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FOXC1 is a ubiquitously expressed forkhead transcription factor that plays a critical
role during early development. Germline pathogenic variants in FOXC1 are
associated with anterior segment dysgenesis and Axenfeld-Rieger syndrome
(ARS, #602482), an autosomal dominant condition with ophthalmologic
anterior segment abnormalities, high risk for glaucoma and extraocular findings
including distinctive facial features, as well as dental, skeletal, audiologic, and
cardiac anomalies. De Hauwere syndrome is an ultrarare condition previously
associated with 6p microdeletions and characterized by anterior segment
dysgenesis, joint instability, short stature, hydrocephalus, and skeletal
abnormalities. Here, we report clinical findings of two unrelated adult females
with FOXC1 haploinsufficiency who have ARS and skeletal abnormalities. Final
molecular diagnoses of both patients were achieved using genome sequencing.
Patient 1 had a complex rearrangement involving a 4.9 kB deletion including
FOXC1 coding region (Hg19; chr6:1,609,721-1,614,709), as well as a 7 MB inversion
(Hg19; chr6:1,614,710-8,676,899) and a second deletion of 7.1 kb (Hg19; chr6:
8,676,900-8,684,071). Patient 2 had a heterozygous single nucleotide deletion,
resulting in a frameshift and a premature stop codon in FOXC1 (NM_001453.3):
c.467del, p.(Pro156Argfs*25). Both individuals hadmoderate short stature, skeletal
abnormalities, anterior segment dysgenesis, glaucoma, joint laxity, pes
planovalgus, dental anomalies, hydrocephalus, distinctive facial features, and
normal intelligence. Skeletal surveys revealed dolichospondyly, epiphyseal
hypoplasia of femoral and humeral heads, dolichocephaly with frontal bossin
gand gracile long bones. We conclude that haploinsufficiency of FOXC1 causes
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ARS and a broad spectrum of symptoms with variable expressivity that at its most
severe end also includes a phenotype overlapping with De Hauwere syndrome.
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sequencing, case report

Introduction

Axenfeld-Rieger syndrome (ARS) is an autosomal dominant
condition characterized by a wide spectrum of anterior segment
dysgenesis associated with a high risk of glaucoma and cataract
development. Its extraocular findings include hypertelorism,
midface and maxillary hypoplasia, hypodontia, small, cone-
shaped teeth, enamel defects, heart and renal malformations,
joint pain, and short stature (Reis and Semina, 2011; Chang et al.,
2012; de Vos et al., 2017; Reis et al., 2022; Zhou et al., 2023). Less
common features are redundant periumbilical skin and CNS
abnormalities, such as cerebellar vermis hypoplasia, enlarged
cisterna magna, and dilated ventricles (Chang et al., 2012; de
Vos et al., 2017). ARS is genetically heterogeneous (MIM
#180500, #601499, #602482); type 1 and 3 are caused by
pathogenic variants in PITX2 and FOXC1 respectively, while
the genetic cause of ARS type 2 is not known. Approximately
40%–70% of ARS are due to pathogenic variants in FOXC1
(6p25.3) or in PITX2 (4q25) (Seifi and Walter, 2018; D’Haene
et al., 2011; Tümer and Bach-Holm, 2009; Reis et al., 2012).
Pathogenic variants in FOXC1 include missense, nonsense, and
frameshift mutations, as well as deletions and partial duplications
of the gene (Zhou et al., 2023; D’Haene et al., 2011; Tümer and
Bach-Holm, 2009; Nishimura et al., 2001). Today, there are more
than 400 reported patients with heterozygous disease-causing
whole gene deletions, missense, or nonsense variants in FOXC1
(Zhou et al., 2023).

Axenfeld-Rieger anomaly is part of the more severe
6p25 deletion syndrome (MIM #612582), which also includes
features of intellectual disability, hypotonia, hydrocephalus, and
Dandy-Walker malformation (de Vos et al., 2017). In 1973, De
Hauwere et al. reported an autosomal dominantly inherited
syndrome in a mother and her two children with Axenfeld-
Rieger anomaly, iris dysplasia, hyperlaxity of the joints, hip
dislocation and coxa valga. These patients had low muscular
tone, large sella turcica, dilatation of cerebral ventricles and
subarachnoidal cisterns, sensorineural hearing impairment,
psychomotor delay, short stature, and distinctive facial features
including hypertelorism, telecanthus, and maxillary hypoplasia
(De Hauwere et al., 1973). Furthermore, patients with distal
chromosome 6p deletions including p25.3 and FOXC1 have been
reported to have a skeletal phenotype with short stature, hip
dysplasia, femoral and humoral head flattening, joint
hypermobility and/or vertebral anomalies (Kannu et al., 2006;
Lowry et al., 2007; Martinez-Glez et al., 2007; Reis et al., 2012).
Recently, Reis et al. (2022) reported 69 individuals with ARS and
pathogenic variants in FOXC1, 23 of whom had skeletal
abnormalities. The same study also suggested that De Hauwere
syndrome (DHS, 109120) is equivalent to the most severe end of
FOXC1-related disorders.

Here, we report genetic and clinical findings in two unrelated
individuals with FOXC1 haploinsufficiency and a phenotype
resembling DHS. Genome sequencing revealed that one of the
patients has a complex rearrangement involving a deletion of
FOXC1, and that the other has a single nucleotide deletion
leading to a frameshift and a stop codon. Our study confirms
that DHS is the most severe end of FOXC1-related disorders.

Clinical findings

Patient 1

The female patient was born at 41 weeks of gestation to a 27-
year-old primigravida mother and a 41-year-old father. The
pregnancy was complicated by twin gestation and first trimester
twin demise. Amniocentesis for karyotype and alpha-
fetoprotein level were normal. The delivery and postnatal
course were unremarkable. Birth weight and length were
3.09 kg (z-score −0.31) and 50.8 cm (z-score +0.26). Initial
examination revealed a hoarse cry, right scapular
hemangioma, and talipes equinovarus which were treated
with casting.

The patient was diagnosed with tracheomalacia at age
2 months. At the time, relative macrocephaly, frontal bossing,
hypertelorism, depressed nasal bridge, anteverted nares, mild
pectus excavatum, single palmar creases, and short limbs with
apparent rhizomelia and upper extremity acromelia were noted.
Her knees had lateral dimples bilaterally and increased
anteroposterior laxity. She had mild hypotonia. Head
ultrasounds at ages 4 and 5 months showed mild fullness of
both lateral ventricles without frank hydrocephalus nor evidence
of increased intracranial pressure. Infancy and early childhood
were significant for poor growth, conductive hearing loss
secondary to congenitally fused ossicles and recurrent otitis
media, and diagnoses of bicuspid aortic valve and persistent
superior vena cava to the coronary sinus. By age 3.5 years,
height and weight had dropped significantly to 86 cm
(z-score −3.2) and 11.3 kg (z-score −2.3), respectively, while
head circumference remained relatively large at 51.5 cm
(z-score +1.8). She had radial head subluxation, genu valgum,
and generalized joint laxity.

She was diagnosed with visual acuity deficit and infantile
glaucoma, and noted to have iris hypoplasia, an anteriorly
displaced line of Schwalbe, abnormal angulation and insertion of
the irises, and right-sided uveal ectropion. Eye movements and
retinal examination were normal. She required multiple ocular
surgeries, including bilateral surgical goniotomy, trabeculectomy,
and implantation of aqueous humor drainage device to aid with
intra-ocular fluid outflow. Prior to surgery, eye examination revealed
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20/60 visual acuity with no refractive defects. The intraocular
pressures measured 30 mm Hg bilaterally. The corneal
thicknesses measured 643 μm and 678 μm. Bilateral Haab straie

were present. The pupils were round and centered with a prominent
inferior ectropion uvea for the right eye. On gonioscopy, the iris
inserted at the level of the scleral spur. Multiple nonpigmented thin

FIGURE 1
Clinical and radiographic findings at different ages (A–C): Facial features of patient 1 at 4.5 and 30 years. Note broad and prominent forehead, sparse
anterior hairline and medial eyebrows, prominent eyes, epicanthal folds, hypertelorism, telecanthus, depressed nasal root, bulbous nasal tip,
prognathism, malar flattening, thin upper lip vermilion and mildly posteriorly rotated ears. (D–I): Radiographic examination of patient 1 showed mild
dolichocephaly with frontal bossing, dolichospondyly, a mildly narrow thorax, gracile long bones, and flat capital femoral epiphyses. The elbow joint
was dislocated. (J–L): Facial features of patient 2 at 7 and 49 years. Note hypertelorism with telecanthus, down slanting palpebral fissures, depressed
nasal bridge, maxillary hypoplasia, broad and prominent forehead, mildly posteriorly rotated ears and short neck. The photographs are published with
informed signed consents from both patients. (M–Q): Radiographic examination of patient 2 showed dolichocephaly with frontal bossing,
dolichospondyly, a narrow thorax with glenoid dysplasia, gracile ulna and radius and hip dysplasia. The computer tomography of the lumbar spine
radiograms showed spondylosis and spinal canal stenosis with posterior scalloping of the vertebral bodies. The radiograms of the hip joints showed
advanced degenerative joint disease along with subluxation of the left. The femoral heads were small, and the femoral necks were short.
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iris stromal extensions were attached to a thickened Schwalbe line
circumferentially.

Physical examination at age 30 showed short stature, height
143 cm (z-score −4.18) and relative macrocephaly, with a head
circumference of 55.5 cm (z-score +0.12). She had generalized
joint laxity, chronic joint pain and had undergone C4-C5
vertebral fusion surgery. She had ARS-typical facial
characteristics (Figure 1). All her teeth were extracted due to
enamel hypoplasia. There were fifth digit clinodactyly, decreased
elbow mobility, mild pectus excavatum, calf hypotrophy, and pes
planovalgus with long second toes. DEXA scan at age 30 years
showed osteopenia in the spine (T-score −1.40) and vertebral
bodies (T-score −1.80), and osteoporosis in the femoral necks
(T-score −3.00).

Neurological exam revealedmild unilateral ptosis, significant vision
loss (sensitive to hand motions only), and poor balance. She wears
bilateral hearing aids and has undergone bilateral tympanoplasties and
right ossicular prosthesis implantation. She has a high school degree,
normal intelligence, and attention deficit disorder (ADD) and required
special services in school due to hearing and vision impairments. She
carries diagnoses of anxiety, panic disorder, and had a history of two
prior miscarriages. At age 32 years, she developed seizures and started
antiepileptic medication. EEG confirmed frequent epileptiform
complexes over the right fronto-temporal area correlating with MRI
findings of mild inferior transtentorial herniation of the medial right
temporal/occipital lobe and associated mild deformity of the right
cerebellum, suggestive of tentorium hypoplasia. MRI also showed
mild dilation of the lateral ventricles, mild inferior displacement of
the pituitary stalk and third ventricle, and several nonspecific scattered
punctate foci of periventricular and subcortical T2/flair signal
abnormalities.

Radiological reports at age 3.5 years, and in late childhood
showed an enlarged sella turcica, dolichospondyly, overmodeling
of the long bones and metacarpals, and generalized epiphyseal
ossification delay as well as dysplasia of the capital femoral
epiphyses. Subluxation of C4-C5, genu valgum, and elbow
dislocation were noted. Skeletal survey at age 31 years showed
mild dolichocephaly with frontal bossing, dolichospondyly with
short posterior pedicles, a narrow thorax, gracile long bones, mild
epiphyseal dysplasia of the proximal humeri and proximal
femora and post-surgical fusion of C4-C5. Dislocation of the
elbow and patellofemoral joints and pes planovalgus were noted
(Figure 1).

Patient 2

The patient is the first of four children born to non-
consanguineous parents. Her parents are deceased, and her birth
parameters and early childhood clinical records are not available.
The patient’s mother suffered from glaucoma, blindness, and dental
problems including dental caries and fragile teeth. She was 162 cm
tall (z-score −1.26), did not have musculoskeletal complaints and
died from cervical cancer at age 62. The patient has two healthy
siblings, and one affected sister, who was born with anterior segment
dysgenesis and atrial septal defect. The patient’s sister developed
childhood glaucoma which remained undiagnosed for several years,
and she is currently blind. She has dental problems, prominent

forehead, and has been diagnosed with ADD and autism spectrum
disorder. She is 162 cm tall (z-score −1.26) and has no
musculoskeletal complaints.

The patient presented with pubertas praecox with menarche at
age 7. She was diagnosed with hydrocephalus with pronounced
enlargement of the lateral and third ventricles and a large suprasellar
arachnoid cyst with bilateral compression of the middle fossa and
the temporal lobes. A ventrikulo-atrial Hakim-shunt was placed
when she was 9 years old. She has suffered from frequent headaches
since age 30, independent of correct shunt placement or function.
Her intelligence is normal, but she has difficulties recognizing faces.
She has normal hearing.

Eye examination revealed alternating exotropia and congenital
anterior segment dysgenesis with anterior chamber deformity,
prominent strands, and atrophy of the iris stroma. She also has
juvenile-onset glaucoma with excavation and paleness of the optic
papilla and subsequent decrease in the visual field, discrete cataract,
and arcus senilis. She has undergone bilateral glaucoma surgery with
trabeculectomy at age 18 years.

At age 49, her height was 143 cm (z-score −4.18), weight 81 kg
(BMI 39), and head circumference 58.5 cm (z-score +1.88). The
patient has distinct craniofacial features (Figure 1) and redundant
umbilical skin. She has only five remaining permanent teeth, dental
implantations, and severe problems with dental caries, fragile
hypoplastic teeth, and gingival bleeding. She has joint
hypermobility but has never had any joint dislocations. She has
pes valgus and pain in her feet. She underwent bilateral hip
replacement at ages 39 and 40 respectively due to pain and arthrosis.

Radiographic findings of the skeleton included severe
coxarthrosis, mild dolichocephaly with frontal bossing,
dolichospondyly, a narrow thorax, gracile long bones,
dysplastic proximal femoral epiphyses with short femoral
necks, and glenoid dysplasia. The lumbar spine showed
spondylosis and spinal canal stenosis with posterior scalloping
of the vertebral bodies (Figure 1). Echocardiography was
performed at 48 years of age with normal findings except a
mild mitral and pulmonary valve regurgitation.

Diagnostic assessment

The local Ethics Committee at Karolinska Institute approved the
study (2012-2106-31/4, 2014/983-31/1), which followed the tenets
of the Declaration of Helsinki.

Z-scores of the height and weight were calculated using
WHO growth standards (https://www.who.int/tools/child-growth-
standards/standards). For height and head circumference >5 years
of age, reference tables from Fredriks et al. were used (Fredriks et al.,
2000).

Patient 1

Standard chromosome analysis at 450-band level resolution and
Metaphase FISH using probes targeting the subtelomeric regions of
6p (TelVysion 6p, Abbott Molecular) and 6q (TelVysion 6q, Abbott
Molecular) showed a normal female karyotype (46,XX). Array
comparative genomic hybridization (aCGH) performed as
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described previously (Le et al., 2011) revealed an interstitial
6p25.3 deletion involving FOXC1. Genome sequencing (GS)
(NGS; Illumina 2500, Agilent Sure Select) was performed as
described previously (Lindstrand et al., 2019; Lindstrand et al.,
2022) using the human genome Hg19 assembly as reference. A
complex genetic rearrangement was shown with a 4.9 kb deletion
(including FOXC1 coding region) followed by a 7.0 Mb inversion
and a 7.1 kb deletion (chr6:1,609,721-1,614,709del, chr6:1,614,710-
8,676,899inv, chr6:8,676,900-8,684,071del). Their corresponding
coordinates according to Hg38 assembly are: chr6:1609486-
1614474, chr6:1614475-8676666 and chr6:8676667-8683838. The
variant has been submitted to ClinVar (SUB1291463). To find the
exact location of the deletion breakpoints, the region of FOXC1 was
analyzed using IGV (http://software.broadinstitute.org/software/

igv/UserGuide). The breakpoint 1 was confirmed using Sanger
sequencing (Figure 2A). Genome sequencing focused on
528 known skeletal dysplasia genes (Martin et al., 2019) was
normal. Analysis of public HI-C datasets (http://3dgenome.fsm.
northwestern.edu/) showed that the inversion disrupts multiple
TADs across several tissues (Supplementary Figure S1). Further,
we extracted genes within the inversion, as well as genes in the region
chr6:1,000,000-11,000,00; yielding 39 genes within the inversion,
11 genes downstream, and 3 genes upstream of the inversion
(Supplementary Information S1). Notably, these lists of genes
include autosomal dominant disease genes, TFAP2A and BMP6.
String network analysis showed a network with significantly more
interactions than expected (p < 1.0e-16), indicating the disruption of
gene clusters (Supplementary Figure S2).

Patient 2

Array comparative genomic hybridization (aCGH) performed
according to standard procedures (Pettersson et al., 2017) was
normal. Genome sequencing (GS) (NGS; Illumina 2500, Agilent
Sure Select) performed as described previously (Lindstrand et al.,
2019; Lindstrand et al., 2022) revealed a heterozygous single
nucleotide deletion in FOXC1 Hg19 NC_000006.11(NM_
001453.3): c.467del, p.(Pro156Argfs*25), (Hg38 NC_
000006.12(NM_001453.3):c.467del), which was confirmed with
Sanger sequencing (Figure 2B). The variant has been submitted
to ClinVar (SUB12914356). The patient’s siblings were not available
for segregation analysis. Skeletal dysplasia gene panel focused on
528 known skeletal dysplasia genes (Martin et al., 2019) was normal.
Human Phenotype Ontology (HPO) (Köhler et al., 2014) terms
Glaucoma and Axenfeld anomaly was used to find clinically relevant
variants in patient 2.

Discussion

In this report we describe two individuals with overlapping
clinical features due to FOXC1 haploinsufficiency: one with a
complex rearrangement in the FOXC1 locus and another with a
nonsense variant in the same gene. In addition to ARS, both
individuals showed significant skeletal abnormalities which
required orthopedic surgeries.

Since the discovery of FOXC1 in 1994 (Pierrou et al., 1994),
numerous pathogenic variants have been reported in patients with
ARS (Zhou et al., 2023). In some cases, protein haploinsufficiency
has been attributed to distal 6p25 deletions, the genotypic and
phenotypic spectrum of which have been extensively
characterized elsewhere (Gould et al., 2004; Delahaye et al., 2012;
Weegerink et al., 2016; de Vos et al., 2017). Previously,
6p25 deletions and skeletal abnormalities were described in
2 patients with DHS (Martinez-Glez et al., 2007; Reis et al.,
2012). Literature search using terms “6p25 deletion and skeletal”
identifies nine additional patients with 6p25 haploinsufficiency and
variable skeletal abnormalities, including vertebral anomalies, flat
femoral epiphyses, delayed bone age, dislocation of joints, and
abnormal feet or hands, similar to the skeletal phenotype
observed in the two individuals presented in this report

FIGURE 2
Molecular findings: (A) Schematic representation of the complex
rearrangement and confirmation of the 5´breakpoint (BP1) using
Sanger sequencing in patient 1 and in a normal control DNA sample.
Complex genomic rearrangement includes: 4.9 kb deletion
including FOXC1 followed by an inversion of approximately 7 MB and a
7.1 kB deletion. Primer pairs used for amplification and sequencing of
the breakpoints 1 (BP1) were P1F and P1R. For amplification of the
normal control sequence corresponding to the position of BP1 we
used primer pairs P1F and P3R. (B) Genome and Sanger sequencing of
DNA sample from patient 2 showing stop-gain variant in FOXC1 (NM_
001453.3):c.467del, p.(Pro156Argfs*25).
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(Mirza et al., 2004; Caluseriu et al., 2006; Kannu et al., 2006;
Martinez-Glez et al., 2007; Martinet et al., 2008; Delahaye et al.,
2012; Reis et al., 2012; Linhares et al., 2015; Walsh et al., 2017).

In 2013, Gripp et al. (2013) described a single family with a
missense variant p.(Arg170Trp) in FOXC1 and anterior segment
dysgenesis in five members, three of whom also had hip dysplasia.
In 2019, Siggs et al. (2019) reported that one of their 8 patients
with pathogenic variants in FOXC1 had congenital hip dysplasia.
Recently, Reis et al. (2022) in a study on genotype phenotype
correlation in ARS including 69 individuals with pathogenic
variants in FOXC1, described that 23 of them had short
stature, hip abnormalities, scoliosis, pectus deformity and/or
joint hypermobility/pain. Five had single gene deletions,
47 had point mutations and 17 had deletions involving
FOXC1 and one or more of the neighboring genes. The
authors did not find any genotype-phenotype correlation
regarding how many patients with deletions versus point
mutations showed skeletal abnormalities. In addition, several
families showed intrafamilial variability regarding short stature
and skeletal complaints, which is consistent with findings in
family 2 in this report. We therefore speculate that phenotype
variability may occur, at least in part, due to incomplete
penetrance and variable expressivity, although an under-
ascertainment of mild skeletal features cannot be excluded.
Taken together, skeletal anomalies are relatively common in
patients with FOXC1 haploinsufficiency and there is a major
phenotype overlap between the patients with monogenic FOXC1
involvement and 6p25 microdeletions.

Complex structural rearrangements may cause
developmental anomalies, but prior to the era of GS they
often escaped detection in routine genetic investigations. It is
possible that the more severe phenotype observed in patient 1 is
due to the 7 MB inversion that involves several developmentally
important genes. The 3D structure of the genome plays an
important role in the regulation of gene expression; and there
is a growing number of reports indicating its importance in rare
disease genetics (Melo et al., 2020; Eisfeldt et al., 2022). Using
public datasets, we found that the TAD landscape of a large
number of genes may be affected by the inversion found in
patient 1, which may contribute to her severe phenotype.

The putative role of FOXC1 in bone formation was first
suggested by Sasaki and Hogan (1993). They reported the
cloning and expression pattern of mouse FOXC1 homolog,
Foxc1, in non-notochordal paraxial mesoderm (i.e., somitomeres),
and in neural-crest-derived head mesenchyme (notably, in the
frontonasal area anterior to the eye and in a region extending
from the optic to the otic vesicles). Later, the role of Foxc1 in the
differentiation of prechondrogenic mesenchyme into cartilage was
suggested by Kume et al. (1998), who showed strong Foxc1
expression in mesenchymal cells of axial and appendicular
skeleton precursors. They reported that homozygous Foxc1
knockout mice died at birth and had anomalies of the skull,
skeleton, heart, and eyes as well as hydrocephalus (Kume et al.,
1998). Yoshida et al. (2015) demonstrated the role of Foxc1 in
endochondral ossification via its key interaction with Gli2 in the
Indian hedgehog (Ihh)-Gli2 signaling pathway. This interaction
results in the downstream expression of Ihh target genes involved
in endochondral ossification, including PTHrP and COL10A1.

Homozygous loss-of-function mice (Foxc1ch/ch) showed delayed
endochondral ossification and skeletal anomalies including a
“slight dwarf phenotype” with short limbs, epiphyseal dysplasia
and low bone mineralization (Yoshida et al., 2015). While similar
functional evidence is lacking equivalent studies in human primary
cells or tissues, these murine models support the biological
importance of FOXC1 in skeletal development and lend
biological plausibility to the skeletal phenotype observed in DHS.

In addition to the ophthalmologic and skeletal abnormalities,
other organ anomalies present in the individuals described in this
study include cardiovascular anomalies, ossicular malformations,
and severe dental problems with enamel hypoplasia, hypodontia,
dental caries and fragile teeth. These symptoms are consistent with
those of previously reported patients with FOXC1
haploinsufficiency. The genetic diagnoses have made it evident
for the patients in this study that they suffer from a rare
condition, and that their symptoms that are unusual in the
general population are common in this rare congenital condition.
The information regarding dental anomalies in other patients with
FOXC1 haploinsufficiency was used to support the argument to
acquire an additional dental care funding from the insurance
company for patient 2.

Patient 1 has hearing impairment and adult-onset seizures,
which are thought to be caused by white matter changes in the
periventricular and subcortical regions. Only one patient with
adult-onset seizures and CNS anomalies was reported
previously, by Caluseriu et al. (2006). In the study by Reis
et al. (2022) 15/16 individuals with FOXC1 disruptions showed
white matter abnormalities on MRI, but seizures were not
reported. Similar white matter findings, ventriculomegaly,
and variable Dandy-Walker anomalies have been reported in
several patients with large 6p25 deletions including FOXC1
(Lin et al., 2005; van der Knaap et al., 2006; Cellini et al., 2012;
Vernon et al., 2013; Breningstall et al., 2017; de Vos et al.,
2017). These patients exhibited a wide spectrum of
developmental and intellectual impairments. Altogether,
while the significance and pathophysiology of these lesions
are poorly understood, the fact that several patients with
FOXC1 haploinsufficiency show developmental delay
supports the hypothesis that FOXC1 is important for normal
CNS development.

In summary, patients with haploinsufficiency of FOXC1 may
have a spectrum of anomalies ranging from isolated anterior
segment dysgenesis to ARS, to a phenotype overlapping with
DHS. Patients with FOXC1-haploinsufficiency are best served by
a multisystem approach including comprehensive
ophthalmologic, neurologic, otologic, audiologic, cardiac,
dental, and orthopedic evaluations. Likewise, there should be a
low threshold for brain imaging. We caution providers that the
skeletal manifestations are likely under ascertained and may
become more apparent as the patient ages. Due to the
phenotype variability, definition of the follow up times is
difficult, but increased awareness of the specific risks will lead
to improved and personalized care. Therefore, all patients with
diagnoses of apparently isolated anterior segment dysgenesis,
FOXC1-related ARS, and 6p25 or 6p-terminal deletion
syndromes should be screened for skeletal problems, and there
should be a low threshold for obtaining a skeletal survey.
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