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Goats with diverse economic phenotypic traits play an important role in animal
husbandry. However, the genetic mechanisms underlying complex phenotypic
traits are unclear in goats. Genomic studies of variations provided a lens to identify
functional genes. In this study, we focused on the worldwide goat breeds with
outstanding traits and used whole-genome resequencing data in 361 samples
from 68 breeds to detect genomic selection sweep regions. We identified
210–531 genomic regions with six phenotypic traits, respectively. Further gene
annotation analysis revealed 332, 203, 164, 300, 205, and 145 candidate genes
corresponding with dairy, wool, high prolificacy, poll, big ear, and white coat color
traits. Some of these genes have been reported previously (e.g., KIT, KITLG, NBEA,
RELL1, AHCY, and EDNRA), while we also discovered novel genes, such as STIM1,
NRXN1, LEP, that may be associated with agronomic traits like poll and big ear
morphology. Our study found a set of new genetic markers for genetic
improvement in goats and provided novel insights into the genetic
mechanisms of complex traits.
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Introduction

As one of the earliest domesticated animals, goats profoundly affect human society
(Porter, 1996; Pringle, 1998). Then, human beings reshaped the morphology, physiology,
and behavior of goats by domestication, selection, and dispersal with humans (Larson and
Fuller, 2014). Goats have formed a wealth of breed resources adapted to different natural
environments and human needs in the past 10,000 years (Pereira and Amorim, 2010; Zheng
et al., 2020), exhibited specialized phenotypes (e.g., coat color, horn, ear), and provided
diverse productions (e.g., milk, fiber) (Skapetas and Bampidis, 2016). For the animals, those
traits selected in a specific direction may be imprinted obvious characteristics in the genome
(Grossman et al., 2010; Li et al., 2020; Mariadassou et al., 2020; LI et al., 2022; Seo et al., 2022).

Recent studies by integrating whole genome datasets and ancient DNA information have
identified candidate genome regions and genes during goat domestication (Alberto et al.,
2018; Daly et al., 2018; Zheng et al., 2020). The availability of whole-genome datasets
provides a lens to uncover the genetic mechanism underlying phenotypic traits. Many
candidate genes or selective regions were identified in recent studies by selective sweep or
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whole-genome association analysis (GWAS) using re-sequencing
datasets and whole-genome SNPs arrays (Guo et al., 2018; Islam
et al., 2020; Luigi-Sierra et al., 2020; Talouarn et al., 2020; Wang K.
et al., 2020; Gu et al., 2022). Nevertheless, most of those studies
focused on given breeds or included breeds restricted in geographic
regions, and little is known regarding the genetic mechanisms of
diverse phenotypic traits of goats on a worldwide scale. Here, we
collected samples on the global scale with various phenotypes and
aimed to conduct a genome-wide analysis to identify genomic
regions associated with the phenotypic traits underlying recently
strong selection. The identification of genes associated with varied
agronomic traits across worldwide goats facilitates prospective
molecular breeding endeavors.

Materials and methods

Genotypic and phenotypic data

We collected 361 samples including 68 domestic goat breeds
with typical phenotypic traits (Supplementary Table S1). Whole-
genome resequencing datasets of 361 samples were retrieved from
the National Center for Biotechnology Information (NCBI)
(Supplementary Table S1). The raw reads were filtered with
Trimmomatic v0.39 (Bolger et al., 2014), and filtered reads were
aligned to the goat reference genome (ARS1) by the Burrows-
Wheeler Aligner v0.7.17 (Li and Durbin, 2009) with default
parameters. Then we carried out the GATK Best Practices
Workflows to call short variations. We filtered duplicates by the
MarkDuplicates module with Picard v2.18.12 (http://broadinstitute.
github.io/picard/) and detected short variations using the GATK v4.
2.3.0 HaplotypeCaller module (McKenna et al., 2010) in individual
level. The raw GVCF files of each sample were merged using the

CombineGVCFs and detected for short variations using the
GenotypeGVCFs. In this study, we only selected SNP by the
SelectVariants module in GATK. The raw SNPs were firstly
filtered by VariantFiltering module of the GATK with the
parameters “QUAL <30.0 || QD < 2.0 || MQ < 40.0 || FS > 60.0
|| SOR >3.0 || MQRankSum < −12.5 || ReadPosRankSum < −8.0”.
We further identified high quality SNPs using the following criteria:
(i) biallelic SNPs, (ii) autosome SNPs, (iii) minor allele frequency
(MAF) > 0.05, (iv) call rate >90%. The above analyses were
performed by VCFtools v0.1.14 (Danecek et al., 2011).

The total 361 samples were classified into six pairs of
populations according to six important economic traits (Table 1).
88 dairy type individuals, 19 non-dairy type individuals, 24 wool
type individuals, 22 wild type individuals, 14 high prolificacy
individuals, 25 low prolificacy individuals, 31 poll individuals,
15 horn individuals, 14 big ear individuals, 22 small ear
individuals, 45 white coat individuals, and 37 black coat
individuals were obtained (Table 1).

Genomic selection signals analysis

To identify the genomic signatures of selection in domestic goats
with special phenotypes, we carried out two approaches. We calculated
the pairwise FST values (Weir and Cockerham, 1984) between pairwise
populations with contrasting phenotypes (Table 1). Further, we
calculated ln (θπ ratios) (θπ-Control/θπ-Case) of pairwise populations
with contrasting phenotypes to detect changes in genetic diversity due to
artificial selection (Yang et al., 2016). The above analyses were all
performed by VCFtools v0.1.14 (Danecek et al., 2011) with a 50 kb
sliding window and a 25 kb sliding step across chromosomes. The top
5% FST values and θπ ratios were considered as candidate selective sweeps
regions.

TABLE 1 Information from worldwide goat breeds used to detect selective signals associated with specific traits.

Traits Category Populations (number of samples) Comparisons

Milk Dairy type Kamori (1), Dera Din Panah (1), Maure (3), Galla (3), Sofia (7), Toggenburg (22), Saanen (20),
Provencale (1), Fosses (1), Poitevine (4), Savoie (4), Alpine (8), Appenzeller (Appenzell) (13)

Dairy type versus Non-dairy type

Non-dairy type Black Bengal Goat (2), Grisons Striped (Grison Striped) (15), Rove (2)

Wool Wool type Pak-Angora (Angora) (7), Liaoning cashmere goat (5)., cashmere goat (11), White Chanthangi
Pashmina/Cashmere goat (1)

Wool type versus Wild type

Wild type Toggenburg (22)

Reproduction High
prolificacy

Black Bengal Goat (2), Jining Gray goat (Qin goat) (1), Barbari (1), Naine (3), Woyito_Guji (7) High prolificacy versus Low
prolificacy

Low prolificacy Sonjo (3), Toggenburg (22)

Horn Poll Matou (1), Toggenburg (22), Alpine (8) Poll versus Horn

Horn Grisons Striped (Grison Striped) (15)

Ear Big ear Pak-Angora (Angora) (7), Kamori (1), Daer (Jianyang big ear goat) (1), Matebele (5) Big ear versus Small ear

Small ear Toggenburg (22)

Coat Color White Liaoning cashmere goat (5), Maasai (2), White Chanthangi Pashmina/Cashmere goat (1), Gumez (4),
cashmere goat (11), Saanen (20), Laoshan dairy goat (2)

White versus Black

Black Daer (Jianyang big ear goat) (1), Valais Blacknecked (29), Leizhou goat (5), Black Bengal Goat (2)
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Candidate gene analysis

The candidate genomic regions were annotated using SNPeff
v.5.1 (Cingolani et al., 2012) based on the goat reference genome
(ARS1). Gene Ontology (GO) term enrichment and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses
of a candidate gene set were carried out by a statistical
overrepresentation test with the default setting using the
clusterProfiler 4.0 package in the R program (Wu et al., 2021).
Categories with the threshold of adjusted p-value <0.05 after the
Bonferroni correction were defined as significantly enriched terms
and pathways.

Results and discussion

We obtained 28.56 million SNPs after filtering in 361 samples. We
implemented selection screening in 6 pairs of populations (Table 1). 515,
303, 210, 531, 261, and 217 genomic regions were detected based on the
overlap of the top 5% θπratio and FST for milk, wool, reproduction, horn,
ear, and coat color traits, respectively. We further annotated those
genomic regions and detected a set of novel and previously reported
functional genes (Figures 1, 2; Supplementary Figure S1-S4;
Supplementary Table S2-S7). 332 genes within 307 candidate selective
sweep regions were identified to be associated with dairy traits

(Supplementary Table S2). LPL was found to be associated with milk
fat content in goats (Badaoui et al., 2007). Additionally, BCAR3, ART3,
GABRG2, JAK2, andABTB2were functionally associated with milk traits
in cows (Gao et al., 2017; Khan et al., 2019; Zhou et al., 2019; Peters et al.,
2021; Buaban et al., 2022). Similarly,MRPL47, ACTL6A, NDUFB5, and
BDH1 were identified as being related to milk yield in buffalo (El-
Halawany et al., 2017; Du et al., 2019). We further investigated the
functions of those genes by GO and KEGG analyses and found a
significant overrepresentation of genes involved in GO terms, such as
transporter complex, transmembrane transporter complex, and ion
channel complex (Figure 3A). The GO term “ion channel” involved
in the modulation of milk production by controlling mammary gland
fluid flow in dairy cows (Cai et al., 2018). In thewool type versuswild type
pair population, 203 genes within 188 candidate genomic regions were
annotated and may be involved in the wool trait regulation mechanism
(Supplementary Table S3). One of the strongest selective sweep signatures
was situated in (neurobachin) NBEA, which encodes a neuron-specific
multidomain protein of 327 kDa (Wang et al., 2000). Although the gene
was a novel gene for goats, it had been reported to be associatedwithwool
production in Chinese merino sheep (Wang et al., 2014). We detected a
significant overrepresentation of genes in threeGO and oneKEGG terms
involved Phospholipase C (PLC) activity (Figure 3B), and the reduction
of PLC activity led to downregulation of keratin expression in mice hair,
resulting in hair hypotrichosis and diverse hair anomalies (Nakamura
et al., 2003; Nakamura et al., 2008). For the high prolificacy versus low

FIGURE 1
Manhattan plot of θπ ratios and FST for milk traits. The vertical gray thick lines indicated the position of selected genes detected in our study. The
values of the top 5% threshold (FST = 0.063, θπ ratio = 0.488) are denoted by blue horizontal dashed lines.
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prolificacy pair population, we obtained 164 functional genes within
142 genomic regions (Supplementary Table S4). RELL1,KIT, andKITLG
were identified as candidate genes associated with prolificacy
(Supplementary Figure S2). RELL1 was reported to be associated with
the number of stillborn in pigs (Onteru et al., 2012), the single nucleotide
polymorphisms (SNPs) in KIT and KITLG were found to be associated

with the litter size of goats and sheep (An et al., 2012; Yuan et al., 2019;
Wang et al., 2020a). Further analysis showed the significant
overrepresentation of genes in 12 GO terms, which are mainly
associated with Second-messenger-mediated signaling and the activity
of phospholipase (Supplementary Table S5A). The cyclic AMP governs
the synthesis and secretion of reproductive hormones, particularly

FIGURE 2
Manhattan plot of θπ ratio and FST for wool traits. The vertical gray thick lines indicated the position of selected genes detected in our study. The top
5% threshold (FST = 0.228, θπ ratio = 0.064) values are denoted by blue horizontal dashed lines.

FIGURE 3
GO enrichment analyses for milk (A) and wool (B), with the significant (p.adj <0.05) GO terms.
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gonadotropins (Mukherjee andMayo, 2000), andmediates the impacts of
follicle-stimulating hormone and luteinizing hormone on the
development of ovarian follicles and ovulation (Riccetti et al., 2018).
300 candidate genes were identified to be associated with poll traits
(Supplementary Table S5). The highest peak of θπratio and FST is situated
in STIM1 and NRXN1, with STIM1 involved in store-operated Ca2+

channels (Roos et al., 2005) and NRXN1 binding neuroligins to form
(Ca2+)-dependent neurexin/neuroligin complexes (Siddiqui et al., 2010)
(Supplementary Figure S2). They both likely play important roles in
neurodevelopment and behavior (Ching et al., 2010; Zheng et al., 2020).
Further, GO enrichment analysis suggested a significant
overrepresentation of genes involved in enamel mineralization
(Supplementary Figure S5B). Enamel mineralization is involved in the
process of producing and fortifying tooth enamel, the outermost layer of
the tooth, which serves as a protective barrier (Vaissier Welborn, 2020),
which may also have a correlation with the development and formation
of the horn. In the big ear versus small ear goats, 205 genes within
188 genomic regions were identified to be associated with the big ear trait
(Supplementary Table S6). In addition, we found a novel gene with big
ear morphology in the goat. Furthermore, we detected a significant
overrepresentation of genes involved in G protein−coupled purinergic
nucleotide receptor activity, purinergic nucleotide receptor activity, and
nucleotide receptor activity (Supplementary Figure S5C), potentially
exerting an influence on ear morphology. Overall, 145 genes within
146 genomic regions were identified in the white coat color versus black
coat color pair population (Supplementary Table S7). The two genes
AHCY, and EDNRA were identified to be involved in the regulation of
coat color (Menzi et al., 2016; Nazari-Ghadikolaei et al., 2018)
(Supplementary Figure S4). We also detected novel genes involved
with coat colors in goats, such as GPR22, SOX5, CLEC12B, AIM1,
ITFG1, and LDLRAD4 (Table 2).

In summary, we collected diverse goats’ germplasm resources
and explored functional genes of important phenotypical traits. Our
study confirmed previous results and also identified some novel
genes involved in the regulation of specific traits. Our study provides
deep insights into the genetic mechanisms of complex traits and
genetic markers for genetic improvement in goats.
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TABLE 2 Candidate genes under selection based on pairwise FST and θπratio.

Traits Comparisons Candidate genes

Milk Dairy type versus Non-dairy type BDH1, MRPL47, ACTL6A, NDUFB5, BCAR3, ART3, GABRG2, CLYBL, ABTB2

Wool Wool type versus Wild type MREG, ACVR2A, DKK2, NBEA

Reproduction High prolificacy versus Low prolificacy PDIA4, KITLG, RELL1, KIT, NFIC, DMRT1, BIRC6, SPIRE2

Horn Poll versus Horn STIM1, NRXN1

Ear Big ear versus Small ear LEP

Coat Color White versus Black GPR22, SOX5, CLEC12B, AIM1, AHCY, EDNRA, ITFG1, LDLRAD4

The italic in column “candidate genes” indicate name of gene.
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