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Introduction: Breast cancer is the most common form of cancer among women,
it is critical to identify potential targets and prognostic biomarkers. Ferroptosis
combined with immunity shows a pivotal role in a variety of tumors, which
provides new opportunities to detect and treat breast cancer.

Methods: Our first step was to combine multiple datasets to search for immune
ferroptosis-related mRNAs. In the next step, risk signatures were created using
Least Absolute Shrinkage and Selection Operator (LASSO). After that, based on the
results of the multivariate Cox analysis, we created a prognostic nomogram and
validated the model’s accuracy. Finally, functional enrichment analysis, single
sample gene set enrichment analysis (ssGSEA), immunity and drug sensitivity
correlation analysis were performed to explore the possible mechanisms by
which these immune ferroptosis associated mRNAs affect BRCA survival.

Results: An immune ferroptosis signature (IFRSig) consisting of 5 mRNAs was
constructed and showed excellent predictability in the training and validation
cohorts. A correlation analysis revealed that clinical characteristics were closely
related to risk characteristics. Our nomogram model, which we created by
combining risk characteristics and clinical parameters, was proven to be
accurate at predicting BRCA prognosis. Further, we divided patients into
lowrisk and high-risk groups based on the expression of the model-related
genes. Compared with low-risk group, high-risk group showed lower levels of
immune cell infiltration, immune-related functions, and immune checkpoints
molecules, which may associate with the poor prognosis.

Discussion: The IFRSig could be used to predict overall survival (OS) and treatment
response in BRCA patients and could be viewed as an independent prognostic
factor. The findings in this study shed light on the role of immune ferroptosis in the
progression of BRCA.
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1 Introduction

With the highest incidence of all female malignant tumors
worldwide, BRCA is the most prevalent malignant tumor in
women (Siegel et al., 2021). Although great progress has been
made in the therapeutic effect of BRCA (Siegel et al., 2023),
sadly, there are still no reliable diagnostic tools or markers for
determining the prognosis of BRCA patients (Islam et al., 2020;
Pupa et al., 2021; Sindhu et al., 2021). Until now, tumor lymph node
metastasis (TNM) stage has been used to predict BRCA prognosis
and treatment response. However, due to tumor heterogeneity,
BRCA patients with the same TNM stage showed different
prognosis and treatment response. Therefore, it is important to
combine other useful indicators to predict prognosis and treatment
response.

As opposed to apoptosis, necrosis, and autophagy, ferroptosis
was a type of programmed cell death dependent on iron (Hadian
and Stockwell, 2020; Fardi et al., 2021; Jiang et al., 2021). The
classical mode of regulation of ferroptosis was through the
neutralization of lipid peroxides by glutathione peroxidase 4
(GPX-4) (Yang and Stockwell, 2016; Ding et al., 2020; He
et al., 2020). There was growing evidence that ferroptosis
causes hypersensitivity reactions in cancer cells with a higher
degree of malignancy, particularly those with intrinsic or
acquired drug resistance (Hangauer et al., 2017; Viswanathan
et al., 2017). In addition, ferroptosis influences the effectiveness
of cancer immunotherapy and was associated with T cell-
mediated antitumor immunity (Wang et al., 2019).
Additionally, it had been demonstrated that immune
modulation of the tumor microenvironment (TME) could
facilitate ferroptosis, which in turn increases the
immunogenicity of the TME, enhancing the immune
modulation response (Zhang et al., 2019). It was anticipated
that immunotherapy will had synergistic effects through
ferroptosis, promoting tumor control, in combination with
ferroptosis-promoting modalities like radiation therapy and
targeted therapy (Lang et al., 2019; Chen et al., 2021). There
was a close relationship between tumor cells, the immune
microenvironment, and ferroptosis (Lang et al., 2019; Jiang
et al., 2021). In addition, studies had found that ferroptosis
intervention could effectively improve immunosuppression
(Gao et al., 2015; Sun et al., 2016; Alavian and Ghasemi,
2021). In conclusion, the important role of immunity and
ferroptosis might provide a new direction for predicting
prognosis and treatment response of breast cancer.

The goal of this research was to develop new survival predictive
risk signatures and to explore the prognostic role of immune
ferroptosis-related mRNAs in BRCA. Firstly, we combined
multiple datasets to screen mRNAs associated with prognosis.
The risk features for BRCA prognosis prediction were then
constructed by LASSO regression analysis. At the same time,
the total samples were divided into training cohort and
validation cohort according to the ratio of 1: 1. Then, by
combining this feature with other clinical parameters, a
nomogram was created to predict 1-, 3-, and 5-year survival.
Ultimately, we explored the relationship between risk
characteristics and underlying biological function, immunity,
and drug susceptibility.

2 Materials and methods

2.1 Transcriptome data acquisition and
model building

In this research, we downloaded the transcriptome Fregments
Per Kilobaseper Million (FPKM) of breast cancer patients from
the TCGA database (https://portal.gdc.cancer.gov/). The
RNAseq data in FPKM format was converted into transcripts
per millionreads (TPM) format and log2 conversion was
performed. Transcriptome data was organized and ENSG
numbers were converted to symbolic IDs. The research was
carried out in accordance with the Helsinki Declaration
(revised 2013).

The ImmPort database (https://www.immport.org./home) and
the GeneCard database (https://www.genecards.org/) were used to
obtain 17,500 human immune-related genes (IRGs). A total of
398 ferroptosis-related genes (FRGs) were downloaded through
the FerrDb database (http://www.datjar.com) and literature (Song
et al., 2021). Two gene sets were crossed with differentially expressed
genes to obtain co-expressed genes (IFR-DEG), and the cutoff
conditions were set as log2 fold change (logFC) < 1, p-value <0.
05. Then, univariate Cox regression analysis was performed, and the
total samples were divided into training cohort and validation
cohort according to the ratio of 1: 1. The training cohort builds a
risk model based on LASSO-Cox regression analysis. The formula
for calculating the risk score was as follows: Risk score =
βgene1×exprgene1+βgene2×exprgene2+.+βgenen×exprgenen. At
the same time, to reduce the dimensionality of the nomogram,
we used an unsupervised learning algorithm called principal
component analysis (PCA), which allowed us to visualize the
spatial distribution of samples.

2.2 Gene correlation, gene network and
functional enrichment analysis

Gene correlation analysis was performed by Spearman analysis
and visualized with the ggplot2 package. Model-related genes were
submitted through GeneMANIA (http://www.genemania.org),
which analyzed and displayed genes that perform similar
functions—representing protein expression and inheritance in
the network. Genes were enriched by Gene Ontology (GO)
terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways to investigate the potential biological functions of
interacting proteins and model gene co-expression in pan-
cancer, GO enrichment analysis including molecular function
(MF), cellular component (CC) and biological process (BP).
Both GO and KEGG analyses were performed by the R package
ClusterProfiler. Then high and low risk differential genes were also
analyzed by GO and KEGG.

2.3 Model validation

We divided patients into high-risk and low-risk groups, and
then we generated heatmaps associated with prognosis based on the
median risk score. To determine differences in survival between
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high- and low-risk groups, we plotted Kaplan-Meier survival curves,
distributions of survival status, and distributions of risk scores.
Finally, the predictions of the risk scoring model were further
validated by applying the “timeROC” package to plot the ROC
curves of the training and validation groups.

2.4 Independent prognostic analysis and
nomogram construction

Nomograms were constructed by combining relevant clinical
factors and risk scores obtained with risk scores (we used the R
packages: “rms”, “foreign” and “survival”). An evaluation of the
model’s discriminative ability was then carried out by drawing a
calibration curve.

2.5 The relationship between risk score and
immune cell infiltration

We calculated immune stages using single-sample gene set
enrichment analysis (ssGSEA) (He et al., 2018). In exploring the
relationship between risk score values and immune-infiltrating cells,
we used Spearman’s rank correlation analysis.

2.6 Immune microenvironment, immune
checkpoints, immune escape

A stromal score, an immune score, an estimated score, and a
tumor purity were calculated using transcriptome profiles from
UCECs. In the high-evolution and low-evolution groups of hub
genes, we compared stroma scores, immune scores, estimated
scores, and tumor purity using Limma and ggpubr packages. In
addition, tumor immune escapemechanisms in different risk groups
were analyzed using the TIDE algorithm.

2.7 Gene mutation analysis

In the gene mutation analysis, the number and quality of gene
mutations in two subgroups (Maftools package) of BRCA patients were
analyzed. In addition, we also analyzed the relationship between tumor
mutational burden (TMB) and risk score subgroups using Student’s t-test.

2.8 Predicting response to chemotherapy

To elucidate the role of signatures in clinical treatment,
IC50 values of commonly used chemotherapeutics were evaluated

FIGURE 1
Build a riskmodel. (A) Venn diagram. Blue represented immunity genes, green represented ferroptosis genes, and red represented differential genes.
(B) Distribution of LASSO regression coefficients for crossed genes. (C) LASSO deviation profile of crossed genes. (D) PCA plot of high and low-risk
group. PCA, principal component analysis.
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using high-throughput sequencing data of BRCA in TCGA. In this
study, the Wilcoxon signed-rank test was used to compare the
differences between the two groups, and pRRophetic and
ggplot2 were used for the visualization of the results.

2.9 Statistical analysis

R software (version 4.1.2) was used for statistical analysis. For
data processing, the Perl programming language is used. Prognostic
significance was determined using multivariate Cox regression
analysis. PCA was also performed using R’s ggplot2 package. The
survival difference between the two groups was analyzed by Kaplan-
Meier curve and logrank test was used. Gene correlations, risk scores
and correlations between immune cells and immune genes were
analyzed using Spearman’s correlation coefficient test. When p <
0.05, the difference was statistically significant.

3 Results

3.1 Construction of a prognostic risk model
for differentially expressed genes related to
immune ferroptosis

89 co-expressed genes were discovered by combining
17,500 immune-related genes, 398 ferroptosis-related genes, and
5072 BRCA differentially expressed genes (Figure 1A). A
predictive model of immune ferroptosis-related risk was then
constructed using lasso regression (Figure 1B). The risk score
formula was: riskscore= (0.008*TFRC) + (−1.042*IFNG) +
(−0.064*FLT3) + (−0.016*FZD7) + (−0.009 *SIAH2)
(Figure 1C). Patients were divided into high- and low-risk
groups based on the median risk score (50%). The results of
PCA validated the differential expression of high- and low-risk
groups in BRCA patients (Figure 1D).

FIGURE 2
(A)Gene correlation network diagram of prognosticmodel. (B)Model -related gene network plotted using GeneMANIA. (C)Model gene enrichment
analysis in pan-cancer: GO and KEGG.
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3.2 Model gene correlation and functional
enrichment analysis

To explore potential relationships of model genes, we examined
correlations between Model-related genes using Spearman
correlation analysis. As shown in Figure 2A, FLT3 negatively
correlated with SIAH2, while TFRC positively correlated with

IFNG and FZD7; SIAH2 positively correlated with FZD7 and
SIAH2; TFRC positively correlated with FZD7 and SIAH2;
FLT3 positively correlated with FZD7 and SIAH2; FZD7 was
negatively correlated with SIAH2.

We constructed gene-gene networks through GeneMANIA to
explore gene interactions. Figure 2B shows 20 nodes around the
central node of the Model-related genes, which were genes related to

FIGURE 3
Survival analysis of patients in both the training and validation cohorts. (A) Distribution plots of survival times in the training cohort. (B) Distribution
plots of survival times in the validation cohorts. (C) Scatter plots of risk scoresin the training cohort. (D) Scatter plots of risk scores in the validation cohorts.
(E) Gene expression levels in the training cohort. (F) Gene expression levels in the validation cohorts. (G) Overall survival (OS) in the training cohort. (H)
Overall survival (OS) in the validation cohorts. (I) Time-dependent ROC curves in the training cohort. (J) Time-dependent ROC curves in the
validation cohorts.
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the genes model based on physical interactions, co-expression,
predictions, co-localization, genetic interactions, pathways, and
shared domains. Among them, TF, WNT3, IFNGR1, and
FLT3LG were ranked in the top. Regarding model-related genes
GO and KEGG enrichment analysis, as shown in Figure 2C, in BP,
the regulation of lymphocyte differentiation, ironion transport,
positive regulation of tyrosine phosphorylation of STAT rotein
was dominant. MF was significantly enriched in glucocorticoid
eceptor binding, Wnt-activated receptor activity, ubiquitin
conjugating genzyme binding. In CC, they were mainly located
in recycling endosome, early endosome, endosome membrane. A
KEGG enrichment analysis indicated that model-related genes were
associated with the hemotopoietic cell lineage, significantly
associated with the HIF-1 signaling pathway.

3Validation of a prognostic risk model for differentially
expressed genes related to immune ferroptosis.

Based on the median risk scores of the training and validation
cohorts and the test cohorts, all patients were divided into high- or
low-risk groups with each group accounting for 50%. As the risk score
increased, so did the number of patient deaths (Figures 3A–D). The
risk model-related genes expression level between high- and low-risk

groups were shown in Figures 3E, F. In both trainning and validation
cohorts, OS was significantly different (Figures 3G, H, p < 0.001). Low
risk patients had better clinical outcomes than high risk patients in
each cohort, which was consistent with both groups’ results. The
survival time ability of IFRSig was assessed using a time-dependent
ROC curve. The areas under the curve (AUC) at 1, 3, and 5 years were
0.690, 0.673, and 0.690 for the training cohort (Figure 3I) and 0.665,
0.685, and 0.674 for the validation cohort (Figure 3J), respectively. The
results of all studies suggest that IFRSig can accurately predict OS.

3.3 Heatmap and GO/KEGG pathway
enrichment analysis

Based on clinical features, we created heatmap to compare the
expression relationship of prognostic model-related genes between high-
risk and low-risk subgroups, and the status of HER2, ER, PR, age, T, N,
M, stage, immune score were shown as patient annotations (Figure 4A).

Classification analysis revealed that GO: BP was mainly
concentrated in classical pathway, humoral immune response
mediated by circulating immunoglobulin, complement activation,

FIGURE 4
Heatmap and GO/KEGG pathway enrichment analysis. (A) Clinically relevant heatmap. A heatmap based on data on the clinicopathological
characteristics of the patients was created based on the risk characteristics associated with prognosis. *p < 0.05, **p < 0.01, ***p < 0.001. (B) Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of high and low risk differential genes. (C) GSEA analysis of high and low
risk differential genes.
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B cell mediated immunity, lymphocyte mediated immunity; CC was
mainly concentrated in immunoglobulin complex, immunoglobulin
complex, circulating, external side of plasma membrane, blood
microparticle, T cell receptor complex; MF was mainly
concentrated in immunoglobulin receptor binding, cytokine
receptor activity, chemokine receptor binding, chemokine activity.
Importantly, KEGG was mainly enriched in Hematopoietic cell
lineage, Primary immunodeficiency, Cytokine-Cytokine receptor
interaction, Viral protein interaction with cytokine and cytokine
receptor, T cell receptor signaling Pathway (Figure 4B).

Further GSEA, we found that high and low risk were mainly
enriched in REACTOME_FCERI_MEDIATED_MAPK_
ACTIVATION, REACTOME_FCERI_MEDIATED_NF_KB_
ACTIVATION, REACTOME_IMMUNOREGULATORY_
INTERACTIONS_BETWEEN_A_LYMPHOID_AND_A_NON_
LYMPHOID_CELL, REACTOME_ADAPTIVE_IMMUNE_SYSTEM
(Figure 4C).

3.4 Independent prognostic factors and
nomogram construction

In the TCGA cohort, univariate Cox regression analysis showed
stage, M, N, T, age, ER, and risk score were significantly associated
with OS; while multivariate Cox regression analysis showed that age

(p < 0.001) and risk score (p < 0.001) were significantly associated
with OS (Figures 5A, B). The results showed that IFRSig was an
independent prognostic factor for BRCA.

We constructed a nomogram based on risk scores and other
clinicopathological covariates for calculating individualized cancer
risk scores (Figure 5C). According to calibration plots, the
prognostic nomogram for 1-, 3-, and 5-year OS was in
agreement with the diagonal lines (Figure 5D). The outcomes
demonstrated that the nomogram created by IFRSig has a good
level of prognostic accuracy for BRCA patients.

4 Immune characteristics

Tumor immune cell compositions played a major role in
response to immunotherapy but the heterogeneity and dynamics
of immune infiltrates in human cancer lesions remained poorly
characterized. In BRCA samples, we assessed the immune
infiltrating profile of immune infiltrating cells to better
understand the complex crosstalk between IFRSig and immune
signatures (Figure 6C). Moreover, we investigated the
relationship between immune infiltrating cells and immune
function as well as IFRSig, and immune infiltrating cells and
immune function were found to be lower in high-risk individuals
than in low-risk individuals (Figures 6A, B).

FIGURE 5
Construction of independent prognostic factors and nomogram. (A) Univariate Cox regression analysis. (B)Multivariate Cox regression analysis. (C)
Survival nomogram based on the total TCGA cohort. (D) Calibration curves for predicting 1, 3, and 5-year survival of BRCA patients in the TCGA cohort.
*p < 0.05, **p < 0.01, ***p < 0.001.
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4.1 The immune microenvironment,
immune checkpoints, immune escape

Tumor microenvironments, as their name suggests, contained
the necessary conditions for tumor cells to proliferate and
metastasize. Tumor progression was influenced by immune cells,
tumor cells, stromal cells, as well as a variety of active molecules.
Figure 7A showed that high-risk patients have lower immune and
ESTIMATE (Estimation of STromal and Immune cells in
MAlignant Tumour tissues using Expression data) scores.

Our study compared the expression values of immune
checkpoints molecules in patients with different IFRSigs. As
shown in Figure 7B, the bar plot shows that the expression of
immune checkpoints molecules were significantly lower in the high-
risk score group than in the low-risk score group, except NRP1 and
CD276. These findings imply that high-risk group may not benefit
from anti-PD1/PD-L1/CTLA ICI immunotherapy, but from anti-
NRP1/CD276.

As well, the Tumor Immune Dysfunction and Exclusion (TIDE)
algorithm could predict how immune checkpoint inhibitors would
react with different subgroups. Results showed that high-risk group

dysfunction and TIDE scores were lower, and exclusion was higher
than low-risk group exclusions (Figures 7E–H).

4.2 The association of immune ferroptosis-
related mRNA signatures withTMB

It was reported that in many cancer types, including bread
cancer, patients with higher tumor burden mutations (TMB) had
lower survival rates. On the contrary, patients treated by ICI, with
higher TMB generally associated with longer survival (Godenick,
1995).

Accordingly, we speculated that TMB might have a non-
negligible relationship between prognosis risk score and TMB.
Therefore, we analyzed and displayed the distribution of genetic
mutations among high-risk and low-risk score subtypes. A total of
84.19% of low-risk BRCA samples had genetic mutations
(Figure 8A), while 84.43% were mutated in the high-risk group
(Figure 8B), indicating that samples from the high-risk group had a
higher probability of gene mutation. A comprehensive landscape of
somatic variation showed mutational patterns and clinical features

FIGURE 6
Relationship with immune infiltration (A) Boxplot of association between IFRSig and immune cell lineage; (B) Boxplot of association between IFRSig
and immune function; ANOVA used as significance test, *p < 0.05, **p < 0.01, ***p < 0.001. (C) Immune correlation heatmap.
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of the top 15 most frequently changed driver genes. There were
6 genes in the low-risk group with the highest mutation frequency,
including PIK3CA (35%), TP53 (59%), TTN (17%), CDH1 (12%),
GATA3 (11%), MUC16 (11%). TP53 (34%), PIK3CA (33%), TTN
(18%), CDH1 (12%), GATA3 (11%), MAP3K1 (10%) and other
genes had the top 6 mutation frequencies in the high-risk group. A
number of anticancer genes, including TP53, had a relatively high
mutation rate among high-risk individuals (34% compared to 30%),
MUC16 had a relatively low mutation rate in the high-risk group
(9% vs 11%).

A higher level of TMB was found in the high-risk subgroup
compared to the low-risk group (p = 0.028, Figure 8C). Patients
were then assigned to different subtypes on the TMB score. There
was a significant correlation between high TMB values and short
overall survival (p = 0.018, Figure 8D). Moreover, we validated
that risk score and TMB could predict BRCA prognosis without
immunotherapy synergistically. As shown by the stratified
survival curves, TMB status did not interfere with the risk
score prognostic prediction performance. In low and high
TMB status subtypes, risk score subgroups were significantly
different from each other in terms of prognosis (p < 0.001,
Figure 8E).

4.3 Drug sensitivity

The sensitivity to chemotherapeutic drugs was also
anticipated to better direct clinical practice because
chemotherapy was a significant therapeutic approach. The
IC50 of commonly used chemotherapy drugs (Bleomycin,
Bryostatin, Doxorubicin, Cisplatin, Gemcitabine, Gefitinib,
Imatinib, Vinorelbine) in BRCA patients in the high-risk
group and low-risk group were calculated and compared by
pRRophetic analysis (Figures 9A–H). In this study, it was
determined that patients with a higher risk score might benefit
more from chemotherapy including Bleomycin, Cisplatin,
Doxorubicin, Gefitinib, Gemcitabine and Vinorelbine), while
patients with a lower risk score might benefit more from
chemotherapy including Bryostatin and Imatinib.

5 Discussion

Molecular heterogeneity, high recurrence and mortality rates,
and a serious threat to women’s health make BRCA one of the most
complex cancer types (Saatci et al., 2021). Early detection of BRCA

FIGURE 7
The immune microenvironment, immune checkpoints, immune escape (A–C) Comparison of interstitial scores, immune scores, and ESTIMATE
scoresin high-risk and low-risk subgroups. (D) Boxplot showed association between IFRSig and immune checkpoints. *p < 0.05, **p < 0.01, ***p < 0.001.
(E–H)Immune escape. (E) Dysfunction (F) Exclusion (G) MSIExprsig (H) TIDE score in different risk-groups.
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is essential for effective treatment and an improved prognosis
because BRCA has a poor prognosis, which has serious
implications for human health and socioeconomics (Winters
et al., 2017; Wang et al., 2018). Therefore, finding influential
molecular markers, assessing BRCA tumor immunoreactivity,
and establishing convincing prognostic models are critical for
personalizing BRCA therapy.

There was a synergistic relationship between immunity and
ferroptosis in tumors, according to the results of previous

studies (Hong et al., 2021; Xu et al., 2021; Yang et al., 2021).
In the TME, macrophages could convert fromM2 to M1, making
more H2O2 available for the Fenton reaction, leading to
ferroptosis of tumor cells (Zanganeh et al., 2016). Another
study found that activated CD8+ T cells release IFN- to
prevent cystine from being absorbed by the body’s systems,
which caused tumor cells to ferroptose through lipid
peroxidation (Shao et al., 2021). When tumor cells undergo
ferroptosis, tumor antigens are released, resulting in the

FIGURE 8
Correlation of risk scorewith TMB. (A)Oncoprint of the somaticmutational landscape of the low-risk group. (B)Oncoprint of the somaticmutational
landscape of the high-risk group. (C) TMB differences between patients in low/high risk score subgroups. (D) Kaplan-Meier curves of high and low
TMBgroups. (E) Kaplan-Meier Q19 curves of patients stratified by TMB and risk score.
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production of immunogenic TMEs that enhance the response to
immune regulation (Lu et al., 2021).

As part of this study, we performed co-expression analyses of
breast cancer-related and immune ferroptosis-related genes using
the TCGA. After performing a lasso regression analysis, 89 co-
expressed immune ferroptosis-related DEGs were collected in order
to create prognostic risk models, which could be used for both
prognostic and therapeutic purposes. A high-risk and low-risk
IFRSig group was created for the cancer samples. In nomograms
and prognostic risk models, IFRSig was the key factor. We
demonstrated a satisfactory correlation between IFRSig and
clinical outcomes, indicating the IFRSig was a useful risk factor
for predicting clinical outcomes. To ascertain the effectiveness of the
treatment, we examined the sensitivity and resistance to
chemotherapeutic drugs.

An TME consists of a complex network of tumor cells within an
extremely complex internal environment formed by tumor stromal
cells and their secreted active factors, as well as vascular and
lymphatic networks, and extracellular matrix (Xiang et al., 2022),
of which immune cells and stromal cells were the most common
non-tumor cells in TME.

In addition to targeting immunogenic tumor mutations,
autologous tumor-infiltrating lymphocytes (TILs) and immune
checkpoint inhibitors (ICIs) could help to promote tumor growth
(Bu et al., 2021; Kirtane et al., 2021), and antibodies that target PD-1,
PD-L1, and CTLA-4 could be used as ICB drugs for the treatment of
a variety of cancers (Han et al., 2020; Archilla-Ortega et al., 2022).
Thus, we examined how risk subgroups and IC expression relate and
found that high-risk patients express more NRP1 and CD276 but
less CTLA-4 and PCDC1. This finding suggested that NRP1 and
CD276 could be used for targeted immunotherapy for BRCA high-
risk patients. Studies have shown that targeting CD276might reduce

cancer stem cell (CSC) immune escape in neck squamous cell
carcinoma (HNSCC) (Wang et al., 2021). In conclusion, risk
models could be employed to choose immunotherapy that was
more appropriate and to forecast how well it will work for BRCA
patients.

Overall, we constructed a prognostic risk signature with many
advantages, but it still has some limitations. Because of tumor
heterogeneity, we needed to validate our risk profile across
different cohorts, and it was necessary to validate our risk profile
in clinical trials. Despite the fact that our signature was still reliable
because we had proven its superiority in terms of survival, tumor-
infiltrating immune cells, clinicopathological features, signaling
pathways, ICs, and potential small molecule drugs. Upon
receiving more information and larger clinical sample sizes, our
team will continue to examine and validate the risk profile.

As a result, we developed IFRSig, which was closely related to
BRCA prognosis, which along with immunological features could be
used to better predict clinical treatment response in patients
with BRCA.

6 Conclusion

Our study established a prognostic risk model and identified
immune ferroptosis-related genes with independent prognostic
value using procedural algorithm analysis. Immune scores,
immune checkpoints, and chemotherapeutic agents all showed
significant correlations with prognostic models, which were then
regarded as an independent prognostic feature to predict OS and
clinical treatment response in BRCA patients. In this study, we
gained a better understanding of how immune ferroptosis-related
genes contribute to BRCA occurrence and progression.

FIGURE 9
Drug sensitivity (A–H) Half maximal inhibitory concentration (IC50) of 8 common chemotherapeutic drugs (Bleomycin, Bryostatin, Cisplatin,
Doxorubicin, Gefitinib, Gemcitabine, Imatinib, Vinorelbine). *p < 0.05, **p < 0.01, ***p < 0.001.
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