust) to 0.307 (demi). Considering the whole
CCFAR population individuals, the MAF was 0.216, the observed
heterozygosity was 30.576%, and the overall nucleotide diversity was
0.307 (Table 1).

The average r2 between adjacent SNPs on all chromosomes for
six color types of American mink and the whole CCFAR American
mink population are presented in Table 2. The average r2 between
adjacent SNPs among various color types ranged from 0.373 ±
0.402 (CPA) to 0.406 ± 0.408 (MBL). Compared with the MFF
population (MBL), the average r2 between adjacent SNPs for the
whole CCFAR population (0.399 ± 0.404) was lower (Table 2). The
LD decay measured by r2 with different inter-marker distances (up
to 100 kb, 500 kb, 1,000 kb, and 10 Mb) and consecutive bins
(10 kb, 50 kb, 100 kb, and 1 Mb) in six color types mink is
presented in Figure 1. Within the 1,000 kb inter-marker
distance range, MBL and CST showed the two highest average
r2 among all color types at the same inter-marker distance, while
CDE and CPA had the two lowest average r2 among all color types.
CDE reached an average r2 < 0.2 with the shortest inter-marker
distance (around 325 kb) among all color types, while CST reached
an average r2 < 0.2 with the longest inter-marker distance (around
850 kb) among all color types. Both CMA and CPA reached an
average r2 < 0.2 at the inter-marker distance of approximately
350 kb. CBL and MBL reached an average r2 < 0.2 at the inter-
marker distance of approximately 475 kb and 650 kb, respectively.
The average r2 of the whole CCFAR population was <0.2 at the
inter-marker distance of 350 kb. The most rapid LD decays for all
color types were observed when the average inter-marker distances
increased from 50 to 150 kb, and CDE had the most rapid
reduction of LD in this interval (Figure 1).

FIGURE 1
Linkage disequilibriummeasured by r2 plotted as a function of inter-market distance (kb) (A) from0 up to 100 kb using consecutive 10 kb bins, (B) up
to 500 kb using consecutive 50 kb bins, (C) up to 1,000 kb using consecutive 100 kb bins, and (D) up to 10 Mb using consecutive 1,000 kb bins. CCFAR =
all mink from the Canadian Center for Fur Animal Research (CCFAR). MBL = black color typemink in Millbank Fur Farm; CBL, CDE, CMA, CPA, and CST are
black, demi, mahogany, pastel, and stardust color type mink in CCFAR, respectively.
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The Ne was evaluated based on LD estimates (r2) from five to
250 generations ago, and the estimates of Ne are shown in Figure 2.
In general, all the color types showed a marked decrease over
generations. The recent Ne, five generations ago, of CBL, CDE,
CMA, CPA, CST, and MBL was 58, 76, 80, 60, 24, and 91,
respectively. For the whole CCFAR population, the Ne was 76 at
five generations ago. The maximum Ne was observed
250 generations ago for all color types, where CDE had the
highest Ne of 384 and CST had the lowest Ne of 276. CDE had

the highest Ne, and CST had the lowest Ne from 50 to
250 generations ago. However, in more recent generations, from
five to ten generations ago, MBL was observed to have the highest
Ne, and CST was found to have the lowest Ne. The decline of Ne was
more rapid from 5 to 50 generations ago for all color types in
CCFAR and from 5 to 100 generations ago for the MFF population.
In the meantime, in more recent generations (5–50 generations ago),
the Ne of the CCFAR population decreased more rapidly than the
MFF population (Figure 2).

3.2 Genetic distances and genetic diversity

Weir and Cockerham’s Fst and Nei’s genetic distances among
six color types are shown in Table 3. None of the Fst values between
the two color types were larger than 0.1, and none of the Nei’s
genetic distances between the two color types were larger than 0.06.
The lowest Fst (0.006) and Nei’s genetic distance (0.003) were found
between CMA and CDE. The CPA and CST showed the highest Fst
(0.096) and Nei’s genetic distance (0.053). To examine the genetic
relationship among various color types, a phylogenetic tree was also
constructed using the unweighted pair group method and Nei’s
genetic distance (Figure 3). The phylogenetic tree revealed two main
clusters, with CST in one cluster and CDE, CPA, CMA, CBL, and
MBL in the second cluster. Meanwhile, CDE and CMA were
assigned to the subgroup with the least genetic distance.

The results from AMOVA for various color types are shown in
Table 4. The differentiation within color types represented the

FIGURE 2
Estimated effective population sizes for various color types of American mink from 5 to 250 generations ago. CCFAR = all mink from the Canadian
Center for Fur Animal Research (CCFAR). MBL = black color type mink in Millbank Fur Farm; CBL, CDE, CMA, CPA, and CST are black, demi, mahogany,
pastel, and stardust color type mink in CCFAR, respectively.

TABLE 3 Estimation of Nei’s genetic distance (upper diagonal) and Weir and
Cockerham’s Fst (lower diagonal) between various color types of American
mink.

CDEa CPAb CMAc CSTd CBLe MBLf

CDE 0 0.012 0.003 0.027 0.010 0.018

CPA 0.024 0 0.021 0.053 0.033 0.037

CMA 0.006 0.044 0 0.023 0.005 0.012

CST 0.042 0.096 0.033 0 0.018 0.035

CBL 0.021 0.068 0.010 0.024 0 0.015

MBL 0.040 0.081 0.028 0.063 0.035 0

aDemi color type mink in the canadian center for fur animal research (CCFAR).
bPastel color type mink in CCFAR.
cMahogany color type mink in CCFAR.
dStardust color type mink in CCFAR.
eBlack color type mink in CCFAR.
fBlack color type mink in Millbank Fur Farm.
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highest proportion of total molecular variation in the populations
(91.6%). The variation among color types was significant (p < 0.05)
but only represented 4.1% of the total molecular variation in the
populations. The variation among farms was estimated to represent
4.3% of the total molecular variation in the populations but was not
significant (p > 0.05).

3.3 Genetic structure and admixture
patterns

A total of 123 principal components were retained for DAPC
analysis based on the result of the α-score optimization analysis
(Supplementary Figure S1). Sequential K-means clustering and the

BIC indicated an optimum of 40 clusters in the studied populations
(Supplementary Figure S2), and the DAPC showed 40 clusters in
Figure 4; Figures 4A, B present the scatterplots of the first two linear
discriminants and the first three linear discriminants for all samples,
respectively; Figure 4C shows the distribution of various color types of
mink in these 40 clusters in the scatterplot of the first two linear
discriminants. The number of individuals from different color types in
each cluster is shown in Figure 5. Eighteen clusters concentrated on
the left side of the y-axis, andmostMBL individuals were grouped into
those clusters (Figures 4A, C). Twenty-two clusters spread on the right
side of the y-axis, and most of the CCFAR individuals were grouped
into these clusters (Figures 4A, C). Compared with the clusters on the
right side of the y-axis, where most of the CCFAR individuals were
located, the clusters on the left side of the y-axis, where most of the
MFF individuals were located, were more concentrated in a smaller
area and more overlapped with each other. The three-dimensional
scatterplot separated the clusters located on the right side of the y-axis
of the DAPC scatterplot of the first two linear discriminants more
widely but not the clusters located on the left side of the y-axis
(Figure 4B). MBL individuals were classified into 28 clusters and were
the dominant color type in 18 of those clusters. Individuals in CDE,
CPA, CMA, CST, and CBL color types were classified into 28, 15, 31,
6, and 16 clusters, respectively, and were not the dominant color type
in those clusters (Figure 5). Additionally, the individual posterior
membership probabilities to different clusters are presented in
Figure 6. All the color types were largely admixed with several
different clusters.

A model-based maximum likelihood approach was used to infer
population structure at different K levels (Figures 7, 8). The CV error
was markedly reduced with each increase in K until K = 4. Hereafter,
the CV error gradually decreased with an increasing K, but the
differences in CV error between adjacent Ks were less and less.
The lowest CV was found when K = 75 within the range of K
values that we tested (Figure 7). The ADMIXTURE runs for K = 2, 3,
4, 6, 40, and 75 are shown in Figure 8. The results indicated that the
most likely partition was for K = 3, based on visual inspection of the
admixture plots. The ideal method to define the number of K should
be based on the CV error, but the CV error in this study kept
decreasingwith increased K (Figure 7). Visual inspection of admixture
plots was used to define the best K according to the other studies
(Mujibi et al., 2018; Lal et al., 2021). At K = 2, a clear distinctness
between MBL and CPA was found. The rest of the color types were
admixed with two clusters. At K = 3, the study populations showed a
relatively distinguishable distinctness between CCFAR and MFF
populations. Most MFF individuals were assigned to one cluster
(average 85.26% on ancestry fractions), and the other two clusters

FIGURE 3
Unrooted consensus tree showing the genetic relationships
among the six color types using the unweighted pair group method
and the unbiased Nei’s genetic distance. The values at the nodes are
the percentages of bootstrap values from 1,000 replications of
resampling. The x-axis represents the genetic distances between
color types. MBL = black color type mink in Millbank Fur Farm; CBL,
CDE, CMA, CPA, and CST are black, demi, mahogany, pastel, and
stardust color type mink in the Canadian Center for Fur Animal
Research, respectively.

TABLE 4 Analysis of molecular variance (AMOVA) in various color types of American mink.

Source of variation Degrees of
freedom

Sum of
squares

Mean squared
deviations

Variance
components

Percentage of
variation

Among farms 1 10.720 10.720 0.004 4.291

Among color types 4 4.425 1.106 0.004* 4.067

Within color types 2,967 279.795 0.094 0.094* 91.642

Total 2,972 294.940 11.920 0.102 100

*p < 0.05.
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were dominant in the CCFAR population. The CBL (average of
77.51% on ancestry fractions) and CPA (average of 79.13% on
ancestry fractions) became distinct clusters within the CCFAR
population and the two main genetic compositions in the CCFAR
population. In the meantime, CDE and CMA were admixed with the
three clusters and seemed to share a similar admixture pattern. When
K = 4 and 6, except for the CPA color type, where one cluster seemed
like the dominant cluster in this color type, all other color types were
admixed with at least two clusters. In the meantime, the CCFAR
population showed a higher level of admixture than the MFF
population. When K = 40 and 75, no obvious distinction in
ADMIXTURE among various color types was found, and all color
types were admixed with several clusters (Figure 8).

4 Discussion

The average r2 between adjacent SNPs on all chromosomes for
various color types were in the range of 0.373–0.406. The estimated
average r2 between adjacent SNPs was higher than the estimates
from previous studies (Karimi et al., 2020; Karimi et al., 2021). The
average r2 was estimated to be 0.30 using 13,321 SNPs extracted
from 99 scaffolds with GBS data (Karimi et al., 2020). The average r2

was estimated to range from 0.280 to 0.366 for various color types
using 100,000 SNPs extracted from 51 scaffolds with the WGS data
(Karimi et al., 2021). The different SNP marker densities, sample
sizes, data resources, using incomplete scaffold-based vs complete
chromosome-based reference genomes, and population structures
among the studies are the potential causes leading to these
discrepancies. The r2 > 0.2 is considered the minimum threshold
value for genomic selection to achieve an accuracy of >0.85
(Meuwissen et al., 2001; Hayes et al., 2009; Samorè and
Fontanesi, 2016). In the current study, the average r2 of CCFAR
and MFF populations decreased to <0.2 when the inter-marker
interval reached larger than 350 kb and 650 kb, respectively. These
estimates indicated that the minimum marker density for
conducting genomic selection at acceptable accuracy for the
CCFAR population is about 7,700 SNPs (2.68 Gb/350 kb, where
2.68 Gb (Karimi et al., 2022) is the size of American mink genome
assembly) and about 4,200 SNPs (2.68 Gb/650 kb) for the MFF
population. For GWAS, r2 > 0.3 is commonly used as the ideal
threshold LD to obtain sufficient power and accuracy (Ardlie et al.,
2002;Wang et al., 2018;Wu et al., 2019; Zhang Y. et al., 2021). The r2

was estimated to be more than 0.3 when the marker distances were
less than 125 kb and 225 kb for CCFAR and MFF populations,
respectively, which indicated approximate 22,000 (2.68 Gb/125 kb)

FIGURE 4
The scatterplots of discriminant analysis of principal components Each ellipse represents a cluster, and each dot represents an individual. Different
clusters are separated by colors. MBL = black color typemink in Millbank Fur Farm; CBL, CDE, CMA, CPA, and CST are black, demi, mahogany, pastel, and
stardust color typemink in CCFAR, respectively. (A) The scatterplot of the first two linear discriminants (x and y-axis, respectively), which explained 41.23%
and 4.77% of the variation, respectively. Individual dot is a given color based on which cluster the individual is grouped to; (B) The 3D scatterplot of
the first three linear discriminants (x, y, and z-axis, respectively), which explained 41.23, 4.77, and 4.39% of the variation, respectively. Individual dot is a
given color based on which cluster the individual is grouped to; and (C) The scatterplot of the first two linear discriminants (x and y-axis, respectively).
Different clusters are separated by colors and inertia ellipses labeled with a number. Individual dot is a given a color based on the individual color type.
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FIGURE 5
The number of individuals from various color types in 40 assigned clusters inferred by discriminant analysis of principal components. MBL = black
color type mink in Millbank Fur Farm; CBL, CDE, CMA, CPA, and CST are black, demi, mahogany, pastel, and stardust color type mink in the Canadian
Center for Fur Animal Research, respectively.

FIGURE 6
The probability of membership of each sample in the 40 assigned clusters inferred by discriminant analysis of principal components. MBL = black
color type mink in Millbank Fur Farm; CBL, CDE, CMA, CPA, and CST are black, demi, mahogany, pastel, and stardust color type mink in the Canadian
Center for Fur Animal Research, respectively.
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and 12,000 (2.68 Gb/225 kb) SNPs are necessary to conduct GWAS
in CCFAR andMFF populations, respectively. It has been noted that
more markers are needed to perform adequate genomic studies in
admixed populations (Toosi et al., 2010; Thomasen et al., 2013; Brito
et al., 2015; Karimi et al., 2021). Thus, the higher level of admixture
in the CCFAR population may be the reason for the required higher
marker density for conducting genomic selection in this population
compared to the MFF population. Using GBS data, Karimi et al.
(2020) suggested the density of 60,000 SNPs and 120,000 SNPs,
which were all higher than the estimates in the current study, are
required for conducting genomic selection and GWAS in black
American mink, respectively. Karimi et al. (2021) suggested a larger
number of SNPs to conduct genomic selection (120,000 for CCFAR
and 24,000 for MFF) and GWAS (240,000 for both farms) by using
WGS data of 100 American mink from the same population. The
different estimates of r2 between the current study and previous
studies (Karimi et al., 2020; Karimi et al., 2021) are the causes for the
different suggested marker densities of conducting genomic
selection and GWAS in American mink.

In this study, the Ne at five generations ago was estimated to be
76 and 91 for CCFAR and MFF populations, respectively. In Spain,
the Ne of American mink in six locations ranged from 7.2 to
34.8 using information from ten polymorphic microsatellite loci
(Lecis et al., 2008). On Swedish coasts, depending on the
geographical location of the sampling, the Ne of American mink
was estimated to be from 17.5 to 70.8 using genotypes from
21 microsatellite markers (Zalewski et al., 2016). The Ne at five
generations ago was estimated to be 116 for black American mink,
which was also higher than the estimates in this study, using SNP data
obtained from the GBS data (Karimi et al., 2020). Compared with this
study, Karimi et al. (2021) estimated a higher Ne at five generations
ago (99) for CCFAR and a lower Ne at five generations ago (50) for
MFF using SNP information extracted from the WGS data of
100 mink. The estimates of the current study indicated that the Ne

declined more rapidly from 5 to 50 generations ago for the CCFAR
and from 5 to 100 generations ago for the MFF population, which
coincided with the time when the farms were established. The CCFAR
was established about 40 years ago (1984), and the MFF was founded
over 90 years ago (1930). These trends were different from those
estimated by using WGS data (Karimi et al., 2021) and GBS data
(Karimi et al., 2020), where the decline of Ne was more rapid between
150 and 200 generations ago. The different estimations of LD patterns
among studies are the cause leading to the differentNe estimates. The
Ne of the CCFAR population decreased more rapidly than the MFF
population in more recent generations (5–50 generations ago). This
may be related to different breeding managements and strategies,
population genetic backgrounds, and populations sizes (MFF has
larger population size than CCFAR) in these two farms.

Both Fst (less than 0.1) and Nei’s genetic distances (less than
0.06) among various color types were low, which indicated the low
genetic differentiation among various color types. This was in
agreement with the AMOVA results, where the variation within
color types explained 91.6% of total molecular variation, while the
variation among color types only explained 4.1% of the total
molecular variation in the populations. Compared with other
color types, CST had the farthest genetic distances (Nei’s genetic
distance values) with CDE, CPA, CMA, and MBL color types. This
was in agreement with the result from the phylogenetic tree, which
separated CST into a separate cluster from other color types. The Fst
and Nei’s genetic distances among various color types were
estimated in the range of 0.015–0.124 and 0.013 to 0.065,
respectively, using WGS data (Karimi et al., 2021). They were all
slightly higher than the estimates from this study (Fst ranged from
0.006 to 0.096, and Nei’s genetic distance ranged from 0.003 to
0.053). The overall Fst among seven color types of American mink
from 14 different geographical locations in Poland and Denmark
was estimated to be 0.08 by Thirstrup et al. (2015) using information
from 194 SNPs generated from the restriction-site associated DNA

FIGURE 7
ADMIXTURE analyses of six color types American mink with cross-validation error plot for K-values from 2 to 75.
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sequencing data, which was also higher than the overall Fst (0.041)
among six color types in the study. In southern Chile, the Fst among
153 mink obtained from 12 locations were estimated to be in the

range from 0.017 to 0.364, which was also higher than the estimates
in this study (0.006–0.096), using genotypic data from
11 polymorphic microsatellite loci (Mora et al., 2018).

FIGURE 8
Admixture pattern of six color types American mink at K = 2, 3, 4, 6, 40, and 75. MBL = black color type mink at Millbank Fur Farm; CBL, CDE, CMA,
CPA, and CST are black, demi, mahogany, pastel, and stardust color type mink in the Canadian Center for Fur Animal Research, respectively.
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The mink of the six color types were differentiated into 40 clusters
using multivariate DAPC analysis in this study. Individuals within the
same color type were divided into clusters ranging from six to 31
(Figures 5, 6), which indicated the existence of genetic differentiation
among mink within the same color. These results were in agreement
with the result from AMOVA (Table 4), where the variation within
color types represented the majority of the total molecular variation in
the populations, and the high level of nucleotide diversity within each
color type (Table 1). In the meantime, 97% (1,526 individuals) of MBL
individuals and 97% (1,378 individuals) of CCFAR individuals were
grouped into the clusters located on the left and right side of the y-axis of
the DAPC scatterplot of the first two linear discriminants (Figure 4C),
respectively. These results indicated that the DAPC analysis was able to
separate CCFAR and MFF populations by the first linear discriminant
(explained 41.23% of the variance). However, DAPC analysis was not
able to further differentiate the clusters within a farm as the clusters on
the same side of the y-axis of the DAPC scatterplots were overlapped,
and the distances between clusters were minimal (Figure 4). This may
be caused by high gene flow and admixture events in recent generations
of the studied populations because there was no regular mating system
on both farms, and animals were mostly selected based on their
phenotypic performances without considering their color types.
Additionally, the clusters, where most of the CCFAR individuals
were located, were more dispersed in a wider area and less
overlapped with each other on the DAPC scatterplots compared
with the clusters, where most of the MFF individuals were located
(Figure 4), indicating CCFAR population may have a higher level of
admixture than MFF population. These results were in agreement with
the admixture patterns we observed when K = 2, 3, 4, and 6, where the
CCFAR population showed a higher level of admixture than the MFF
population (Figure 8). This may be related to the introduction of
breeders from different farms within after the Aleutian disease outbreak
in CCFAR in 2013 (the generation interval is 1 year in CCFAR), as
multiple breeder sources may result in higher levels of admixture
(Verhoeven et al., 2011; Parker et al., 2017; Karaman et al., 2021).
Most of the mink in the barn were dead or culled at that time when
Aleutian disease occurred. Thus, within 3 years of the disease outbreak,
about 150mink (120 dam and 30 sires) from six farms were introduced
and used as breeders in the breeding season at CCFAR, which might
lead to a higher admixture level in the population compared with the
MFF population. The populations (CCFAR and MFF) were clustered
into only three groups in DAPC analysis using WGS data from
100 individuals (Karimi et al., 2021). Compared to the DAPC
results from this study, the MFF population was not clearly
differentiated from the CCFAR population, and individuals within
the same color tended to be grouped in the same cluster instead of
several different clusters. The marker densities (100 k vs 24 k) and
sample sizes (100 vs. 2,973) are the possible reasons leading to the
differences. The DAPC analysis differentiated 205 American mink in
three different areas of Sweden into five clusters using the genotypic
data from 21 microsatellites (Zalewski et al., 2016). The five clusters
clearly differentiated the individuals from different study areas,
indicating that geographical distribution was one of the critical
factors in differentiating American mink. In our study, the
geographical distribution might also play an important role in
differentiating mink from two populations because the CCFAR and
MFF populations were clearly separated by the first linear discriminant
in the DAPC scatterplot (Figure 4).

In this study, three ancestral genetic groups were considered to
delineate the studied populations’ genetic structure based on the
change of CV error against K and visual inspection of the
admixture plots. The change in CV error against K (Figure 7)
indicated that the improvement in model fitness started to decrease
between K = 3 and K = 5, suggesting that K = 3 may be the best
cluster number that describes the studied populations. Compared
to the admixture plots when K = 2, 4, 6, 40, and 75, the admixture
plot when K = 3 seemed to describe the genetic structure of studied
populations better. Similar to the DAPC results, when K = 3, a
distinguishable distinctness between CCFAR and MFF populations
was observed in the admixture plot, which further illustrated
geographical distribution as a critical factor in differentiating
American mink. The CCFAR population showed a higher level
of admixture than the MFF population, which might be caused by
the use of breeders from multiple sources in CCFAR (introduced
breeders from six different farms after the Aleutian disease
outbreak) and a relatively single breeder source in MFF.
Meanwhile, MBL and CBL were clearly identified with a distinct
ancestral population suggesting that these two black color types
derive from different ancestral populations and color type might
not be a reliable indicator to differentiate American mink. Within
the CCFAR population, CBL and CPA had their own clusters, and
CDE, CMA, and CST showed noticeable admixtures of these two
clusters. Many color types in American mink are exclusively line-
bred because many color types are recessive to the standard brown
color type, and the rest are blended (Shackelford, 1948; Joergensen,
1985; Nes et al., 1988). For example, mahogany is achieved by
breeding the black and standard brown color types (Joergensen,
1985). This could explain the admixture patterns of CMA and CDE
in this study since these are visually very close color types, and CPA
is one of the dominant brown color types. In the meantime, CDE
and CMA seemed to share a similar admixture pattern, which
indicated these two color types might share a similar genetic
structure. Several results from this study also supported the
point that CDE and CMA had a similar genetic structure: 1)
CDE and CMA showed the closest genetic distance (lowest Nei’s
and Fst values) among all color types (Table 3); 2) the phylogenetic
tree grouped CDE and CMA into the same subgroup (Figure 3); 3)
CDE and CMA showed a similar trend in LD andNe decay (Figures
1, 2); and 4) most of CDE and CMA individuals appeared in the
same clusters generated from DAPC analysis (Figure 5). These
results further illustrated the color type may not be a reliable
indicator to differentiate American mink populations. The
admixture patterns from this study are similar to the estimated
admixture patterns of American mink in Canada in previous
studies. The admixture patterns of farmed and wild American
mink in Ontario, Canada, were investigated by Kidd et al. (2009)
using the data from 10 microsatellite loci. In their studied farm
populations, mink in black and pastel color types had their own
groups, and mink in mahogany color type were mixed with several
groups (Kidd et al., 2009), which were in the same patterns as this
study. The admixture patterns of the current studied populations
were also investigated in the small sample size using WGS data
(Karimi et al., 2021). Similar to the results from this study, when
K = 3, individuals in black and pastel color types had their own
groups, and individuals in demi and mahogany color types were
mixed with those three groups (Karimi et al., 2021).
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Genetic structure and admixture pattern analyses conducted in
this study did not detect clear genetic distinctions among the mink
of various color types. Two potential reasons could lead to these
results. The studied individuals were sampled from only two farms,
which might make the samples not the ideal sample structures to
reveal the population structures. Thus, future studies should
consider including animals of various color types from wild and
more geographically distributed farms. In the meantime, it has been
noted that a larger number of markers may be needed to resolve
population genomics studies when the genetic distance (Fst)
between the populations is low (Patterson et al., 2006). Thus,
future studies could impute the SNP genotypes to WGS to obtain
larger marker density to further investigate the genetic structure and
admixture pattern of the studied populations.

5 Conclusion

In this study, 2,973 animals from two farms and their genotypes
obtained from the first developed medium-density SNP panel for
Americanmink were used to investigate their LD patterns and genetic
structure in various color types. The estimated LD patterns suggested
that 7,700 and 4,200 SNPs are the minimum marker densities to
conduct genomic selection programs in CCFAR and MFF
populations, respectively. The results from genetic distances and
diversity analyses indicated genetic differentiation among various
color types was low, and most of the genetic variation occurred
within color types rather than between color types. Three ancestral
genetic compositions were considered the most appropriate number
of ancestral genetic compositions to delineate the populations’ genetic
structure. The black (both CCFAR and MFF) and pastel color types
seemed to have their own ancestral clusters, and demi, mahogany, and
stardust were admixed with the three ancestral genetic compositions.
Additionally, mink in demi andmahogany color types seemed to have
a similar admixture pattern, but further study is needed. The genetic
structure and admixture pattern of mink of various color types and
within the same color type were not clearly identified in this study.
Thus, future studies with samples from wider geographically
distributed locations and higher marker density are needed to
differentiate the mink within the same color type.

This study provided useful information for conducting genomic
evaluations in the mink industry using genotypes from the medium-
density SNP panel. The mink industry faces several challenges
caused by the COVID-19 pandemic, industry downturn, and
decreasing market demand. Improving production efficiency
through advanced genomic approaches could help the mink
industry meet these challenges. The LD patterns and genetic
structures obtained from the first SNP panel for American mink
would provide the essential information to implement the SNP
panel in genomic studies of American mink.
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