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Osteoarthritis (OA) is the most common joint disease globally, and its progression
is irreversible. The mechanism of osteoarthritis is not fully understood. Research
on the molecular biological mechanism of OA is deepening, among which
epigenetics, especially noncoding RNA, is an emerging hotspot. CircRNA is a
unique circular noncoding RNA not degraded by RNase R, so it is a possible clinical
target and biomarker. Many studies have found that circRNAs play an essential role
in the progression of OA, including extracellular matrix metabolism, autophagy,
apoptosis, the proliferation of chondrocytes, inflammation, oxidative stress,
cartilage development, and chondrogenic differentiation. Differential
expression of circRNAs was also observed in the synovium and subchondral
bone in the OA joint. In terms of mechanism, existing studies have mainly
found that circRNA adsorbs miRNA through the ceRNA mechanism, and a few
studies have found that circRNA can serve as a scaffold for protein reactions. In
terms of clinical transformation, circRNAs are considered promising biomarkers,
but no large cohort has tested their diagnostic value. Meanwhile, some studies
have used circRNAs loaded in extracellular vesicles for OA precision medicine.
However, there are still many problems to be solved in the research, such as the
role of circRNA in different OA stages or OA subtypes, the construction of animal
models of circRNA knockout, andmore research on themechanism of circRNA. In
general, circRNAs have a regulatory role in OA and have particular clinical
potential, but further studies are needed in the future.
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1 Introduction

Osteoarthritis (OA) is a classic degenerative chronic disease with significant symptoms,
including pain, morning stiffness, and joint instability, leading to disability and ultimately
impairing quality of life (Martel-Pelletier et al., 2016). The incidence of osteoarthritis is still
high worldwide, with approximately 303.1 million hip and knee osteoarthritis cases,
according to the Global Burden of Disease Project (GBD). As presented by Safari et al.’s
analysis of GBD data up to 2017, the incidence of osteoarthritis has increased by
approximately 8%–10% since 1990, which is based only on hip and knee osteoarthritis
(Peat and Thomas, 2021). As a chronic disease, osteoarthritis impacts patients’ quality of life
and burdens the country and society long-term. Although, at present, the subtypes of OA,
risk factors, or etiologic factors, the mechanism of development cannot be revealed entirely
clearly. The corresponding treatment methods are also under study. Osteoarthritis is
characterized by cartilage degeneration, osteophyte formation, damage and remodeling
of the cartilage, and varying degrees of synovitis and other joint structural damage, including
ligaments and menisci. Identifying the molecular biological mechanisms of osteoarthritis
development is essential to the treatment of osteoarthritis (Katz et al., 2021). The current
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mechanism of osteoarthritis development mainly focuses on
changes in the structure of tissues and their functions in the
joints, with the participation of various molecular biological
processes and a variety of cells and cytokines (van den Bosch,
2021). The understanding of the molecular biological mechanism
is constantly improving, including epigenetics as a new hot research
direction in recent years. The osteoarthritis research process is
increasingly often mentioned, of which noncoding RNA research
is also increasingly in-depth, especially circRNA research
(Ratneswaran and Kapoor, 2021). Osteoarthritis is an
inflammatory disease produced by various factors, and circRNAs
also participate in and regulate its progression (Zhang et al., 2021a).
Circular RNA is currently one of the heated topics in research, and
the purpose of this paper is to review the progress of its research in
osteoarthritis and discuss its significance, breakthroughs, and
deficiencies in current research and future research directions.

2 Introduction to CircRNA

Awide variety of noncoding RNAs are involved in osteoarthritis,
including microRNAs, lncRNAs, and circRNAs. CircRNA is a long-
chained and closed-loop RNA with better stability and a longer half-
life due to its unique circular structure, which is more resistant to
RNase R (Jeck and Sharpless, 2014), making it a potential candidate
for diagnostic biomarkers and therapeutic targets. CircRNAs form
by reverse splicing, wherein the 3′end of the exon is connected to its
own or upstream exon’s 5′end through a 3’- 5′phosphate bond,
forming a closed-loop structure with a reverse splicing connection
site (Chen and Yang, 2015). They participate in a variety of
physiological or pathological processes through a variety of
mechanisms.

In terms of mechanism, the most common studies have focused
on its molecular sponge as a microRNA, competitively inhibiting its
host gene by affecting its intervention transcription function, also
known as the competing endogenous RNAs (ceRNA) mechanism
(Panda, 2018). An increasing number of studies have shown that its
mechanisms and physiological functions are diverse (Chen, 2020a),
such as regulating transcription and binding with its host gene to
form an R-loop structure and upregulating the transcription process
of skipping exons or intercepts (Conn et al., 2017), cooperating with
the U1 snRNP junction for Pol II regulation of nuclear transcription
(Li et al., 2015). The translation function of circRNA has received
increasing attention in recent years, and circRNA with IRES
structure can be used as a template for translation, translating
the corresponding biologically functional peptide segment
(Legnini et al., 2017). Moreover, circRNAs with ORFs are
translated in a rolling circle manner, even up to a hundredfold
linear translation, due to the property of their circularity (Abe et al.,
2013). However, more studies have also found that its recognition by
YTHDF3 after N6-methyladenosine (m6A) methylation, which
recruits eIF4G2, can also enable circRNA translation (Di
Timoteo et al., 2020). CircRNAs can also affect protein function
by interacting with DNA or RNA-binding proteins (Du et al., 2017;
Luo et al., 2019; Zhou et al., 2020a; Huang et al., 2020) or affect
protein-to-protein interactions (Zhou et al., 2020a). (Figure 1)

The metabolic mechanisms of circRNAs have also been clarified
in recent years, including their upstream regulation and downstream
metabolism (Xiao et al., 2020). CircRNAs are regulated by cis-acting
elements and transcription factors (Ashwal-Fluss et al., 2014). The
reverse repeated Alu sequence in the flank inclusion promotes exon
circularization (Zhang et al., 2014). According to recent literature,
N6-methyladenosine (m6A) controls the biogenesis of circRNA.
Methyltransferase-like 3 (METTL3) or YTH domain 1 (YTHDC1) is

FIGURE 1
Biological functions of circRNAs. An increasing number of studies have shown that its mechanisms and physiological functions are diverse, such as
regulating transcription and binding with its host gene to form an R-loop structure and upregulating the transcription process of skipping exons or
intercepts, cooperatingwith the U1 snRNP junction for Pol II regulation of nuclear transcription. CircRNAwith IRES structure can be used as a template for
translation. More studies have also found that its recognition by YTHDF3 after m6A methylation, which recruits eIF4G2, can also enable circRNA
translation. CircRNAs can also affect protein function by interacting with DNA or RNA-binding proteins or affect protein-to-protein interactions.
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reported to regulate circRNA (Di Timoteo et al., 2020). It has also
been reported to be regulated bym6A concerning its transport out of
the nucleus and degradation, methylated circRNA translocated into
the cytosol through YTHDC1 recognition (Chen et al., 2019a), and
its degradation through YTHDF2 (Park et al., 2019). Other
degradation mechanisms, including RNase L, have also been
reported to degrade circRNAs (Liu et al., 2019).

The physiopathological functions of circRNAs have been
elucidated in a significant fraction of diseases as regulatory roles,
involving almost all physiological processes in all organisms and
regulating the function of cells and organs. Its clinical
transformation has also been documented, and circRNAs can be
used as biomarkers of liquid biopsies for the early diagnosis of
diseases such as tumors and the evaluation of disease progression (Li
et al., 2021a; Li et al., 2021b; Gui et al., 2021; Kuo et al., 2021; Zhang
et al., 2022a; Kristensen et al., 2022).

3 CircRNAs in OA chondrocytes

Cartilage degeneration is a significant event in the development
and progression of OA, and in this study, we summarize the various
pathological processes in which circRNAs participate in cartilage
degeneration.

3.1 CircRNAs in cartilage development and
differentiation

CircRNAs have significantly different expression levels at
different stages of developmental processes and promote the
differentiation of bone marrow-derived stem cells or adipose-
derived stem cells (Zhou et al., 2021a). In recent years, research
on OA has also focused on bone and cartilage development and
differentiation. In terms of noncoding RNAs, it has been well
documented that miRNAs act as important regulators involved in
cartilage development and differentiation. Especially in recent years,
there has been a blowout increase in the study of miRNAs in
cartilage differentiation, and many miRNAs have been identified
to play a regulatory role in cartilage differentiation. miRNAs can also
regulate mesenchymal stem cell differentiation by targeting the
transcription of growth-related genes such as IHH, SOX5/6, and
Sox9. (Iaquinta et al., 2021).

As a result, circRNAs, as noncoding RNAs closely related to
miRNAs, are also likely to play a regulatory role in the development
and differentiation of cartilage. CircPSM3 has been proven to
regulate cartilage differentiation in cartilage and is upregulated in
OA, targeting miRNA-296-5p. After detecting BMP2, BMP4, BMP6,
and Runx2 at the mRNA and protein levels, it was found that high
expression of miRNA-296-5p could effectively promote OA
chondrocyte differentiation, while a miRNA-296-5p inhibitor
could reverse the differentiation of OA chondrocytes promoted
by si-circPSM3 (Ni et al., 2020). The recent study also showed
that the circATRNL1/Sox9 pathway presented a clear high
expression and a positive correlation with increased
chondrogenesis in adipose mesenchymal stem cells and was
regulated by miR-145-5p (Zhu et al., 2021a). CircNFIX/miR758-
3p/KDM6A axis has also been reported as a possible target for

regulating chondrogenesis (Liao et al., 2022). Furthermore,
differentiation into proliferative chondrocytes may effectively
increase the likelihood of cartilage repair, and studies on the
roles of circRNAs in chondrogenesis may be necessary.

3.2 circRNA is involved in cartilage
degeneration

Cartilage degeneration and loss as typical osteoarthritis and
explicit pathophysiological changes are most studied in
osteoarthritis research. Many studies have shown that circRNAs
are involved in a variety of microRNA-regulated cartilage loss
through ceRNA mechanisms, including apoptosis, proliferative
function change, autophagic function change, inflammatory
status, and degradation of the extracellular matrix of
chondrocytes (Mao et al., 2021a). Although a considerable
number of current studies confirm it, most of them appear too
similar, making it quite difficult and necessary to identify critical
circRNAs and pathways with regulatory functions. Nevertheless, an
increasing number of studies have verified multifaceted functions,
such as validating the simultaneous regulation of cartilage
inflammation, chondrocyte apoptosis, and cartilage extracellular
matrix degradation by circRNAs, which reflects that
inflammation, apoptosis, and extracellular matrix degradation
may be common in the terminal state of OA cartilage (Figure 2).

In this review, we summarize the existing research on the
regulatory mechanisms of circRNAs in OA cartilage and present
the results in Table 1. The mechanisms, pathways, biological
functions, and animal models used in the research of circRNAs in
OA progression are summarized. Considering that these studies
all experimentally validated circRNAs and their targets for
expression levels at the nucleic acid or protein level, we
pooled and analyzed these circRNAs and their targets. We
found that 42 circRNAs were downregulated and
61 upregulated in OA cartilage. After performing an analysis
of circRNAs differentially expressed in OA, we found that the
CircRNAs play a significant role in OA mainly through the
following pathways and genes, including the classic Ras/
MAPK pathway, PI3K/AKT pathway, TGF-β/SMAD path,
JAK/STAT path, and FGF/ERK signal path. In addition,
circRNAs in OA regulate SOX9 related cartilage
differentiation pathway, BMPR2 represented osteoblastic
differentiation pathway, CCDN1 represented cell cycle
pathway, PON2 related oxidative stress pathway or directly
regulate genes related to extracellular matrix metabolism such
as TIMP3, MMP13 and ADAMTS5 related matrix
metalloproteinase. Meanwhile, circRNAs also participate in
the regulation of the expression of a considerable number of
transcription factors like FOXO1 and KLF5 as well as
ubiquitination related genes like FBXO21 and FBXW7, to
affect the expression of downstream genes (Table 1).

3.2.1 Regulation of chondrocyte proliferation,
apoptosis, and autophagy

In studies of cartilage degeneration loss, the status of
chondrocytes is undoubtedly crucial. Involvement of circRNAs
has been found in apoptotic pathways, changes in chondrocyte
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proliferation function, and changes in autophagy function (Jiang
et al., 2020). A large number of studies have shown that circRNAs
play a regulatory role in the apoptosis of chondrocytes (Table 1).

Almost all of the existing studies focus on the ceRNA
mechanism. CircRNA regulates the expression of target genes
through the competitive binding of miRNA, thus regulating the
apoptosis of chondrocytes. Therefore, chondrocyte apoptosis and
the weakening of proliferation should be considered the final
outcome of cell fate. Targets for therapy should focus on more
upstream pathways.

Reasonable autophagy often protects joint chondrocytes from
further damage (Valenti et al., 2021). In osteoarthritic cartilage,
however, chondrocyte autophagy disorders are also a significant
cause of cartilage degeneration. CircRNAs significantly regulate
autophagy in chondrocytes, and the ciRS-7/miR-7/PI3K/AKT/
mTOR pathway (Zhou et al., 2020b), Hsa_circ_0005567/miR-
495/ATG14 pathway (Zhang et al., 2020a), circRNA-MSR/miR-
761/FBXO21 (Jia et al., 2022)and CircPan3/miR-667-5p/ghrelin
(Zeng et al., 2021) have been shown to have regulatory effects in OA.

3.2.2 CircRNAs regulate the inflammatory state of
chondrocytes

Osteoarthritis is an inflammatory disease. The inflammatory state
of chondrocytes is naturally also considered in the study, and circRNA-
mediated inflammatory processes also play an essential role. CircRNAs
have a regulatory role in several inflammatory processes (Saaoud et al.,
2021). In osteoarthritis models, upregulated or downregulated
circRNAs have also been observed to impact the production and
degradation of inflammatory factors. The main inflammatory factors
regulated by circRNAs were IL-6/IL-8/TNF-α/IL-17, and IL-1β and
TNF-α also inducedmost osteoarthritis in vitro cell models. In addition,
macrophages within the joint environment have also been implicated in
the inflammation of OA cartilage. CircRNAs have also been found to
play a regulatory role in inducing macrophage polarization. One study

showed that the expression of hsa_circ_0005567 in OA synovium is
downregulated. Overexpression of hsa_circ_0005567 inhibits M1-type
macrophage polarization and promotes M2-type macrophage
polarization. After being treated with the supernatant of LPS-
induced THP-1 macrophages, the proliferation of chondrocytes was
significantly reduced, while the apoptosis rate was significantly
increased. Hsa_circ_0005567 overexpression reversed this
phenomenon. Mechanistically, hsa_circ_0005567 acts through the
miR-492/SOCS2 axis to suppress M1 macrophage polarization and
thereby mitigate chondrocyte apoptosis in OA cartilage (Zhang et al.,
2021b). A large number of studies have shown that circRNAs play a
regulatory role in the inflammation of chondrocytes (Table 1). These
studies demonstrate that circRNAs can influence the fate of
chondrocytes and their extracellular matrix through the involvement
of miRNAs in the regulation of inflammatory factors.

3.2.3 Changes in the extracellular matrix of
chondrocytes

Degradation of the extracellular matrix is an essential
mechanism for the development of osteoarthritis and is also
thought to be a characteristic phenotype of osteoarthritis. MMP1,
MMP3, MMP13, aggrecanase, ADAMTS4, ADAMTS5, and
cathepsins have been proven to be specific markers of matrix
degradation. Currently, many studies have confirmed that
circRNAs, by competitively inhibiting miRNAs, affect the
function of their target genes, causing the composition of the
extracellular mechanism to change, eventually leading to the
occurrence and progression of osteoarthritis.

3.2.4 circRNA is involved in the oxidation stress
process

Oxidative stress regulated by circRNAs has also been observed to
be involved in several other mechanisms that cause damage to
chondrocytes. YANG Y et al. found that circRSU1 in human

FIGURE 2
Summary of the role of CircRNAs in OA. CircularRNAs function in multiple tissues within the OA joint and their upregulation or downregulation in
chondrocytes is associated with apoptosis, abnormal autophagy, impaired proliferation, oxidative stress, and cellular inflammatory status of
chondrocytes, thereby mediating catabolism of extracellular matrix. Further exacerbates chondrocyte degeneration after losing the extracellular matrix
environment. It also mediates fibroblast proliferation and polarization of macrophages in synoviocytes, leading to their release of inflammatory
factors that exacerbate chondrocyte degeneration.
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TABLE 1 CircRNAs in OA progression.

circRNA Mechanism Pathway Biological function
regulated by circRNA

Expression Animal
model

Methodes to
knockdown/
overexpression

References

circ_0114876 ceRNA miR-1227-3p/
ADAM10

Apoptosis,
proliferation,Inflammation
and ECM Degradation

up Ou et al.
(2022)

Circ_0136474 ceRNA miR-140-3p/
MECP2

ECM degradation, apoptosis,
and inflammation

up Cheng et al.
(2022)

CircFOXO3 RNA-protein
binding

FOXO3/
PI3K/AKT

autophagy down DMM(mice) IA-injection
(lentivirus)

Zhao et al.
(2022)

hsa_circ_00046621 ceRNA miR-424-5p/
VEGFA

Apoptosis, proliferation, and
ECM Degradation

up Xie et al.
(2022)

circRNA-MSR ceRNA miR-761/
FBXO21

autophagy up Jia et al. (2022)

circ_0008365 ceRNA miR-338-3p/
SOX9

apoptosis and ECM
degradation

down Shuai et al.
(2022)

circCREBBP ceRNA miR-1208/
TGFβ2/ALK1/
Smad1/5

apoptosis, inflammation and
ECM degeneration

up DMM(mice) IA-injection (AAV) Xu et al. (2022)

Circ_0022383 ceRNA miR-3619-5p/
SIRT1

apoptosis, inflammation and
ECM degeneration

down Qian et al.
(2022)

CircKMT2E ceRNA miR-140-5p/
TLR4

apoptosis up He et al.
(2022a)

Circ_0037658 ceRNA miR-665/
ADAMTS5

Apoptosis,
proliferation,Inflammation
and ECM Degradation

up Li et al.
(2022b)

CircPRKCH ceRNA miR-145/HGF apoptosis and ECM
degradation

up monosodium
iodoacetate

IA-injection
(lentivirus)

Que et al.
(2022)

CircSCAPER ceRNA miR-127-5p/
TLR4

apoptosis, ECM degradation,
inflammation and oxidative
stress

up Zhang et al.
(2022c)

circMELK ceRNA miR-497-5p/
MYD88/NF-
κ B

Apoptosis and Autophagy up Zhang et al.
(2022d)

CircSPI1_005 ceRNA miR-370-3p/
MAP3K9

Apoptosis,
proliferation,Inflammation
and ECM Degradation

down DMM(mice) IA-injection (AAV) Zhou et al.
(2022)

circ_0128846 ceRNA miR-940/
PTPN12

Apoptosis,
proliferation,Inflammation
and ECM Degradation

up Fu et al. (2022)

circNFKB1 RNA-protein
binding

ENO1/NF-κB ECM catabolism and
anabolism

up DMM(mice) IA injections (AV) Tang et al.
(2022a)

Circ-NCX1 ceRNA miR-133a/
SIRT1

apoptosis down Liu et al.
(2022b)

CircRERE ceRNA m6A-modified/
miR-195-5p/
IRF2BPL/β-
catenin

ubiquitination down DMM(mice) IA-injection (AAV) Liu et al.
(2022c)

CircCDK14 ceRNA miR-1183/
KLF5

Apoptosis, proliferation and
ECM Degradation

down Lai et al.
(2022)

CircHIPK3 ceRNA miR-30a-3p/
PON2

mitochondrial pathway,
apoptosis and ECM
degradation

down DMM(mice) IA-injection
(lentivirus)

Shang et al.
(2022)

(Continued on following page)
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TABLE 1 (Continued) CircRNAs in OA progression.

circRNA Mechanism Pathway Biological function
regulated by circRNA

Expression Animal
model

Methodes to
knockdown/
overexpression

References

circPhf21a-Vegfa Vegfa proliferation and extracellular
matrix synthesis

up Lin et al.
(2022)

circPDE4D ceRNA miR-4306/
SOX9

apoptosis and matrix
degradation

down Gao et al.
(2022)

circ_0136474 ceRNA miR-665/
FGFR1

Proliferation, cell cycle and
apoptosis

up Pan et al.
(2022)

circ_0000205 ceRNA miR-766-3p/
ADAMTS5

Apoptosis, proliferation,
Inflammation and ECM
Degradation

up Li et al.
(2022c)

circ_0000423 ceRNA miRNA-27b-
3p/MMP-13

ECM Degradation up ACLT (mice) IA injections (AAV) Li et al.
(2022d)

circVMA21 ceRNA miR-495-3p/
FBWX7

Apoptosis,
proliferation,Inflammation
and ECM Degradation

down DMM(rat) IA injections (AV) Li et al.
(2022e)

circPRKCH ceRNA miR-502-5p/
ADAMTS5

Apoptosis, proliferation,
Inflammation, migration

up Liu et al.
(2022d)

circADAMTS6 ceRNA miR-324-5p/
PIK3R3

Apoptosis, proliferation,
Inflammation and ECM
Degradation

down Shen et al.
(2022)

Circ_0043947 ceRNA miR-671-5p/
RTN3

Apoptosis, proliferation,
Inflammation and ECM
Degradation

up He et al.
(2022b)

Circ_0005526 ceRNA miR-142-5p/
TCF4

Proliferation, apoptosis and
inflammation

up Wahafu et al.
(2022)

circRHOT1 ceRNA miR-142-5p/
CCND1

Autophagy, Proliferation down ACLT (rat) IA injection (lentivirus) Man et al.
(2022)

Circ-LRP1B ceRNA miR-34a-5p/
NRF1

proliferation, apoptosis and
oxidative stress

down Zhang et al.
(2022e)

circ_0020014 ceRNA miR-613/
ADAMTS5

Apoptosis,
proliferation,Inflammation
and ECM Degradation

up Yu et al.
(2022a)

Circ_0110251 ceRNA miR-3189-3p/
SPRY1

apoptosis and ECM
degradation

down Zhang et al.
(2022f)

circTRIO ceRNA miR-136-5p/
NAMPT

Apoptosis,
proliferation,Inflammation
and ECM Degradation

up DMM(rat) IA injections
(lentivirus)

Yang et al.
(2022)

Circ_0008365 ceRNA miR-324-5p/
BMPR2/NF-κB

Apoptosis, Inflammation and
ECM Degradation

down Zhang et al.
(2022g)

circ_Rapgef1 ceRNA miR-383-3p/
NLRP3

Proliferation, apoptosis,
inflammation

up ACLT (MICE) Yan et al.
(2022)

CircTMOD3 ceRNA miR-27a apoptosis up Yu et al.
(2022b)

CircSCAPER ceRNA miR-140-3p/
EZH2

ECM degradation,
proliferation, and apoptosis

up Luobu et al.
(2022)

Circ_0020093 ceRNA miR-181a-
5p/ERG

Inflammation, Apoptosis and
ECM Degradation

down Zhu and Guo
(2022)

circCCDC66 ceRNA miR-3622b-5p/
SIRT3

Proliferation, apoptosis,
Inflammation

up Zhang et al.
(2022h)

mmu_circ_0001598 ceRNA miR-127-3p proliferation, apoptosis, and
ECM degradation

up ACLT (mice) IA injections
(lentivirus)

Apizi et al.
(2021)

(Continued on following page)
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TABLE 1 (Continued) CircRNAs in OA progression.

circRNA Mechanism Pathway Biological function
regulated by circRNA

Expression Animal
model

Methodes to
knockdown/
overexpression

References

CircPan3 ceRNA miR-667-5p/
ghrelin

Ghrelin System/autophage down IL-1β(rat) Zeng et al.
(2021)

Circ_SPG11 ceRNA miR-665/
GREM1

apoptosis and ECM
degradation

up Ouyang et al.
(2021)

circPhc3 ceRNA microRNA-93-
3p/FoxO1

mechanical loading-regulation down DMM(mice) Wang et al.
(2022b)

hsa_circ_0005567 ceRNA miR-492/
SOCS2

M2 type macrophage
polarization

down Zhang et al.
(2021b)

Circ_0045714 ceRNA miR-331-3p/
PIK3R3

proliferation, apoptosis, ECM
degradation

down Ding et al.
(2021)

circ_SEC24A ceRNA miR-26b-5p/
DNMT3A

proliferation, apoptosis,
inflammation, ECM
degradation

up Zhang et al.
(2021c)

CircRNA-MSR ceRNA miR-643/
MAP2K6

proliferation, apoptosis,
inflammation, ECM
degradation

up Jia and Wei
(2021)

Circ_0128846 ceRNA miR-140-3p/
JAK2

proliferation, apoptosis,
inflammation, ECM
degradation

up DMM(rats) IA injection (lentivirus) Li et al.
(2021d)

Hsa_circ_0134111 ceRNA miR-224-5p/
CCL1

proliferation, apoptosis,
inflammation, ECM
degradation

up Zhang et al.
(2021d)

circZNF652 NA PTEN apoptosis up Yuan et al.
(2021)

Circ-SPG11 ceRNA miR-337-3p/
ADAMTS5

proliferation, apoptosis,
inflammation

up Liu et al.
(2021a)

circFAM160A2 ceRNA miR-505-3p/
SIRT3

Mitochondrial Stabilization/
Apoptosis

down ACLT (mice) IA injection (lentivirus) Bao et al.
(2021)

CircFADS2 ceRNA miR-195-5p
methylation

apoptosis down Zhang et al.
(2021e)

CircHYBID ceRNA hsa-miR-29b-
3p/TGF-β1

hyaluronan metabolism (ECM
degeneration)

down Liao et al.
(2021)

circ_0136474 ceRNA miR-766-3p/
DNMT3A

apoptosis, oxidative stress up Zhu et al.
(2021b)

circ-BRWD1 ceRNA miR-1277/
TRAF6

proliferation, apoptosis,
inflammation, ECM
degradation

up Guo et al.
(2021)

Circ_0020093 ceRNA miR-23b/
SPRY1

apoptosis, ECM degeneration down Feng et al.
(2021)

circPDE4B protein scaffold RIC8A/MID1 ECM degeneration down ACLT (mice) IA injection (AAV) Shen et al.
(2021)

Hsa_circ_0032131 ceRNA miR-502-5p/
PRDX3/Trx1

cell circle, ECM degeneration,
Apoptosis

up DMM(rats) IA injection (lentivirus) Xu and Ma
(2021)

circ_0128846 ceRNA miR-127-5p/
NAMPT

apoptosis, inflammation, and
ECM degradation

up Liu et al.
(2021b)

CircATRNL1 ceRNA miR-153-3p/
KLF5

inflammatation, apoptosis and
ECM degradation

down Wang et al.
(2021a)

CircSLC7A2 ceRNA load/FUS/
CircSLC7A2/
miR-4498/
TIMP3

ECM degeneration, apoptossis down ACLT (mice) IA injection (AAV) Ni et al. (2021)

(Continued on following page)
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TABLE 1 (Continued) CircRNAs in OA progression.

circRNA Mechanism Pathway Biological function
regulated by circRNA

Expression Animal
model

Methodes to
knockdown/
overexpression

References

CircTMBIM6 ceRNA miR-27a/
MMP13

ECM degeneration up Bai et al.
(2020)

Circ_0116061 ceRNA miR-200b-3p/
SMURF2

apoptosis,
inflammation,proliferation

up Zheng et al.
(2021)

Circ_0001103 ceRNA miR-375/SIRT1 ECM degeneration,
apoptosis,proliferation

down Zhang et al.
(2021f)

CircSEC24A ceRNA miR-142-5p/
SOX5

inflammation,
apoptosis,proliferation

up Shi et al.
(2021)

Circ_0134111 ceRNA miR-515-5p/
SOCS1

proliferation,
apoptosis,inflammation

up Wu et al.
(2021a)

circ-IQGAP1 ceRNA miR-671-5p/
TCF4

inflammation, apoptosis up Xi et al. (2021)

hsa_circ_0094742 ceRNA microRNA-
127-5p/latexin

apoptosis, ECM degeneration down Sun et al.
(2021)

Circ_SLC39A8 ceRNA miR-591/
IRAK3

proliferation,
apoptosis,inflammation

up Yu et al. (2021)

circ-PRKCH ceRNA miR-140-3p/
ADAM10

proliferation,
apoptosis,inflammation

up Zhao et al.
(2021)

CircADAMTS6 ceRNA miR-431-5p apoptosis down Fu et al. (2021)

Circ0083429 ceRNA miR-346/
SMAD3

ECM degeneration down ACLT (mice) IA injection (AAV) Yao et al.
(2020)

Circ_0114876 ceRNA miR-671/
TRAF2

ECM degeneration,
inflammation

up Wang et al.
(2021b)

Circ_0045714 ceRNA miR-218-5p/
HRAS

ECM degeneration,
apoptosis,inflammation

down Jiang et al.
(2021c)

circRSU1 ceRNA miR-93-5p/
MAP3K8

oxidative stress regulation up DMM(mice) IA injection (AAV) Yang et al.
(2021)

Circ_DHRS3 ceRNA miR-183-5p/
GREM1

apoptosis and ECM
degeneration

up Jiang et al.
(2021d)

CircSERPINE2 ceRNA miR-495/
TGFBR2

apoptosis and ECM
degeneration

down Zhang et al.
(2020b)

circANKRD36 ceRNA miR-599/Casz1 apptosis and inflammation down Zhou et al.
(2021c)

CircRNA_0092516 ceRNA miR-337-3p/
PTEN

proliferation,
apptosis,inflammation

up DMM(mice) IA injection (lentivirus) Huang et al.
(2021)

ciRS-7 ceRNA ciRS-7/miR-7/
PI3K/AKT/
mTOR

autophage down Zhou et al.
(2019a)

CircCDH13 ceRNA miR-296-3p/
PTEN

apoptosis, ECM degeneration up DMM IA injection (AAV) Zhou et al.
(2021d)

circPDE4D ceRNA miR-103a-3p/
FGF18

ECM degeneration down DMM(mice) IA injection (AAV) Wu et al.
(2021b)

Hsa_circ_0005567 ceRNA miR-495/
ATG14

autophage, apoptosis down Zhang et al.
(2020a)

CircRNA HIPK3 ceRNA miR-124/SOX8 apoptosis up Wu et al.
(2020)

circRNF121 ceRNA LEF1/
circRNF121/
miR-665/
MYD88/
NF-Lb

ECM degeneration, apoptosis
and proliferation

up DMM(rats) IA injection (lentivirus) Wang et al.
(2020b)

(Continued on following page)

Frontiers in Genetics frontiersin.org08

Li and Lu 10.3389/fgene.2023.1173812

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1173812


chondrocytes affects downstream oxidative stress processes in
osteoarthritis models through the miR-93-5p/MAP3K8 axis.
Abnormally high expression of circRSU1 leads to the production
of more ROS and the loss of cartilage extracellular matrix, leading to
the occurrence and development of osteoarthritis (Yang et al., 2021).
The role of circRNA in oxidative stress deserves attention, and Zhao
found that in NASH (nonalcoholic fatty liver disease),
mitochondrial circRNA-circSCAR reduces mitochondrial
oxidative stress processes affecting the interaction between CypD
and ATP5B. In the case of lipid exposure, circSCAR is regulated by
endothelial mesh stress and PCG-1. After overexpression of
circSCAR in mitochondria through mitochondrial-targeted
nanograms in mice, oxidative stress in the NASH liver was
significantly reversed, and liver function was improved (Zhao
et al., 2020). This study reveals that circRNAs also play an
essential regulatory role in metabolic diseases and mitochondrial
function. At the same time, a significant proportion of patients with
OA have significant metabolic syndrome, considering the possibility

of metabolic osteoarthritis (Kuusalo et al., 2021). On the other hand,
mitochondria also play an essential role in aging-induced
degenerative diseases such as OA (Sun et al., 2020). CircRNAs
have also been reported to play an essential role in mitochondrial
stabilization in OA. SIRT3, an essential gene for mitochondrial
function, significantly decreased expression in OA chondrocytes and
was regulated by miR-505-3p. Overexpression of miR-505-3p can
cause ROS to rise, and apoptosis of chondrocytes increases, while
overexpression of CircFAM160A2 plays a therapeutic role. Both in
vivo and in vitro experiments have demonstrated that
CircFAM160A2 regulates chondrocyte mitochondrial stability
and chondrocyte apoptosis through the miR-505-3p/SIRT3 axis
(Bao et al., 2021). Recent studies have also demonstrated that
CircHIPK3, through the mir-30a-3p/PON2 axis, regulates
mitochondrial function, which in turn affects chondrocyte
apoptosis (Shang et al., 2022). These findings suggest that our
circRNA may also regulate mitochondria in OA, providing new
research ideas.

TABLE 1 (Continued) CircRNAs in OA progression.

circRNA Mechanism Pathway Biological function
regulated by circRNA

Expression Animal
model

Methodes to
knockdown/
overexpression

References

CircCDK14 ceRNA miR-125a-5p/
Smad2/TGF-β

ECM degeneration, apoptosis
and proliferation

down DMM(rabbit) IA injection (AAV) Shen et al.
(2020)

Circular RNA-9119 ceRNA microRNA-
26a/PTEN

apoptosis down Chen et al.
(2020a)

CircVCAN NA NF-κB cell circle, apoptosis up Ma et al.
(2021)

CircRNA-UBE2G1 ceRNA miR-373/
HIF-1a

apoptosis, proliferation up Chen et al.
(2020b)

CircPSM3 ceRNA miRNA-296-5p differentiation, proliferation up Ni et al. (2020)

Circular RNA-
CDR1as

ceRNA microRNA-
641/FGF-2/
MEK/ERK

ECM degeneration,
inflammation

up Zhang et al.
(2020c)

Circ_0136474 ceRNA miR-127-5p/
MMP13

Inflammation, proliferation up Li et al. (2019)

CircSERPINE2 ceRNA miR-1271/ERG ECM degeneration, apoptosis down ACLT (rabbit) IA injection (AAV) Shen et al.
(2019)

ciRS-7 ceRNA ciRS-7/miR-7 proliferation, apoptosis,
inflammation

down Zhou et al.
(2019a)

circRNA.33186 ceRNA miR-127-5p/
MMP-13

apoptosis up DMM Zhou et al.
(2019b)

Circular RNA
Atp9b

ceRNA miR-138-5p ECM degeneration,
inflammation

up Zhou et al.
(2018)

Hsa_circ_0045714 ceRNA miR-193b/
IGF1R

proliferation, apoptosis and
ECM degeneration

down Li et al.
(2017b)

hsa_circ_0005105 ceRNA miR-26a/
NAMPT

ECM degeneration,
inflammation

up Wu et al.
(2017)

circRNA-CER ceRNA MiR-136/
MMP13

ECM degeneration up Liu et al.
(2016)

ECM, extracellular matrixc; ceRNA, competing endogenous RNAs; DMM, medial meniscal enucleation models; ACLT, anterior cruciate ligament transection; IA injection, intra-articular

injection; AAV, adeno-associated virus; AV, adenovirus.
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3.2.5 circRNAs act as protein scaffolds in OA
chondrocytes

It is clear that circRNAs’ rich mechanisms of action have been
increasingly recognized in recent years, such as translation function
and interactions with proteins, and in OA studies, little is known
about mechanisms other than ceRNA. In a recent study, Shen et al.
found that the reduction in circPDE4B in cartilage in OA patients
was regulated by upstream FUS (an RNA-binding protein). The
downregulation of circPDE4B resulted in the degradation of the
extracellular matrix and decreased viability of chondrocytes. At the
same time, AGO2 RIP was found to not function through the
ceRNA mechanism. After cloning and amplification of its ORF
sequence, no protein translated by circPDE4B was identified.
Therefore, after RPD-MS and qRT–PCR verification, the authors
found that RIC8 guanine-nucleotide exchange factor A (RIC8A)
interacted with circPDE4B. Mass spectrometry has identified
MID1 as an E3 ligase interacting with circPDE4B. After
identifying the downstream pathway, the author screened out the
p38/MAPK pathway. In medial meniscal enucleation models
(DMM) model mice, overexpressed circPDE4B has also been
proven to inhibit activating the RIC8A and p38/MAPK pathways
and reverse the OA phenotype in mice, indicating that circPDE4B
can be an effective molecular target drug for OA (Shen et al., 2021).
Recent studies have shown that circNFKB1 regulates the expression
of its host gene NFKB1 by interacting with the ENO1 protein (Tang
et al., 2022a). A novel study found that circFOXO3 regulated the
downstream PI3K/Akt pathway and affected chondrocyte
autophagy through interaction with its parental gene FOXO3
(Zhao et al., 2022). In the future, more circRNA functions and
mechanisms of action may be revealed in OA, which also suggests
the possibility of circRNA as a molecularly targeted drug.

4 CircRNA is involved in the regulation
of the environment within the joint

As a multi-component organization, osteoarthritis is a complex
mechanism and an unclear chronic inflammatory disease, and
changes in the joint environment are also essential in its
development. Current studies of osteoarthritis also focus on other
components of the joint, including synovium and subchondral bone,
and abnormal vascular and neural factors in osteoarthritis (Ching
et al., 2021; Zhang and Wen, 2021).

4.1 CircRNA is abnormally expressed in the
synovium or infrapatellar fat pad of patients
with osteoarthritis

The role of the synovium is not negligible in the development of
osteoarthritis. Synovitis is often observed in the OA joint. Both
synovial hyperplasia and the secretion of proinflammatory factors
drive the progression of osteoarthritis (van den Bosch et al., 2020).
MRI and ultrasound have identified a positive correlation between
the risk of structural progression of synovial and osteoarthritis and
joint symptoms (Roemer et al., 2011). Shuai et al. performed
circRNA sequencing of OA synovial samples and controls and
identified 122 circRNAs differentially expressed in osteoarthritic

synovium. Using GO analysis and KEGG enrichment analysis,
differentially expressed circRNAs were rich in adhesion
molecules, tumor pathways, TGF-β, and some osteoarthritis
pathways, such as Hippo and WNT pathways. This article also
establishes the circRNA-miRNA network, exploring possible
molecular regulation mechanisms for specific expression of
circRNAs, and the miR-20, miR-29, and miR-136 families have
all been reported in previous OA studies and interact with several
differentially expressed circRNAs (Xiang et al., 2019). On the other
hand, the infrapatellar fat pad and the surrounding synovium are
also essential tissues involved in regulating the intra-articular
environment. Circular RNA expression profiles of the
infrapatellar fat pad/synovium unit reveal that hsa_circ_
0005265 was down-expressed in both OA synovium and IPFP,
targeting hsa-miR-6769b-5p and hsa-miR-1249-5p (Jiang et al.,
2021a). However, the molecular mechanisms of differentially
expressed circRNAs in OA synovium or infrapatellar fat pad in
the progression of OA have not been thoroughly investigate.

4.2 Abnormal expression of circRNA in
osteoclasts of osteoarthritis

Changes in subchondral bone, especially the imbalance between
rupture and remodeling, are also essential mechanisms for the
development of osteoarthritis (Fan et al., 2021). In such a
process, osteoclasts play a central role (Zhu et al., 2020). Dou C
and others first identified the differential expression of circRNAs in
abnormally activated osteoclasts. Many differentially expressed
circRNAs were identified in osteoclasts and activated osteoclasts,
suggesting that circRNA may also be extensively involved in
remodeling subchondral bone. In another study, the expression
of circRNA in bone marrow stromal cells during RANKL- and
CSF1-stimulated osteoclast formation was sequenced, and their
difference was analysed. This study focuses on the role of
circRNA-28313 in bone marrow osteoclast differentiation. The
results showed that circRNA-28313 knockout inhibited the
differentiation of bone marrow mesenchymal stem cells and
RANKL-induced osteoclasts and partially prevented the bone loss
induced by ovariectomy (OVX). Further downstream experiments
further found that circRNA-28313 alleviated miR-195a-mediated
inhibition of CSF1 through a ceRNAmechanism, thereby regulating
osteoclast differentiation (Chen et al., 2019b). The destruction of
subchondral bone in OA is related to bone destruction between OA
and osteoporosis, and RANKL was also identified in OA (Kovacs
et al., 2019). These studies also indicate that circRNA is more likely
to participate in the pathogenesis of osteoarthritis.

4.3 Abnormal expression of circRNA in
osteoarthritis meniscus

Meniscal degeneration and wear are also prevalent in the knee
tissue of OA patients, and a large number of OAmodel animals have
used medial meniscal enucleation models to mimic OA (Zaki et al.,
2021). Few studies have focused on the mechanism of meniscal
changes in OA, but the meniscus plays an essential role in the
stability of joints and the protection of articular cartilage in the
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function of the knee joint. BinWang et al. performed bioinformatics
analysis and prediction using public databases (GEOs) and revealed
360 differentially expressed genes in the OA meniscus. It is expected
that hsa_circ_0025119, hsa_circ_0025113, hsa_circ_0009897, and
hsa_circ_0002447 are the most critical circRNAs. The article failed
to verify and identify the expression and function of circRNA in
subsequent experiments, it also suggested that circRNA might also
play a regulatory role in the OA meniscus (Wang et al., 2020a).
Meanwhile, The hsa_ circ_ 0018069/mir-147b-3p/tjp2 axis was also
found to play a regulatory role in the OA meniscus (Jiang et al.,
2021b).

5 Upstream regulation and
downstream metabolism of circRNAs
in OA

The reason for the change in circRNA in OA is nothing more
than the increase and decrease in metabolism. The metabolism and
upstream regulation of circRNAs have also been hot topics of
research, with clear evidence that circRNAs are regulated by
transcription factors. In OA studies, there has not been much
research on the upstream regulatory factors of circRNAs in
osteoarthritis. Wang et al. found that LEF1, as a transcription
regulator, affects the expression changes of downstream
circRNF121, regulates the miR-665/MYD88/NF-Lb pathway, and
ultimately regulates the apoptosis and proliferation of chondrocytes
and the metabolism of extracellular matrix (Wang et al., 2020b).
RNA binding proteins regulate back splicing mainly by directly
bridging distal splice sites and by binding to intronic complementary
sequence (ICS) (Chen, 2020a). RNA binding proteins including
QKI, HNRNPL, Mbl, SLU7, NF110, NF110, DHX9, ADAR1 were
reported to potentially regulate back splicing of circRNAs (Ashwal-
Fluss et al., 2014; Conn et al., 2015; Ivanov et al., 2015; Aktas et al.,
2017; Li et al., 2017a). Some of them, such as QKI and DHX9, were
reported to be differentially expressed in osteoarthritic tissues as well
(Li et al., 2016; Tang et al., 2022b), which may also be one of the
upstream mechanisms regulating expression of circRNAs in
osteoarthritis. However, another possible change in the
expression of circRNA in OA is its downstream metabolic
changes. Changes in downstream metabolic clearance have rarely
been mentioned in OA studies. With a further understanding of the
circRNA metabolic pathway, this may be one of the follow-up
research directions.

6 The role of circRNA in OA of different
etiologies and stages

6.1 circRNAs in different subtypes of OA

In fact, from a clinical point of view, some risk factors for
osteoarthritis should also be taken into account. OA is a highly
heterogeneous disease, and different drivers tend to shape different
OA phenotypes (Van Spil et al., 2019). In existing circRNA-related
studies, different types of osteoarthritis caused by different factors
have not yet been considered by most researchers. However, some
factors were considered, such as the specimen selection of load-

bearing stress areas in osteoarthritis cartilage compared with non-
load-bearing stress areas. Some studies selected chondrocytes from
load-bearing versus non-load-bearing areas to identify differential
expression. The etiology of osteoarthritis in the clinic is diverse and
complex, and it has been established as a risk factor for several
conditions: obesity, physical activity, structural factors, and genetics
(Martel-Pelletier et al., 2016). Patients with OA of different
etiologies or etiological factors should be treated separately.
Therefore, studies should be more refined regarding OA of
different etiologies, and corresponding studies aimed at different
etiological subtypes of OA, such as RNA sequencing and
identification of differential expression in patients with distinct
metabolic profiles or those with distinct stress factors, may also
yield different results. The construction of different OA models
usually simulates different OA initiating factors, especially the
design of animal models (Zaki et al., 2021). Most research on
OA circRNAs is anterior cruciate ligament transection (ACLT)
and medial meniscal enucleation models (DMM) models in rats
and mice. These two models can simulate the initiating factors of
traumatic osteoarthritis. More pathogenetic factors for OA should
be considered. Designing different animal models may be a solution
to this problem. Additionally, molecular subtype of OA has been
mentioned by more and more researchers. Julia Steinberg et al.
conducted a cluster analysis of mRNA sequencing data obtained
from cartilage and synovium samples of OA patients. They
discovered two subgroups in the synovium, one related to
inflammation and the other related to extracellular matrix
metabolism. High-grade inflammation of cartilage was also linked
to female gender and proton pump inhibitor use (Steinberg et al.,
2021). In another study, researchers from China sequenced cartilage
samples from 131 OA patients and carried out a cluster analysis of
their expression profiles. The patients were divided into four
subtypes: a subtype characterized by glycosaminoglycan
metabolism disorder, a subtype marked by collagen metabolism
disorder, a subtype with sensory neuron activation, and an
inflammation subtype (Yuan et al., 2020). Biochemical markers
have also been employed to cluster and classify patients into
three groups, C1, C2, and C3. C1 is associated with low tissue
turnover, including low repair and turnover of articular cartilage and
subchondral bone. C2 is characterized by structural damage, such as
high bone formation and resorption and cartilage degeneration.
C3 is linked to systemic inflammation, joint tissue degeneration, and
cartilage degeneration. In the FNIH/OAI cohort, C1 had the highest
proportion of progressors, C2 was linked to the progression of
mechanical structure, and C3 was associated with pain, which was
consistent with molecular typing (Angelini et al., 2022). Future
research can construct circRNA expression profiles of patients with
different OA subtypes and conduct in-depth exploration of the
relevant mechanisms.

6.2 circRNAs in different stages of OA

Another important aspect is that OA, as a chronic disease, has a
significantly long pathological process, and different stages of OA
have different characteristics. Sun et al. (2011) measured the miRNA
expression profiles of rat articular cartilage at different
developmental stages and sequenced femoral head cartilage on

Frontiers in Genetics frontiersin.org11

Li and Lu 10.3389/fgene.2023.1173812

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1173812


zeroth days, twenty-first days, and forty-second days after birth. The
authors observed in the results that, on the one hand, some miRNA
clusters were continuously expressed at three stages, which may
illustrate the existence of specific conserved sequences of miRNAs
during development. On the other hand, the expression of some
miRNAs changed obviously at different stages, and in the
sequencing results combined with PCR validation, it could be
found that some miRNAs showed early high expression. In
contrast, some showed high expression at later stages of
developmen. This study reveals the phased change in the miRNA
expression profile at different stages of development. S. A. Ali et al.
classified 91 OA patients into early OA (n = 41) and late OA groups
(n = 50) using K-L grading of standard X-ray, performed next-
generation sequencing on plasma samples from patients, and
identified that hsa-mir-335-3p, hsa-mir-199a-5p, hsa-mir-671-3p,
hsa-mir-1260b, hsa-mir-191-3p, hsa-mir-335-5p, and hsa-mir-
543 were more highly expressed in early OA compared to late
OA, while hsa-mir-193b-5p, hsa-mir-193a-5p, and hsa-mir-455-5p
were more highly expressed in late OA. Meanwhile, the authors also
identified some novel miRNAs, some of which showed high
expression in early OA, some of which showed high expression
in late OA, and others that showed high expression in both early and
advanced stages (Ali et al., 2020). This result illustrated that the
expression of miRNAs might change continuously with the
progression of OA. Therefore, we can infer that in the different
stages of the disease, such as early and late OA, the characteristic
circRNA expression profile in the determination stage may bring
different results. Determination of circRNA expression profiles
based on the patient’s symptoms, signs, functional assessment
such as WOMAC or KOOS score of the knee (Roos and
Toksvig-Larsen, 2003), and imaging grading such as Kellgren-
Lawrence grade to stratify different patients may be considered,
which may help us to understand the role of circRNAs in OA more
deeply.

7 Clinical application and potential of
circRNA

7.1 circRNA is the marker of a liquid biopsy

CircRNAs are less susceptible to degradation by RNase R due to
their lack of 3′and 5′ends, which confers a longer half-life and
stability than other noncoding RNAs or mRNAs, suggesting the
possibility of circRNAs as indicators for clinical testing. CircRNA as
a liquid biopsy indicator has been frequently mentioned in tumor
studies (Li et al., 2022a; Wang et al., 2022a; Ruan et al., 2022; Xue
et al., 2022). CircRNA was detected in cartilage, synovial fluid, and
serum in OA patients and was different from the control group,
suggesting that it is an indicator of early diagnosis of osteoarthritis.
Chen C et al. measured hsa_circ_101178 levels in serum and fluid
and control group serum and fluid in OA patients and found that
group OA was significantly higher than the control
group. Meanwhile, there was a positive correlation between circ-
101178 levels in serum and synovial fluid. In addition, serum hsa_
circ_101178 was positively correlated with OA’s KL score and
WOMAC pain score (Chen, 2020b). Fangyu et al. identified five
circRNAs in the synovial fluid of OA patients who were significantly

elevated compared with healthy controls. AUC analysis of diagnostic
value found that hsa_circ_0104873, hsa_circ_0104595, and hsa_
circ_0101251 can effectively distinguish between OA patients and
healthy controls. However, it was also found that three circRNAs
were positively correlated with the radiological grade and symptom
severity of OA patients (Yu et al., 2018). Similarly, Ying Wang et al.
also identified that circ-0032131 levels in the peripheral blood of OA
patients were significantly different from those in the healthy
population (Wang et al., 2019). Additional studies have also
reported that plasma circRNA-016901 can effectively distinguish
osteoarthritis from rheumatoid arthritis and is correlated with
disease severity (Du et al., 2022). Although these studies failed to
carry out clinical trials to prove the diagnostic value of circRNA, they
also suggested, to some extent, the possibility of circRNA as a
molecular marker for the diagnosis of osteoarthritis.

7.2 Clinical transformation potential of
circRNA

The study of circRNAs is constantly moving from basic research
to clinical translation, and its clinical potential has been explored as
it has become more aware of its mechanisms and functions. For
example, several animal trials have demonstrated that intraarticular
injection of AVV or AV carried shRNA or plasmid targeting
circRNAs, and silencing or overexpressing osteoarthritis-
associated circRNAs in articular cartilage can effectively alleviate
the progression of osteoarthritis in animal models. Treatment with
intra-articular injection of sodium hyaluronate and glucocorticoids
is widely used in the clinic (Yuan et al., 2022). However, it remains
controversial. The development of precision medicine approaches
targeting specific nucleic acid drugs within OA joints, combined
with individual sequencing results, may lead to better outcomes and
personalized treatment options. While circRNAs are stable and are
not easily degraded by RNase, the potential for translation and
interaction with proteins may make them suitable carriers for
nucleic acid drugs (Figure 3).

7.2.1 Extracellular vesicles loaded with circRNA
Extracellular vesicles are also a significant research hotspot, and

extracellular vesicles have been suggested to be promising drug
carriers, particularly nucleic acid drugs. Extracellular vesicles (EVs)
are small vesicles released from different cells into the extracellular
matrix, classified by origin and size, and include three subtypes: 1.
Apoptotic bodies (500 nm—5 μm); 2. Microvesicles (150–500 nm);
3. Exosomes (40–150 nm), which can participate in intercellular
communication (Wu et al., 2022). Exosomes are a subset of EVs
secreted by most cells and have good biocompatibility, low toxicity
and immunogenicity as well as great designability. They have
received extensive attention over the past decades as therapeutic
carriers and diagnostic markers. Circular RNAs naturally carried by
exosomes have been widely used in the treatment of cancer,
cardiovascular, and metabolic diseases (Zhang et al., 2022b).

In the treatment of OA, several studies have proposed that
extracellular vesicles may be used as carriers to loading on specific
circRNAs and thereby exert their therapeutic effects on OA. As an
example, Songlong Li et al. isolated extracellular vesicles fromMSCs
and observed an increase in COL2A1, Sox9, and aggrecan expression
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after coculturing circHIPK3-overexpressing extracellular vesicles
with chondrocytes, along with inhibited expression of OA-related
markers such as MMP-13 and Runx2. Meanwhile, functional
experiments also found that CircHIPK3 could alleviate IL-1β-
induced inhibition of chondrocyte apoptosis, proliferation, and
migration (Li et al., 2021c). Shi Cong Tao et al. found that
circRNA3503 was significantly increased after melatonin (MT)-
induced cellular sleep. Mechanistically, circRNA3503 acted as a
sponge for hsa-mir-181c-3p and hsa-let-7b-3p. Prepared and
isolated circRNA3503-loaded extracellular vesicles (circRNA3503-
OE-SEVs) from SMSCs. The feasibility of circRNA3503-OE-SEVs
in preventing OA progression was validated by in vivo and in vitro
experiments (Tao et al., 2021). In addition, circRNAs transported by
exosomes (circ_0001236) suppresses IL-1 β via the miR-3677-3p/
Sox9 pathway in TGF-β induced cartilage degeneration, promoting
chondrocyte proliferation (Mao et al., 2021b).

7.2.2 mRNA therapeutics
mRNA could theoretically produce any protein on demand

inside the cell, enabling treatment of disease. However, linear
mRNAs also face many challenges due to their own defects.
CircRNAs do not contain a 5′- end cap and a 3’- end PolyA tail
and form a covalently closed circular structure by back splicing,
protecting circRNAs from degradation by exonucleases. At the same
time, circRNAs also need no complex modification when they are
synthesized in vitro, so circRNAs have the advantages of high
stability, low immunogenicity, and long-lasting expression
compared to linear mRNA (Santer et al., 2019). Recent studies
identified nearly a thousand endogenous circular RNAs that are
translatable, half of which can synthesize large molecular weight
proteins by rolling circle translation. The authors explore factors
that influence translation of circular RNAs and, by optimizing
relevant conditions, increase circular RNA protein production
several hundred fold, providing a more abundant and long-
lasting translated protein product under in vitro and in vivo
conditions (Fan et al., 2022).

In vitro synthesis of circRNAs is the basis of drug development,
and there have been studies that successfully prepared circRNAs
in vitro and elucidated their functions. There are currently two
major routes known for the in vitro synthesis of circular RNAs:
direct intramolecular ligation into circles based on catalysis by
T4 RNA ligase, and self splicing into circles based on type I
intronic ribozymes (T4 bacteriophage or Anabaena) (Chen et al.,
2017; Wesselhoeft et al., 2019; Rausch et al., 2021; Qu et al., 2022).
There are studies showing that circular RNA synthesized by T4 RNA
ligase does not elicit an intracellular innate immune response (Liu
et al., 2022a). It provides an important foundation for the further
application of circular RNAs synthesized in vitro and also holds
promising prospects for the further development of nucleic acid
aptamers and gene therapy fields based on circular RNA technology.
Artificially manufactured circular RNA technology has also been
successfully applied in drug development. CircINSR was screened
for significant underexpression in heart tissue from patients with
heart failure and mice with left ventricular pressure overload
induced cardiac remodeling. The authors explored the
therapeutic effect using two modalities: AAV loading
overexpression plasmid and in vitro transcribed CircINSR, and
found that in vitro transcribed CircINSR could achieve superior
therapeutic and protective effects against doxorubicin mediated
cardiomyocyte death (Lu et al., 2022).

8 Prospect of research

At present, there are a considerable number of studies on the
function of circRNAs in osteoarthritis, which fully shows that
circRNAs play a regulatory role in OA. However, there are still
many deficiencies in the existing research. For example,
mechanistic research is limited to acting as a sponge
combined with miRNA, which fails to consider the
characteristics of diseases, such as OA of different types and
stages. However, the potential of circRNAs has been confirmed

FIGURE 3
Clinical application potential of circRNA. CircRNA has great potential for both diagnostic and therapeutic applications. In diagnosis, it can be used as
a liquid biopsy tool for early screening of OA patients. On the therapeutic side, circRNA is considered to be good for treatment by in vitro synthesis (linear
RNA cyclization) or stem cell-derived circRNA piggybacked by materials such as extracellular vesicles and injected through the joint cavity.
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in many other areas, giving us some directions for studying the
role of circRNAs in OA.

Many studies have confirmed the critical role of miRNA in
osteoarthritis, and miRNA as a molecular target for precision
therapy has also been proven feasible (Ji et al., 2020). CircRNA is
an essential competitive inhibitor of miRNA, and its high degree of
conservatism and stability makes it possible to fight OA effectively.
However, the richness of the mechanism of action of circRNA has
been described earlier. The mechanism of circRNA should not be
limited to ceRNA. In comparison, only a few articles illustrate its
function in OA through interactions with proteins. With the
continuous progress of sequencing technology, many studies have
shown that circRNAs have the potential for translation and can
regulate transcription. Breakthrough progress has been made in the
study of circRNA translation products as disease-specific molecular
targets in cancer. In triple-negative breast carcinoma, circ-HER2 is
expressed in approximately 30% of triple-negative breast carcinoma
cells. The translated peptide HER2-103 promotes the proliferation
and invasion of triple-negative breast cancer cells, and HER2-103
can also be used as a target molecule for the anti-HER2 targeted drug
pertuzumab (Li et al., 2020). In addition, many studies have
confirmed the critical role of circRNA translation products in
disease development (Zhou et al., 2021b). In addition, a database
on circRNA translation has been established. However, up to now,
no study of osteoarthritis has found a translational function of
circRNA, which may be due to the previous researchers’ lack of in-
depth understanding of circRNA, and there are good reasons why
we can assume that circRNA in OA may also have the translational
function to regulate the progress of the disease.

At present, research on circRNAs in OA has also been
performed in a considerable number of experimental animals.
As shown in Table 1, animal models used extensively in existing
studies are rats, mice, and rabbits. The knockout or
overexpression of circRNA was achieved by intra-articular
injection of adenovirus (AV), adeno-associated virus (AAV),
or lentivirus. However, because of the unique and complex
structure of the articular cavity, intra-articular injections can
be well absorbed or unknown by articular cartilage and
surrounding tissues. Therefore, the effect of such knockout or
overexpression in animal models has not been effectively
verified, setting obstacles to the development of drug targets
and drug safety. All of these findings demonstrate the
importance of establishing a circRNA knockout model.
Methods to knock out circRNA have always been a challenge.
In the past, such knockdowns may have been limited by
technical reasons, but the emergence and advancement of
new technologies have made it possible to achieve a specific
knockout of circRNA (He et al., 2021). Benyu Liu et al. used
CRISPR-CAS9 to build circKcnt2 knockout mice to study the

role of circRNA in intestinal inflammation. The knockout site
was selected as a intronic complementary sequences mediated by
flanking introns, which is thought to be the critical sequence for
back splicing of circRNAs. circKcnt2 knockout was constructed
by deleting the intronic complementary sequences of the
genome. Analysis of the expression of circKcnt2 and its host
genes in knockout models proved that circKnct2 could be
knocked out specifically, while the expression of its host
genes was not affected (Liu et al., 2020). The experiment
successfully constructed the circRNA knockout model and
demonstrated the function of circRNA. Furthermore, a
circRNA knockout model was established in OA to improve
the current understanding.

In conclusion, circRNA may function as a regulator in OA. A
growing body of evidence suggests that circRNAs can regulate
chondrocyte proliferation, apoptosis, differentiation, and
autophagy, regulate extracellular matrix degradation, and regulate
oxidative stress processes and inflammatory processes in
chondrocytes. On the other hand, circRNAs can modulate the
intra-articular environment, such as the synovium, meniscus, and
subchondral bone, and can serve as biomarkers for liquid biopsy.
Although the number of studies available is already significant,
many deficiencies remain regarding mechanisms, animal model
construction, and disease heterogeneity.
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