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Identification of germline pathogenic variants in cancer patients is critical for
treatment planning, genetic counseling, and health policymaking. However,
previous estimates of the prevalence of germline etiology of pancreatic ductal
adenocarcinoma (PDAC) were biased because they were based only on
sequencing data of protein-coding regions of known PDAC candidate genes.
To determine the percentage of patients with PDAC carrying germline pathogenic
variants, we enrolled the inpatients from the digestive health clinics, hematology
and oncology clinics, and surgical clinics of a single tertiary medical center in
Taiwan for whole genome sequencing (WGS) analysis of genomic DNA. The virtual
gene panel of 750 genes comprised PDAC candidate genes and those listed in the
COSMIC Cancer Gene Census. The genetic variant types under investigation
included single nucleotide substitutions, small indels, structural variants, and
mobile element insertions (MEIs). In 8 of 24 (33.3%) patients with PDAC, we
identified pathogenic/likely pathogenic variants, including single nucleotide
substitutions and small indels in ATM, BRCA1, BRCA2, POLQ, SPINK1 and
CASP8, as well as structural variants in CDC25C and USP44. We identified
additional patients carrying variants that could potentially affect splicing. This
cohort study demonstrates that an extensive analysis of the abundant information
yielded by theWGS approach can uncovermany pathogenic variants that could be
missed by traditional panel-based or whole exome sequencing-based
approaches. The percentage of patients with PDAC carrying germline variants
might be much higher than previously expected.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor
prognosis. Approximately 10% of unselected patients with PDAC
carried germline pathogenic variants (Yurgelun et al., 2019; Gardiner
et al., 2022), with the rate being 30% among cases in populations with a
strong family history of cancer and/or common founder variants (e.g.,
in Ashkenazi Jews) (Gardiner et al., 2022). These estimations of
germline pathogenic variants related to PDAC might be biased
because the number of candidate genes that had their coding
regions tested is limited, and the approaches used were panel-based
or whole exome sequencing (Yurgelun et al., 2019; Gardiner et al.,
2022). This emphasizes a knowledge gap regarding the diagnostic rate of
germline pathogenic variants in patients with PDAC using a
comprehensive whole genome sequencing (WGS) approach. To
ensure the quality of therapeutic planning, early genetic counseling
for at-risk relatives, and health policymaking, precise data on the
identification of germline pathogenic variants is critical.

Materials and methods

Subjects and sample collection

This retrospective cohort study recruited inpatients diagnosed
with PDAC (C25.0–C25.9, based on ICD-10) in a tertiary medical
center in Taiwan; details are available in our previous publication
(Lin et al., 2022). We recruited 24 patients (men: 19; women: 5;
median age at diagnosis: 56.7 years). Regarding lesion location, the
head of the pancreas (C25.0) was the most common (13 patients),
followed by the tail (C25.2; 7 patients), the body (C25.1; 3 patients),
and both the head and body (1 patient). The study was approved by
the Research Ethics Committee III of the China Medical University
and Hospital (CMUH109-REC3-026). Genomic DNA was extracted
from the participants’ peripheral blood mononuclear cells.

WGS and quality analysis

WGS was performed on the Illumina NovaSeq platform
(Illumina, San Diego, CA, United States), with 2 × 150 bp
paired-end reads to achieve 30 × coverage, followed by an
adapter trimming and low-quality bases filtering with Phred
quality scores greater than 30.

Germline variant detection and
interpretation

Sequence analysis was conducted based on GATK Best Practice
workflow (McKenna et al., 2010) (v4.2). Paired-end reads were aligned
to the reference genome (GRCh38/hg38) using BWA-MEM(Li and
Durbin, 2009) (v0.7.17). Variant calling was conducted using
HaplotypeCaller. Variant quality score recalibrations were performed
using VariantRecalibrator. Simple variants (e.g., single nucleotide
variants or small indels) were then ready for annotation and
automatic interpretation based on five classes (pathogenic, likely
pathogenic, uncertain significance, likely benign, and benign) TA
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following the American College of Medical Genetics and Genomics
guideline (Richards et al., 2015) using TAIGenomics software (https://
www.taigenomics.com). Variants with high allele frequencies in the
Genome Aggregation Database (gnomAD, https://gnomad.broad
institute.org) or Taiwan Biobank (http://taiwanview.Twbiobank.Org.
tw/index) databases were filtered out. Annotations of pathogenic and
likely pathogenic variants were manually confirmed. Variants identified
in the known PDAC genes or known cancer genes in DNA repair
pathway (Supplementary Table S1) and the COSMIC Cancer Gene
Census (CGC) (https://cancer.sanger.ac.uk/census) were selected
(Supplementary Figure S1). We remove variants which are with read
depth ≤10, genotype quality ≤20, or allele balance ≤0.2.

The potential of variants to affect splicing was explored using
SpliceAI (Jaganathan et al., 2019). Variants with allele
frequencies <1% and located in the candidate genes were tested.
A score greater than 0.5 was considered positive.

Mobile element insertions (MEIs) were investigated using
SCRAMble (Torene et al., 2020) (v1.0.2) and MELT (Gardner
et al., 2017) (v2.2.2). All VCF files from SCRAMble and MELT
were annotated using AnnotSV(Geoffroy et al., 2018) (v3.0.9).

Structural variants were examined using a combination of
callers including Manta (Chen et al., 2016) (v1.6), Delly
(Rausch et al., 2012) (v0.8.7), and SvABA (Wala et al., 2018)
(v1.1.0). Structural variants detected by at least two callers were
selected using SURVIVOR (Jeffares et al., 2017) (v1.0.7),

followed by annotation using AnnotSV(Geoffroy et al.,
2018) (v3.0.9).

Results

Between July 2020 and December 2020, a total of 24 participants
fulfilled the inclusion criteria and had all biospecimens available
(Supplementary Table S2).

Single nucleotide variants and small indels

To identify pathogenic variants, we first constructed a virtual
panel of 750 genes, comprising known PDAC genes or known
cancer genes in DNA repair pathway (Supplementary Table S1)
and the COSMIC CGC Panel. From the list of single nucleotide
variants and small indels identified in our cohort, we found six
heterozygous pathogenic variants in six different patients. They
include DNA damage response and DNA repair genes (ATM,
BRCA1, BRCA2, and POLQ), pancreatitis gene (SPINK1) and cell
apoptosis gene (CASP8; Table 1).

All variants disrupted at least one protein domain in these genes,
suggesting that variants lead to loss of function (Figure 1A).
Specifically, the patient carrying the SPINK1 (c.194 + 2T>C)

FIGURE 1
Schematic diagram of the pathogenic germline variants and structural variants identified in patients with pancreatic ductal adenocarcinoma. (A)
Protein structures and domains were generated using maftools package. The lollipops represent the positions of pathogenic germline variants. (B)
Deletion in the region containing nuclear export signal in CDC25C. The upper panel represented the CDC25C protein structure and domain. The middle
panel is a screenshot of UCSC Genome Browser in the region of CDC25C gene. The lower panel is a screenshot of integrative genomics viewer of
the deletion region. The paired reads with unexpected insert-size are visualized in the link line with red color. NES, nuclear export signal. NLS, nuclear
localization sequence. A combined deletion and inversion in the second exon of USP44. The read depth decreased in the patient compared to the
control, and paired-end inversion reads are visualized with light and dark blue colors.
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variant had a history of chronic pancreatitis (Table 1). Two variants
in ATM and BRCA1 were identified in patients with a family history
of cancer (Table 1).

Variants with potential to affect splicing

We found six heterozygous variants predicted to alter splicing; two
in DNA repair-associated genes (BRCA1 and BAP1) and four in tumor
suppressor genes (ARHGEF10L, ELL, MYH9, and NCOR2)
(Supplementary Table S3). Due to a lack of mRNA/cDNA data to
confirm the change in splicing patterns, they were not counted as
pathogenic variants in this study.

Structural variants or MEIs

We observed one in-frame deletion of the seventh exon (amino
acids 154–205) of CDC25C, resulting in the loss of the nuclear export
signal (amino acids 190–199) but preserving the catalytic domain
and nuclear localization signal; the deletion may cause the
accumulation of CDC25C in the nucleus and promote a cell cycle
without cellular localization control (Figure 1B).

We found a complex structural variant, indicating an inversion
and deletion event, interrupting USP44 (Figure 1B). USP44 is a
recently discovered tumor suppressor gene implicated in PDAC
(Yang et al., 2019).

MEIs may interrupt gene function, but we did not find any
suspected MEIs in any gene in our PDAC virtual panel.

Discussion

We identified pathogenic germline variants in eight out of 24
(33.3%) patients with PDAC in Taiwan. This high rate may be
partially explained by the WGS approach to examine a
comprehensive list of 750 genes, diverse genetic variant types,
and sequence information within non-coding regions. Our cohort
was not considered to be of younger age (range, 36.1–82.5 years) or
have a stronger family history (Lin et al., 2022).

Among the eight variants, the pathogenicity prediction
(Richards et al., 2015) and gene-disease correlation of five
variants or small indels in ATM, BRCA1, BRCA2, POLQ, and
SPINK1 were unequivocal. The pathogenicity predictions of the
frameshift insertions in CASP8 was also convincing. Two of them
(BRCA2 c.7977-1G>T; SPINK1 c.194 + 2T>C) are listed in the
ClinVar database. The BRCA2 variant was consistently reported to
be pathogenic; for the SPINK1 variant, there were conflicting
interpretations of pathogenicity, with nine identifying it as
pathogenic and one as uncertain significance. These two variants
had both been reported as pathogenic variants in published
pancreatic cancer studies (Chian et al., 2021; Yin et al., 2022).
Although the other variants in BRCA1, ATM, and POLQ were
not previously reported and were identified as novel variants in
this current study, pathogenic variants in these genes have also been
reported in pancreatic cancer and therefore these genes have been
known to cause PDAC (Earl et al., 2020; Mizukami et al., 2020).
Inactivation and somatic mutation of CASP8 are reported in various

cancers (Mandal et al., 2020), and a recent report found a colorectal
cancer patient with somatic loss of heterozygosity in CASP8 (Choi
et al., 2021). In addition, the level of caspase 8, which is encoded by
CASP8, was reduced in pancreatic cancer according to a previous
study (Jakubowska et al., 2016). The two structural variants were
also predicted to have major effects on CDC25C and USP44,
respectively, and while the first CDC25C has not been related to
PDAC, the latter has recently begun to be linked to PDAC (Yang
et al., 2019). Therefore, CASP8 and CDC25C are suggested to be
novel pathogenic genes of PDAC, and this study supports the
potential of USP44 to cause PDAC.

We also identified six deep intronic variants predicted to alter
splicing in DNA repair-associated genes (BRCA1 and BAP1) or
tumor suppressor genes (ARHGEF10L, ELL, MYH9, and NCOR2;
Supplementary Table S3). They might be disease-causing variants
related to PDAC, but we could not confirm this due to a lack of data.
We did not identify disease-causing MEIs in our sample.

This study had a modest sample size and lacked confirmatory
experiments to determine the disease-causing roles of the
identified variants, leaving space for future investigation.
Comprehensive and thorough genomic analyses in large cohorts
are needed to support our finding that the prevalence of PDAC
patients carrying pathogenic germline variants might be higher
than previously estimated. Overall, our results demonstrate the
potential for the WGS-based approach to uncover pathogenic
genes/variants that could be missed by traditional panel-based
or WES-based approaches. Although CASP8, CDC25C, and USP44
have been undervalued, they were shown to be plausible PDAC
genes. The percentage of patients with PDAC carrying germline
etiology (33.3% in this study) might be much higher than
previously expected.
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