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Nucleus-based breeding programs are characterized by intense selection that
results in high genetic gain, which inevitably means reduction of genetic variation
in the breeding population. Therefore, genetic variation in such breeding systems
is typically managed systematically, for example, by avoiding mating the closest
relatives to limit progeny inbreeding. However, intense selection requires
maximum effort to make such breeding programs sustainable in the long-
term. The objective of this study was to use simulation to evaluate the long-
term impact of genomic selection on genetic mean and variance in an intense
layer chicken breeding program. We developed a large-scale stochastic
simulation of an intense layer chicken breeding program to compare
conventional truncation selection to genomic truncation selection optimized
with either minimization of progeny inbreeding or full-scale optimal
contribution selection. We compared the programs in terms of genetic mean,
genic variance, conversion efficiency, rate of inbreeding, effective population size,
and accuracy of selection. Our results confirmed that genomic truncation
selection has immediate benefits compared to conventional truncation
selection in all specified metrics. A simple minimization of progeny inbreeding
after genomic truncation selection did not provide any significant improvements.
Optimal contribution selection was successful in having better conversion
efficiency and effective population size compared to genomic truncation
selection, but it must be fine-tuned for balance between loss of genetic
variance and genetic gain. In our simulation, we measured this balance using
trigonometric penalty degrees between truncation selection and a balanced
solution and concluded that the best results were between 45° and 65°. This
balance is specific to the breeding program and depends on howmuch immediate
genetic gain a breeding programmay risk vs. save for the future. Furthermore, our
results show that the persistence of accuracy is better with optimal contribution
selection compared to truncation selection. In general, our results show that
optimal contribution selection can ensure long-term success in intensive
breeding programs using genomic selection.
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1 Introduction

Genomic selection is a mature technology that is routinely
applied in commercial animal and plant populations. It has a
recognized positive effect on genetic gain, which in most
applications exceeds conventional selection (Meuwissen et al.,
2001; Schaeffer, 2006; Wiggans et al., 2017). Here, conventional
selection is defined as the best linear unbiased prediction (BLUP)
based on the pedigree relationship matrix (Henderson, 1984). In
contrast, genomic selection is defined as genomic BLUP (GBLUP)
based on a genomic relationship matrix constructed from the set of
dense genome-wide single nucleotide polymorphism (SNP) markers
(Meuwissen et al., 2001; VanRaden, 2008), or more often, a single-
step GBLUP (ssGBLUP) based on a combination of genomic and
pedigree relationship matrices (Legarra et al., 2009; Christensen and
Lund, 2010). The superiority of genomic selection over conventional
selection comes from its power to provide more accurate breeding
values for young animals without their own phenotype, due to its
ability to capture the Mendelian sampling, and consequently earlier
selection leading to a decreased generation interval. Furthermore,
genomic selection can enhance evaluations of difficult and
expensive-to-measure traits as well as traits with low heritability
(Calus et al., 2013).

While the combination of high accuracy for young animals and a
short generation interval are themain drivers of increased genetic gain
with genomic selection, the fuel for a successful selection process is the
genetic variation in the population under selection. Inevitably, the
theory states that during the selection process, genetic variance will
decline due to changes in allele frequency caused by selection and
random drift, and due to the accumulation of negative linkage
disequilibrium, the Bulmer effect (Bulmer, 1971; Lynch and Walsh,
1998; Walsh and Lynch, 2018). Hence, breeding programs monitor
and manage genetic variation to avoid rapid reduction in effective
population size (Ne) that can threaten the sustainability of future
genetic gains. Interestingly, the trends of genetic mean reported in
most conventional selection breeding programs are stable, suggesting
room for future genetic gains even after intense conventional selection
in the recent years or decades (for discussion, see Hill (2016)). The
classical way to assess genetic variation in a population is to estimate
the rate of inbreeding or equivalentlyNe. There is a limited number of
studies with retrospective analysis of genetic variance trends (Hidalgo
et al., 2020) and even fewer studies properly dissecting the processes
that drive these variance trends (Macedo et al., 2021; Lara et al., 2022).
In the short-term, genomic selection is unquestionably demonstrating
an increased rate of genetic gain per unit of time. Genomic selection
also has the ability to reduce the rate of coancestry via more precise
estimates of the Mendelian sampling terms between siblings and
hence better control of future population and individual inbreeding
(Daetwyler et al., 2007; Meuwissen et al., 2020), the latter not always
demonstrating a decrease in practice. The studies examining the long-
term effects of genomic selection are very scarce, but see Gorjanc et al.
(2018) and Wientjes et al. (2022). Furthermore, while we have
traditionally described the genetic variation of populations using
pedigree-based information, we can and should shift to more
informative measures based on genomic information (Sonesson
et al., 2012; Meuwissen et al., 2020).

Commercial layer chicken breeding programs are characterized
by an intensive selection of elite purebred animals inside the closed

lines. Genetic variation in such breeding systems is typically managed
systematically, for example, by avoiding mating the closest relatives to
limit progeny inbreeding. However, intense selection requires
maximum effort to make layer breeding programs sustainable in
the long-term. This could be achieved with optimal contribution
selection (OCS), which maximizes genetic gain for a targeted rate of
coancestry and, as such, manages future relationships between
individuals in addition to progeny inbreeding (Woolliams et al.,
1999). Technically, OCS optimizes genetic contributions of
selection candidates to maximize a selection criterion (most
commonly estimated breeding values) while constraining the group
coancestry between these individuals. The mean of the selection
criterion weighted by the optimised contributions is a measure of
future genetic mean, while group coancestry weighted by the
optimised contributions is a measure of future group coancestry.
The advantage of OCS over truncation selection is its emphasis on
managing between and within family (Mendelian sampling) variation
(Howard et al., 2018). The usefulness of OCS in conventional layer
breeding programs was presented by König et al. (2010). However,
there is a lack of studies showing the long-term impact of genomic
optimal contribution selection in intense layer breeding programs
characterized by very short generation intervals and high selection
intensity.

The objective of this study was to use simulation to evaluate the
long-term impact of genomic selection on genetic mean and
variance in an intense layer chicken breeding program. The
simulation parameters were based on estimates from real data.
Truncation genomic selection was compared to conventional
selection and various OCS scenarios to fully explore the balance
between maximizing genetic gain and managing genetic variation of
a breeding program. Understanding and assessing this balance over
a longer period provides a valuable decision-making platform for
intense breeding programs with a focus on short-term
competitiveness and long-term sustainability.

2 Materials and methods

We analyzed how different breeding scenarios impact the genetic
mean and variance in an intense layer chicken breeding program over
30 years under selection. These scenarios included conventional and
genomic truncation selection with random mating, genomic
truncation selection with optimized mating to minimize progeny
inbreeding, and two instances of genomic optimal contribution
selection with random pairing. Here, we first describe the
stochastic simulation of a commercial layer breeding program
according to the real parameters. Second, we provide details of the
aforementioned breeding scenarios, including how we estimated
breeding values and how we estimated optimal contribution
selection. Finally, we describe the measures used to compare the
scenarios (conversion efficiency, rate of inbreeding,Ne, and accuracy).

2.1 Stochastic simulation of a layer breeding
program

We used the AlphaSimR package (Gaynor et al., 2021) to
simulate 30 years of a commercial layer chicken line-breeding
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program. We initiated the simulation by generating base population
genomes for 2,500 individuals using the Markovian coalescent
simulator MaCS (Chen et al., 2009) as implemented in
AlphaSimR. The simulated genomes had 39 autosomal
chromosomes (like chicken), a total genetic length of
30 Morgans, and a total physical length of 1.2 × 109 base pairs.
To keep the simulation parameters consistent across all the
chromosomes, we assumed they were all the same size. This
departs from reality as the chicken genome consists of several
microchromosomes. The recombination rate was set to 2.5 × 10−8

and the mutation rate to 5.0 × 10−8. While we used this
recombination rate also in next simulation steps (see the next
section), we have assumed that mutation is absent in the next
simulation steps. This is an important caveat of this and similar
simulation studies, as adding a realistic level of mutation to gene
drop simulation of whole genomes is non-trivial. Efficient methods
for simulating mutations are currently under development
(Baumdicker et al., 2022). According to the demography of
chickens, including domestication and selective breeding, the base
population Ne was set to 100, with a gradual decrease from Ne of
500,000 at about 1 million generations ago. We retained
2,250 segregating sites per chromosome (87,750 in total) in the
base population. Out of those, we selected at random 250 sites per
chromosome (9,750 total) as quantitative trait loci (QTL), and
1,000 sites per chromosome (39,000 total) as single nucleotide
polymorphism (SNP) markers to be used for genomic selection.
Further 1,000 sites per chromosome (39,000 total) served as
seemingly neutral loci used for monitoring genetic variation at
loci not under direct selection. There was no overlap between
QTL, SNPs, and neutral loci. To mimic the egg production
phenotypes during the productive life of a hen, we simulated
three purely additive traits for early, mid, and late egg
production, having respective heritabilities of 0.18, 0.22, 0.25 with
a correlation 0.75 between trait 1 and trait 2, 0.70 between trait 2 and
trait 3, and 0.60 between trait 1 and trait 3 in the base population.
The simulation and all the subsequent analyses were replicated
10 times to assess variability between the ‘biological’ replicates of
the simulation.

2.2 Breeding scenarios

We evaluated five different breeding programs. Each breeding
program started from a 10-year burn-in that used a conventional
truncation selection on BLUP and random mating with equal
contributions. Burn-in was followed by a 20-year evaluation period
that used a: i) continuation of the conventional truncation selection
based on BLUP and randommating with equal contributions (PTS); ii)
genomic truncation selection based on ssGBLUP and random mating
with equal contributions (GTS); iii) genomic truncation selection based
on ssGBLUP and optimized mating minimizing progeny inbreeding
with equal contributions (GTSMF); iv) Genomic optimal contribution
selection based on ssGBLUP with a constrained number of sires and
random pairing of the optimized contributions (GOCS); and v)
Genomic optimal contribution selection based on ssGBLUP with an
unconstrained number of sires and random pairing of the optimized
contributions (UGOCS). Additionally, we simulated a random selection
program as a negative control to validate the Ne estimates.

A single year of the conventional or genomic breeding program
is shown in Figure 1. In the programs, we mated 1,080 dam with
either 40 or 120 sires. Therefore, the ratio of sires to dams was 1:
27 for the 40 sires scenario and 1:9 for the 120 sires scenario. These
values (9 and 27) were also absolute sire contributions under
random mating and constrained optimized mating breeding
programs. We assumed each dam had an equal contribution of
her initial 9 female and 4 male offspring, which resulted in
9,720 female and 4,320 male selection candidates in each
breeding cycle, 14,040 in total. Initial 9 female and 4 male
offspring per dam were randomly sampled from a family to
become selection candidates with a goal of mimicking real-life
practice, where a breeder on the farm will consider as selection
candidates any first 4 males and first 9 females hatched within the
family. One year of a conventional program allowed for one round
of selection, and mating after female phenotypes were collected and
used for genetic evaluation. In contrast, genomic programs reduced
the age of sires by half, allowing two rounds of sire and dam selection
per year, though dams were mated after one generation when their
phenotypes became available. At the time of selection, phenotypes
for early and mid egg production were available for female selection
candidates. This was to mimic a realistic situation, where early and
mid egg production are measured respectively at 25 and 52 weeks.
The late egg production is typically measured at about 100 weeks,
and therefore was not available at the time of selection. Selection was
based on an index of breeding values for the three traits, with
respective weights of 0.20, 0.35, and 0.45, thus giving more emphasis
on the traits measured later in the lifetime as commonly used in
breeding companies.

In the truncation selection scenarios without optimization (PTS
and GTS), we selected the top 1,080 females and either the top 40 or
120 males as the next-generation parents based on the index of
breeding values obtained by either BLUP or ssGBLUP, and mated
the parents at random with equal contributions. In the optimized
scenarios, we used AlphaMate software (Gorjanc and Hickey, 2018)
for a) optimized mating by minimizing future progeny inbreeding
(GTSMF) and b) genomic optimal contribution selection with a
targeted rate of coancestry with or without constraining the number
of sires (GOCS and UGOCS).

In the GTSMF breeding program, we first selected the top
1,080 females and either the top 40 or 120 males and then
optimized their matings with regard to minimizing progeny
inbreeding. For this optimisation we passed to AlphaMate an
index of breeding values a obtained by ssGBLUP and a pedigree-
based numerator relationship matrix A between the selected
candidates. This optimization used an evolutionary algorithm
that chose pairs of the selected candidates that minimised
progeny inbreeding, that is, we minimized the coancestry
between the pairs of parents.

In the GOCS breeding programs, we selected 1,080 females and
40 or 120 males that maximized the genetic gain under a targeted
rate of coancestry. In the UGOCS breeding programs, we selected
1,080 females and any number of males that maximized the genetic
gain under a targeted rate of coancestry. Additionally, we tested
UGOCS starting from two different starting points; after the burn-
in, using 40 or 120 sires. In the results, we report only the UGOCS
that started after the burn-in with 120 sires. In UGOCS, we removed
solutions that did not meet biological or logistical constraints in
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terms of the number of sires per generation. We set these limits
between 20 and 200 sires per generation. We ran the optimisation
only on the male side as optimising both male and female
contributions was slow and required a lot of computing
resources. Also, OCS can account for the previous selection
(Henryon et al., 2015), here the selection of females when
optimising male contributions. For these optimisations we passed
to AlphaMate an index of breeding values a obtained by ssGBLUP
and a pedigree-based numerator relationship matrix A between
selection candidates. This optimisation used an evolutionary
algorithm that choose optimal contributions of selection
candidates. Specifically, the goal was to maximize xTa, where x is
a vector of contributions of selection candidates to the next-
generation [0, 0.5], while constraining the selected group
coancestry �ct+1 � xTAx relative to current group coancestry
�ct � 1TA1/(4m2), where m is number of matings, such that we
obtained the targeted rate of coancestry (ΔC � (�ct+1 − �ct)/(1 − �ct))
and the associated effective population size Ne = 1/(2ΔC). We used
the pedigree-based numerator relationship matrix, instead of the
genome-based numerator relationship matrix, following the results
from Meuwissen et al. (2020).

For GOCS and UGOCS, the balance between genetic gain and
the rate of coancestry was optimized following Kinghorn (2011)
with ‘trigonometric penalty degrees’ between the maximal genetic
gain solution and the targeted solution under biological or logistic
constraints (number of sires in this study). In that sense, the
maximal genetic gain solution is obtained with a sole
maximization of the genetic gain xTa under biological or logistic
constraints (without considering genetic diversity), and gives a
trigonometric penalty degree of 0°. The minimal loss of genetic
diversity is obtained by the minimization of selected group
coancestry xTax under biological or logistic constraints (without
considering the genetic gain), and gives a trigonometric penalty

degree of 90°. Therefore, targeting trigonometric penalty degrees of
45°equalizes genetic gain and maintenance of genetic diversity,
targeting trigonometric penalty degrees of 0°is equal to the
truncation selection, and targeting trigonometric penalty degrees
of 90°represents conservation programs.We have optimized across a
wide range of trigonometric penalty degrees (5°–85°) and reported
results for the selected trigonometric penalty degrees that facilitated
comparison with other programs and discussion of their properties.

2.2.1 Breeding value estimation
We estimated breeding values using BLUPF90 (Misztal et al.,

2018) by running pedigree-based BLUP for the conventional program
(PTS) or ssGBLUP for genomic programs (GTS, GTSMF, GOCS,
UGOCS). They all used a three-trait linear mixed model:

yt � Xtbt + Ztat + et,

Where yt is a vector of phenotypes for the trait t (where t = T1,
T2, T3), Xt is a design matrix connecting the phenotype to mean as
the only fixed effect bt, Zt is a design matrix connecting the
phenotypes to the animal breeding values at, and et is a vector of
residuals.

Variance components were assumed to be known using the base
population simulation parameters, with their (co)variance structure
being:

Var e( ) �
σ2eT1 0 0
0 σ2eT2 0
0 0 σ2eT3

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ ⊗ I,

Var a( ) �
σ2aT1 σaT1,T2 σaT1,T3
σaT2,T1 σ2aT2 σaT2,T3
σaT3,T1 σaT3,T2 σ2aT3

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ ⊗ A orH,

For BLUP and ssGBLUP, respectively, where I is the identity
matrix, A is the pedigree-based numerator relationship matrix, and

FIGURE 1
Schematic representation of a single year of conventional (left) and genomic breeding programs (right) with 1,080 dam mated with 40 or 120 sires
generating 9,720 female and 4,320male selection candidates. In the genomic programs animals marked with DNA helix were genotyped, which enabled
earlier selection, though females were still mated after one generation causing generations to overlap.
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H is the matrix that combines pedigree and genomic relationships
(Legarra et al., 2009; Christensen and Lund, 2010).

The H matrix was defined as:

H � A + 0 0
0 G − A22

[ ],
where A22 is pedigree-based numerator relationship matrix for
genotyped animals only, G � WWT/2∑nm

j�1pj(1 − pj), where W is
a centred matrix of SNP genotypes (coded as 0 for the reference
homozygote, 1 for the heterozygote, and 2 for the alternative
homozygote), pj is the observed frequency of the alternative allele
for SNP j, and nm is the number of SNPs (VanRaden, 2008).

For genomic evaluation, genotypes were available for 4,320 male
selection candidates only and up to four generations back from
previously selected males and females. Therefore, within each round
of genomic selection, at most 8,800 and 9,120 genotypes were
available respectively for 40 and 120 sires scenarios. Genotyped
dams in the reference population had all three phenotypic values
available. The pedigree and phenotypic data were not truncated. The
option thrStopCorAG was used to prevent BLUPF90 from stopping
when the correlations between G and A22 fell slightly below the
default value (0.30). This option was used to overcome similar issues
observed in some real datasets (e.g., Pocrnic et al., 2018). All other
BLUPF90 settings were kept as default.

2.3 Comparison of breeding programs

We compared breeding scenarios in terms of genetic gain, genic
standard deviation, conversion efficiency, rate of inbreeding,Ne, and
accuracy of selection. To make the breeding scenarios comparable,
all scenarios were normalized to the last year of burn-in (year 10), so
that the mean genetic value was 0 and the standard deviation was 1.
For each of the 20 evaluation years (11–30), we reported average
values across 14,040 male and female selection candidates. In the
genomic programs, we had two batches of selection candidates
(28,080 total) per year, which we accounted for in the analyses
by adding half a year points (e.g., 11, 11.5, 12, 12.5, . . . ).

We measured genetic gain as the average true genetic value per
year of birth (including half-year points in genomic programs).
Genic standard deviation was calculated as the square root of the
variance of true genetic values under the assumption of no linkage
between the causal loci, that is 2∑nq

j�1pj(1 − pj)α2j , where pj is the
frequency of the alternative allele for QTL at locus j, nq is the number
of QTL, and αj is the QTL additive effect at locus j (e.g., Lara et al.,
2022). The true genetic values and corresponding true variances
were obtained directly from the AlphaSimR simulation. We
measured the long-term viability of breeding programs through
conversion efficiency (Gorjanc et al., 2018). The conversion
efficiency was calculated by regressing the achieved genetic gain
on the lost genic standard deviation. Within this definition, the
conversion efficiency is the slope of the aforementioned linear
regression, that is, the genetic gain that could be achieved when
all the genic variance is utilized. Thus, the conversion efficiency can
be useful for assessing the sustainability of a breeding program, as it
combines measures of the gain and the diversity in a single metric,
allowing easy extrapolation to the future, and informing the breeder
how efficient is the breeding program in transforming the variance

into gain. The average genomic inbreeding coefficients in year t (Ft)
were calculated from the observed heterozygosity as Ft = 1 − Hot,
where Hot is the average observed heterozygosity in year t. We
separately calculated the observed heterozygosity for QTL, SNP
marker loci used in genomic selection, and neutral loci. For
comparison purposes, we also calculated individual pedigree-
based inbreeding coefficients using the Meuwissen and Luo
(1992) algorithm implemented in the RENUMF90 software
(Misztal et al., 2018). From the average inbreeding coefficients
per year, we calculated the rate of inbreeding as ΔF = 1 − exp(β),
where β is the regression coefficient obtained by regressing the
natural logarithm of (1 − Ft) on the year of birth t (Pérez-Enciso,
1995). The Ne was calculated as Ne = 1/(2LΔF), where ΔF is the rate
of inbreeding per year and L is the generation interval defined as the
average age of the parents at the birth of their offspring. The
generation interval was 1.00 for the conventional program and
0.75 for the genomic programs. Additionally, we estimated Ne
following Wright (1931) classical formula as 4NmNf/(Nm + Nf),
where Nm and Nf are respectively number of sires and dams. We
measured the accuracy of selection as the correlation between the
estimated breeding values and the true genetic values. Whenever the
reported metrics were compared in the terms of percentage
differences, we applied the percentage change formula as ((New
value − Base value)/(Base value))*100. For example, when assessing
percentage change between GTS and PTS, GTS would be New value
and PTS would be Base value.

3 Results

3.1 Conversion efficiency

Table 1 shows the mean genetic gain and genic standard
deviation from the last generation of selection candidates, and
the conversion efficiency of breeding scenarios. To accompany
the table, Figure 2 shows the conversion efficiency trends for the
scenarios, together with extrapolation to 50% genic variance lost.
Supplementary Figure S1 shows the extrapolation to 100% genic
variance lost.

The GTS delivered about 50% higher genetic gain than PTS;
19.2 vs. 12.6 genetic standard deviations in the 40 sires scenario, and
20.2 vs. 14.0 genetic standard deviations in the 120 sires scenario.
Genic standard deviation was comparable between the PTS and GTS
in the 40 sires scenario, about 0.58, giving a conversion efficiency of
29.5 for the PTS and 46.6 for the GTS. In the 120 sires scenario, both
genetic gain and genic variance were larger than in the 40 sires
scenario, giving a conversion efficiency of 50.5 for the PTS and
60.9 for the GTS.

The GOCS increased conversion efficiency bymaximizing genetic
gain at a targeted rate of coancestry. With a target of 45°trigonometric
penalty degrees, GOCS had a somewhat lower genetic gain to the GTS,
while simultaneously increasing conversion efficiency for 10% in the
40 sires scenario and for 7% in the 120 sires scenario. With a target of
65°trigonometric penalty degrees, GOCS had a similar genetic gain to
the PTS, while simultaneously increasing conversion efficiency for
35% in the 40 sires scenario and for 22% in the 120 sires scenario. The
GOCS had higher conversion efficiency in the 120 sires scenario
compared to the 40 sires scenario.
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The number of sires in UGOCS scenarios fluctuated as
presented in the Supplementary Figure S2, with the general
tendency that increasing the targeted trigonometric penalty
degrees, that is, increasing emphasis on the maintenance of
genetic variation, increased the number of sires. The average
number of sires ranged from 2 for the target of 15° to 845 for
the target of 85°. In the results, we focus on the UGOCS with a target
of 45°and 55°, which respectively used 20 and 182 sires on average,
and were therefore within the limits we set for the number of sires
per generation (20–200). Furthermore, since the UGOCS starting
from either of the two starting points (after 40 or 120 sires burn-in)
tended to select a similar number of sires (Supplementary Figure S2),
we report the results only for the one that started after the 120 sires
burn-in. With a target of 45°trigonometric penalty degrees, UGOCS
had a similar genetic gain, genic standard deviation, and conversion
efficiency as the GTS. With a target of 55°trigonometric penalty
degrees, UGOCS had a similar genic standard deviation and
conversion efficiency of the GOCS with a target of
45°trigonometric penalty degrees.

3.2 Rate of inbreeding and effective
population size

The rate of inbreeding per year and per generation, and the
corresponding Ne in the 40 or 120 sires scenarios are presented in
Table 2. We report rates of inbreeding multiplied by 100. Based on
the average observed SNP heterozygosity, we obtained small
estimates of Ne (< 40) in all breeding programs and scenarios.
The GTS had on average somewhat larger Ne than the PTS. The
GOCS scenarios with a target of 45 or 65 trigonometric penalty

degrees had the largestNe. For the 40 sires scenarios, the GOCS with
a target of 65 trigonometric penalty degrees approximately doubled
the Ne compared to the GTS (Ne 30 vs. 14) and approximately
tripled the Ne compared to PTS (Ne 30 vs. 10). Similar increase was
observed in the 120 sires scenarios. The rate of inbreeding and
corresponding Ne values obtained by average observed SNP
heterozygosity were very similar to the values obtained by
measuring heterozygosity on neutral loci (Supplementary Table
S1) or QTL (Supplementary Table S2). We expectedly observed
larger Ne when using 120 sires compared to 40 sires. On average,
using 120 sires instead of 40 sires increased the Ne by 37%, with the
most considerable increase for PTS (60%). As expected, the UGOCS
scenario with a target of 45°resulted in the lowest Ne (12),
considering the low average number of sires (20). The UGOCS
scenario with a target of 55°used on average 182 sires and resulted in
Ne of 21, similar to GOCS scenarios with a target of 45°using either
40 or 120 sires (Ne of 19 and 24, respectively). Using the classical
Wright’s formula, Ne was 154 and 432 respectively for the 40 and
120 sires scenarios. However, the above estimates of Ne from the
observed rates of inbreeding depart significantly from the classical
Wright’s formula due to intense selection over the 30 years. To
validate our simulation and Ne estimates, we ran a random selection
scenario. The random selection scenarios resulted in the Ne
estimates of 151 for the 40 sires scenario and 517 for the 120 sire
scenario, which were close to the classical Wright’s formula.

3.3 Accuracy of selection

The mean accuracy of selection over the 20 years is shown in
Table 3, whereas the trends over the 20 years of selection are shown

TABLE 1Mean genetic gain and mean genic standard deviation (SD) for the last generation of selection candidates together with overall conversion efficiency (SD
over replicates in parentheses).

Breeding program 40 sires per generation 120 sires per generation

Genetic gain Genic
SD

Conversion efficiency Genetic gain Genic SD Conversion efficiency

PTS 12.6 (0.8) 0.57
(0.02)

29.5 (2.5) 14.0 (0.4) 0.73 (0.02) 50.5 (5.1)

GTS 19.2 (1.0) 0.58
(0.02)

46.6 (4.0) 20.2 (0.9) 0.67 (0.02) 60.9 (4.2)

GTSMF 19.2 (1.2) 0.58
(0.02)

46.1 (3.9) 20.2 (0.8) 0.68 (0.02) 61.3 (3.2)

GOCS 45 18.0 (1.0) 0.69
(0.03)

55.5 (5.2) 17.6 (0.7) 0.75 (0.01) 66.4 (2.7)

GOCS 65 13.6 (0.8) 0.79
(0.02)

61.8 (5.8) 12.9 (0.5) 0.83 (0.01) 75.0 (5.6)

Fluctuating number of sires per generation

Genetic gain Genic SD Conversion efficiency

UGOCS 45 21.1 (0.7) 0.57 (0.02) 47.6 (2.5)

UGOCS 55 19.4 (1.0) 0.71 (0.01) 65.0 (3.5)

PTS, conventional truncation selection; GTS, genomic truncation selection; GTSMF—GTS, with minimization of progeny inbreeding; GOCS X, genomic optimal contribution selection; UGOCS

X, unconstrained GOCS; with the X trigonometric penalty degrees.
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in the Supplementary Figure S3. The GTS had higher accuracy than
PTS. The genomic data provided a 24% (40 sires) and 21%
(120 sires) increase in overall accuracy compared to the
conventional program based on phenotypic and pedigree data
only. Compared to truncation selection programs, GOCS
programs further increased accuracy. GOCS with a target of
65 trigonometric penalty degrees had the highest overall
accuracy; 0.74 for the 40 sires scenario and 0.75 for the 120 sires
scenario. Translated to the percentage increase, using GOCS with a
target of 65 trigonometric penalty degrees increased the overall
accuracy by 19% (40 sires) and 17% (120 sires) compared to the
genomic truncation selection. On the other hand, there was no
apparent advantage in using the UGOCS compared to the GTS.
Furthermore, there were no significant differences in accuracy
between using 40 or 120 sires. Looking at the accuracy trends

across years (Supplementary Figure S3), the GOCS maintained
accuracy the most. This beneficial trend was especially apparent
in the initial evaluation years.

4 Discussion

In this study, we affirmed that nucleus-based breeding
programs, as used in commercial layer chicken breeding,
successfully generated genetic gain with conventional selection
and demonstrated a suitable structure to adopt genomic
selection. Switching from the PTS to GTS increased genetic gain,
predominantly through shortened generation intervals, and
increased accuracy of selection for young animals. However, the
nature of nucleus-based breeding programs requires managing

FIGURE 2
Conversion efficiency for conventional truncation selection (PTS) program and genomic programs (genomic truncation selection - GTS, genomic
optimal contribution selection - GOCS X, unconstrained GOCS - UGOCS X, with the X trigonometric penalty degrees) marked with an arrow and further
extrapolated to 50% of genic variance lost for (A) 40 sires and (B) 120 sires scenario.
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genetic diversity to facilitate long-term genetic gain. Rapid genetic
turnover with genomic selection makes this evergreen point even
more important. Here, we developed and deployed a large-scale
stochastic simulation of an intense layer chicken breeding program
and evaluated the long-term impact of genomic selection on genetic
mean and variance, and the effect of GOCS on efficiency. For this, we
have simulated 30 years of breeding, and used last 20 years to
compare the scenarios, which was considered a long-term period.
Here, we discuss howGTS and GOCS affect: i) the long-term success
of tested scenarios measured with the conversion efficiency; ii) the
rate of inbreeding and Ne; and iii) the accuracy of selection.

4.1 Conversion efficiency

The GTS achieved 50% higher genetic gain than PTS with
similar or even lower loss of genic variance. Genomic selection
enables the within-family selection of genotyped selection
candidates by estimating their parent average along with the
Mendelian sampling term, compared to having only their parent
average in conventional selection. Furthermore, genomic selection
has decreased the generation interval and increased the accuracy of
selection for young animals, as observed across livestock species,
including layer chickens (Sitzenstock et al., 2013; Wolc et al., 2015;

TABLE 2 Rate of inbreeding (ΔF x100) and effective population size (Ne) based on observed SNP heterozygosity (SD x100 over replicates in parentheses).

Breeding program 40 sires per generation 120 sires per generation

ΔF/year (x100) ΔF/generation (x100) Ne ΔF/year (x100) ΔF/generation (x100) Ne

PTS 5.23 (0.36) 5.23 (0.36) 10 3.10 (0.28) 3.10 (0.28) 16

GTS 4.80 (0.36) 3.60 (0.27) 14 3.56 (0.27) 2.67 (0.20) 19

GTSMF 4.72 (0.23) 3.54 (0.17) 14 3.51 (0.22) 2.63 (0.16) 19

GOCS 45 3.54 (0.31) 2.66 (0.23) 19 2.77 (0.17) 2.08 (0.12) 24

GOCS 65 2.26 (0.19) 1.69 (0.14) 30 1.71 (0.13) 1.28 (0.10) 39

Fluctuating number of sires per generation

ΔF/year (x100) ΔF/generation
(x100)

Ne

UGOCS 45 5.35 (0.42) 4.01 (0.31) 12

UGOCS 55 3.17 (0.14) 2.38 (0.11) 21

PTS, conventional truncation selection; GTS, genomic truncation selection; GTSMF—GTS, with minimization of progeny inbreeding; GOCS X, genomic optimal contribution selection; UGOCS

X, unconstrained GOCS; with the X trigonometric penalty degrees.

TABLE 3 Mean accuracy of selection candidates over 20 years of selection (SD over replicates in parentheses).

Breeding program 40 sires per generation 120 sires per generation

PTS 0.50 (0.02) 0.53 (0.01)

GTS 0.62 (0.01) 0.64 (0.01)

GTSMF 0.62 (0.01) 0.63 (0.01)

GOCS 45 0.69 (0.01) 0.72 (0.01)

GOCS 65 0.74 (0.01) 0.75 (0.01)

Fluctuating number of sires per generation

Fluctuating number of sires per generation

UGOCS 45 0.64 (0.01)

UGOCS 55 0.66 (0.01)

PTS, conventional truncation selection; GTS, genomic truncation selection; GTSMF—GTS, with minimization of progeny inbreeding; GOCS X, genomic optimal contribution selection; UGOCS

X, unconstrained GOCS; with the X trigonometric penalty degrees.
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Picard Druet et al., 2020). For example, a two-to three-fold increase
in response to selection was observed for egg production and quality
traits with genomic compared to conventional selection (Sitzenstock
et al., 2013; Wolc et al., 2015).

Besides genetic gain, we evaluated the sustainability of tested
scenarios using conversion efficiency. The application of OCS is
often seen as a risk-taking action that sacrifices some short-term
genetic gain for long-term sustainability. Alternatively, we can assess
the sustainability of the breeding program by looking at the annual
trends of genetic gain and genic variance as presented respectively in
Supplementary Figures S4, S5. By looking at those trends, similarly
to the conversion efficiency trends, we can sense how much short-
term gain is sacrificed for generating more long-term gain with OCS.
One of the key challenges in implementing OCS is choosing a
balance between the selection and the management of genetic
variation. In this study we follow the approach of Kinghorn
(2011) who uses the ‘operational’ trigonometric penalty degrees
between the truncation selection solution and the targeted optimal
contribution selection solution (Gorjanc et al., 2018). In general, our
results expectedly show that higher trigonometric penalty degrees
result in larger conversion efficiency and lower short-term gain,
while lower trigonometric penalty degrees result in genetic gain
comparable to truncation selection. We have ran simulation with a
wide range of trigonometric penalty degrees (5°–85°), but report only
a subset of results that facilitated comparison between optimal and
truncation selection scenarios. While we can run stochastic
simulations across the grid of various trigonometric penalty
degrees to find the best compromise for the desired goal, this
might not be feasible in practical situations. Woolliams et al.
(2015) suggest the target rate of coancestry should be less than
0.01 (Ne > 50), which can be a more concrete constraint in
optimization than the trigonometric penalty degrees, which can
vary the optimisation targets as input data and constraints change.
In the results, we highlighted OCS scenarios with targets of 45°and
65°to demonstrate their value relative to truncation selection
scenarios. In comparison to GTS, the GOCS scenario with a
target of 65°increased the conversion efficiency between 22% and
35%, and was hence the best strategy to achieve long-term
sustainability at the expense of on average 33% lower short-term
gain. Similarly, the GOCS scenario with a target of 45°increased
conversion efficiency between 7% and 19%, which is useful for
achieving short-term genetic gain while still investing in long-term
sustainability. The results also indicate that the increase in the
conversion efficiency of GOCS compared to GTS is a function of
the number of breeding individuals since the increase was larger
when using 40 sires than 120 sires. It is vital to point that for the
same loss of genic variance both GOCS scenarios achieved higher
genetic gain and conversion efficiency compared to GTS (Figure 2;
Supplementary Figure S1), which is the correct comparison between
these scenarios. The reported optimization targets are specific to this
study with its specific breeding program design and species-specific
biology. For example, in a simulation study, Obšteter et al. (2019)
reported the highest genetic gain for targets between 45° and 50°but
with a conversion efficiency similar to their GTS, while their targets
between 55° and 75°had much better conversion efficiency, but lower
genetic gain compared to their GTS. Similarly, in our study, GOCS
with targets higher than 65°achieved a lower genetic gain, even
compared to conventional truncation selection (results not

reported). We did not report results for targets lower than 45°as
they had a similar gain and efficiency as the GTS. König et al. (2010)
demonstrated the benefits of OCS compared to truncation selection
in two commercial White Leghorn lines and one experimental line
in the context of conventional selection. The advantage of OCS over
truncation selection is in optimizing contributions, which are a
function of animal Mendelian sampling terms (Woolliams et al.,
2015; Howard et al., 2018). This means that OCS and genomic
selection work in synergy (Daetwyler et al., 2007; Sonesson et al.,
2012; Obšteter et al., 2019; Maltecca et al., 2020).

An additional benefit of employing GOCS is the potential
optimization of the size of the breeding population. In our study,
GOCS with a target of 65 trigonometric penalty degrees using
40 sires per generation resulted in similar conversion efficiency
as GTS using 120 sires. Therefore, these results suggest that we can
achieve the same long-term genetic gain, but not short-term genetic
gain, with three times fewer sires per generation, which could reduce
the production cost. UGOCS scenarios with a target of 45°and
55°resulted in a genetic gain comparable to GTS and, on average,
selected 20 and 182 sires, which was biologically and logistically
feasible. The UGOCS with a target of 55°used on average 182 sires
and resulted in a conversion efficiency similar to that of GOCS with
a target of 45°using 40 sires. Therefore, none of the UGOCS
scenarios surpassed the short-term genetic gain of the GTS or
achieved better long-term conversion efficiency compared to the
GOCS scenarios. While there was no benefit in using the UGOCS, it
was useful as a guideline to show that using less than 40 ormore than
120 breeding males is not necessarily beneficial in our simulated
breeding program. This is in line with a simulation of a pig breeding
program in (Henryon et al., 2015) that has compared unconstrained
and several constrained OCS scenarios. They concluded that the
constrained scenarios achieved a similar long-term genetic gain
compared to unconstrained scenarios. The same study also
argues that OCS can account for the previous selection. This
aspect is important for this study since we used truncation
selection for females and OCS for males, but during OCS we
accounted for female-female, female-male, and male-male
relationships. In this sense, OCS has taken the female selection
into account and modified the selection of males. This is a common
approach also in cattle breeding, where a breeding program does not
have control of cows across many farms or the number of cows is
simply too large to be included in the OCS (e.g., Sánchez-Molano
et al., 2016; Kohl et al., 2020). Further research is needed on the
methods for large-scale OCS.

As we mentioned in the materials and methods section, an
important caveat of this and similar simulation studies is providing a
realistic level of mutation to gene drop simulation of whole genomes,
which might have an impact on genic variance. There are limited
studies assessing the impact of mutations on a long-term scale. For
example, Mulder et al. (2019) found that after 20 years of GBLUP
selection, mutational response to selection accounts for at most 0.3%
of the total response to selection, and the mutational variance is at
most 0.5% of the total genetic variance in the last simulation
generation. Furthermore, they conclude that the comparison
between different selection strategies is not affected by the
assumptions of mutational variance. Recently, Wientjes et al.
(2023) simulated long-term effects over 50 generations, and
found that to benefit from new mutations selection needs to use
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own performance records, however, this benefit becomes apparent
only after about 25 years of selection. Thus, while themutations were
simulated only in a base population within AlphaSimR, we do not
expect this would have a major impact on the presented results.

4.2 Rate of inbreeding and effective
population size

Although the conversion efficiency indicates the sustainability of
a breeding programwith respect to the traits under selection, the rate
of inbreeding and associated Ne indicate broader sustainability, also
including neutral diversity that encompasses potential future
mutations, traits, or environments. We show that GTS improved
the rate of inbreeding per generation compared to PTS, resulting in a
larger Ne. This benefit of GTS comes from the ability to estimate
Mendelian sampling terms, leading to better within-family
differentiation and thus reducing the pressure on the co-selection
of sibs from families with high parent averages in comparison to PTS
(Daetwyler et al., 2007). In such comparisons, it is essential to
measure the rate of inbreeding per generation rather than per year,
because genomes are transmitted between generations. Not
accounting for generation length in the comparison of the rate of
inbreeding can lead to different conclusions, as it can be seen from
the following example in scenarios using 120 sires. In this example,
the rate of inbreeding per year with the GTS (ΔFyear*100 = 3.56) is
larger than with the PTS (ΔFyear*100 = 3.10), while when measured
per generation is lower (ΔFgeneration*100 = 2.67). On the other hand,
when using 40 sires, the rate of inbreeding with GTS per generation
(ΔFgeneration*100 = 3.60) as well as per year (ΔFyear*100 = 4.80) was
lower compared to PTS (ΔFyear*100 = 5.23). These results are in line
with Wolc et al. (2015), who used simulation of a layer breeding
program and showed that GTS halved the rate of inbreeding per
generation compared to PTS while keeping a similar inbreeding rate
per year. Our Ne estimates were low, but not unexpected given the
parameters of the simulation. We have simulated 30 years of intense
selection with the rate of inbreeding (*100) per generation between
5.23 and 1.28 respectively giving Ne between 10 and 39. The
estimates of Ne in livestock, including chickens, vary a lot across
the literature due to intrinsic differences between populations, but
also due to different estimation methods using pedigree or genomic
data, different type of genomic data, different summaries of the data,
different time points, and different types of Ne, for example, see
Waples (2022). Zhang et al. (2020) reported a Ne of 31 for Cornish,
109 for White Leghorn, and 189 for Rhode Island Red chicken
breeds. For nine commercial pure lines with origin in Plymouth
Rock and Cornish, Andreescu et al. (2007) reportedNe ranging from
50 to 200. In the study on two experimental (White Leghorn and
New Hampshire pure lines) and two commercial (White Leghorn
pure line and two-way cross between Rhode Island Red and White
Rock) egg-layer lines, Qanbari et al. (2010) reported Ne to be less
than 70 for brown layers and less than 50 for white layers. In the
analysis of the Russian White breed, the Ne ranged from 14 to 124
(Dementieva et al., 2021). Pocrnic et al. (2016) approximated the Ne
of 44 using a large commercial broiler chicken dataset. Compared to
these estimates, our estimates are at a lower bound.

One possible reason for the discrepancy between our Ne
estimates and those published could be our coalescent simulation

of base population genomes, which is simulating neutral variation
albeit at increasingly smaller Ne to mimic drift and selection due to
domestication and recent selective breeding. Such simulations
generate variation that has an abundance of rare variants with a
typical U-shaped allele frequency spectrum (Daetwyler et al., 2013).
While such variation can be captured by whole-genome sequencing
in real populations, SNP arrays largely do not tag rare variants, and
have uniform allele frequency spectrum due to the SNP
ascertainment bias, which can lead to a mismatch between our
and published (real data) estimates of Ne. This is also a likely
explanation for why there were no major differences between the
estimates of Ne obtained from heterozygosity at SNP markers and
from heterozygosity at neutral loci or QTL. From the perspective of
simulations, this indicates that a good practice for future simulation
studies is to sample SNP markers with ascertainment bias.
Quantifying the impact of these assumptions on the accuracy,
genetic gain, and genetic variance is challenging. Current
literature suggests that the impact on accuracy is limited since
many breeding populations have high levels of linkage-
disequilibrium (e.g., Daetwyler et al., 2013; Hickey et al., 2013),
but more research is needed in this domain. Still, we estimated the
rate of inbreeding based on the rate of change in the observed
heterozygosity, which was at the level of heterozygosity found in
commercial chicken lines. Our simulations started in year 1 with
observed marker heterozygosity (SD) of 0.25 (0.01), while our
evaluated breeding scenarios (year 11; after the burn-in) started
with observed heterozygosity of 0.16 (0.01) and 0.21 (0.01)
respectively for 40 and 120 sires scenarios. These values matched
values reported in the real data studies. Zhang et al. (2020) reported
observed average heterozygosity for commercial lines ranging from
0.29 (0.02) to 0.39 (0.04), Qanbari et al. (2010) from 0.34 (0.15) to
0.47 (0.21), Elferink et al. (2012) from 0.21 to 0.43, Dementieva et al.
(2021) from 0.31 to 0.39, and Malomane et al. (2019) from
0.12 to 0.28.

Minimizing progeny inbreeding after genomic truncation
selection (GTSMF, a breeding strategy commonly used in
practice) did not significantly affect genetic gain, genic variance,
or conversion efficiency. Furthermore, this method resulted in the
rates of inbreeding and corresponding Ne’s comparable to GTS, and
therefore does not offer long-term advantage beyond short-term
avoidance of progeny inbreeding and associated inbreeding
depression. While inbreeding and associated inbreeding
depression are important, for long-term sustainability managing
coancestry between selected individuals and with this genetic
variance is more important. In our study, GOCS with a target of
65 trigonometric penalty degrees provided the best properties for
controlling the rate of inbreeding for both 40 and 120 sires scenarios.
It approximately halved the rate of inbreeding and doubled the Ne
compared to GTS, and approximately tripled the Ne compared to
PTS. On the other hand, the UGOCS scenarios were unable to
provide meaningful benefits for the rate of inbreeding compared to
GOCS scenarios. In this study, UGOCS scenarios with a target of
45 and 55 trigonometric penalty degree used respectively on average
20 and 182 breeding sires. Therefore, a higher rate of inbreeding of
UGOCS scenario with a target of 45°could be directly attributed to a
low number of sires in each generation. In the UGOCS scenario with
a target of 55°, the resulting rate of inbreeding was comparable to the
GOCS scenario with a target of 45°using 40 sires. This reinforces the
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results we obtained for conversion efficiency, pointing out that
having fewer than 40 sires seems risky, while having more than
120 sires does not provide any further benefit and only raises the
costs of keeping more breeding individuals. König et al. (2010)
evaluated OCS applied to the conventional breeding scheme of two
commercial White Leghorn lines and one experimental line, and
concluded that OCS is a preferred method for managing inbreeding
in layer populations, supporting our results. Howard et al. (2018)
studied closed nucleus commercial pig lines and connected the
selective advantage of OCS to estimates of Mendelian sampling
terms. Similarly to our study, they concluded that a combination of
genomic selection and OCS has the potential to generate greater
long-term genetic gain without a negative impact on the rate of
inbreeding.

While genomic information is now the de facto standard for
estimating andmanaging genetic diversity (Howard et al., 2017; Baes
et al., 2019), most studies also report pedigree-based inbreeding for
comparison. The rationale for this comparison is that while pedigree
data provide expected trends in genetic diversity over time, genome
data provide actual genetic variation and hence realized trends in
genetic diversity over time. However, caution is required in
comparing pedigree- and genome-based estimates, because they
might not be estimating the same quantity of interest or might
be capturing different genetic processes driving the changes. In our
simulation, we have observed large differences between the rates of
inbreeding estimated from pedigree or genomic data. The pedigree-
based estimates are presented in Supplementary Table S3. For
example, in some scenarios, pedigree-based rates of inbreeding
were about five to ten times smaller than genome-based rates of
inbreeding, consecutively resulting in a tenfold larger estimate ofNe.
In the scenarios using GOCS, estimates of the Ne from the pedigree-
based inbreeding were even outside the range of estimates obtained
by the random selection or Wright’s formula. The discrepancy
between pedigree- and genome-based estimates is likely due to
the fact that pedigree relationships model the expected drift and
inbreeding under the infinitesimal model without actually observing
changes in allele frequency and heterozygosity. With genomic data,
we can observe such changes, which are also influenced by selection,
and cannot be captured by pedigree data alone. In general, our
genome-based estimates of rates of inbreeding exceeded the
pedigree-based estimates across all the scenarios. This is in
agreement with the existing literature across the livestock sector,
noting that most of the reported genome-based estimates are based
either on the genomic relationship matrix or runs of homozygosity.
For example, in a study of Holstein and Jersey cattle populations,
Makanjuola et al. (2020) reported ΔFgeneration of 0.75 and 1.16 for
pedigree-based and genome-based (runs of homozygosity).

The discrepancy between the pedigree- and genome-based
inbreeding estimates (e.g., Table 2; Supplementary Table S3)
opens a much broader discussion on the proper management of
genetic diversity in the genomics era. While in the conventional
selection, both the evaluation and the optimal contribution steps
typically use the same pedigree-based relationship matrix, this need
not be the case with genomic selection. There are reports of the
benefits of using various genome-based relationship matrices for
optimal contribution selection (Sonesson et al., 2012; Woolliams
et al., 2015; Henryon et al., 2019; Gebregiwergis et al., 2020; Maltecca
et al., 2020; Meuwissen et al., 2020). In this study, we did not evaluate

the impact of various relationship matrices to manage diversity in
OCS, since only male selection candidates were genotyped in the
simulation, mimicking the real-life breeding program. However,
with the decreasing costs of genotyping, genotypes for young female
selection candidates will eventually become available, allowing
testing a full range of solutions to model relationships in the
OCS, for example, see Meuwissen et al. (2020).

4.3 Accuracy of selection

Accuracy of selection is an essential metric in every breeding
program, as it directly affects the amount of genetic gain that can be
achieved. In our study, the GTS increased the average accuracy for
the selection candidates by more than 20% compared to the PTS.
This confirms the now well-established positive effect of genomic
selection on the accuracy observed across livestock species,
including chicken (Wolc et al., 2011; Sitzenstock et al., 2013;
Picard Druet et al., 2020; Hidalgo et al., 2021). Despite the higher
accuracy with genomic selection, its persistence in the long-term still
has not been fully assessed (for example, over 7 years, see Hidalgo
et al. (2021)), especially when comparing truncation and optimal
contribution selection. The rapid decline of the accuracy with GTS
was shown byMuir (2007). They attributed the decline mainly to the
erosion of the favorable linkage disequilibrium and showed that
persistence is dependent on the size of the training population. Wolc
et al. (2011) investigated the persistence of the accuracy using real
data in layers and suggested that the decrease in the accuracy could
be balanced by increasing the size of the training population (by
accumulating data) and retraining the reference in every generation.
Furthermore, the accuracy might also decrease over generations due
to a drop in the genetic variance. This provides the opportunity for
OCS, as by preserving the genetic variance it can also better preserve
the accuracy (Gorjanc et al., 2018). Hidalgo et al. (2021) reported
that in general, accumulating data increased the accuracy but also
that keeping only two most recent years of data (pedigree,
phenotypes and genotypes) was sufficient to have persistent
accuracies for selection candidates.

While we report the average accuracy of all selection candidates,
it is worth mentioning that there will be a difference between the
accuracy for male and female selection candidates due to the
difference in available information in our breeding program. For
example, in the last generation of selection in the 40 sires GTS
scenarios, the average accuracy (SD) for male selection candidates
was 0.70 (0.02) and for female selection candidates 0.46 (0.04). In
GOCS with target of 45 and 65 trigonometric penalty degrees, the
average accuracy for male selection candidates was respectively 0.76
(0.02) and 0.81 (0.03), and for female selection candidates was
respectively 0.57 (0.04) and 0.66 (0.07).

We found that the average accuracy over 20 years increased by
about 20%when we used the GOCS compared to GTS. Furthermore,
the accuracy trends over the years were more stable when we used
the GOCS. A similar boost in accuracy with OCS was reported in
several studies (Gourdine et al., 2012; Eynard et al., 2018). In a
simulation of a plant-breeding program with rapid recurrent
genomic selection, Gorjanc et al. (2018) argued that the positive
impact of OCS on accuracy is due to better management of genetic
variation, so the genetic drift between training and prediction
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populations is not too large. Jannink (2010) showed that increasing
the rate of inbreeding with genomic selection decreases the accuracy,
indicating that managing the rate of inbreeding is beneficial for
accuracy. Other methods of selection and mating optimization have
shown a similar positive trend on the accuracy of selection, like the
recently proposed scoping method in plant breeding (Vanavermaete
et al., 2020). Although the underlying mechanism that drives the
boost and persistence of the accuracy in the OCS is not yet fully
understood, our results suggest the benefit of using it compared to
truncation selection.

5 Conclusion

We developed a large-scale simulation of an intense layer
chicken breeding program and evaluated the long-term impact of
genomic selection on genetic gain and variance. With the transition
from conventional to genomic truncation selection, we decreased
the generation interval and increased the accuracy of selection for
young animals. This resulted in a substantial increase in genetic gain
with a similar loss of variance, meaning that genomic selection
converted genetic variation to gain better compared to the
conventional truncation selection. While the GOCS delivered
somewhat lower genetic gain in the short-term compared to
GTS, it managed genetic variance better and maintained high
selection accuracy for longer. By optimizing the balance between
the loss of genetic variance and genetic gain, GOCS had a better
conversion efficiency and therefore showed the potential for larger
long-term genetic gain compared to GTS. Furthermore, our results
suggest that the application of GOCS can be useful to manage the
number of parents. In general, our results indicate that the intense
layer chicken breeding programs should use genomic selection and
consider improving the conversion of genetic variation to gain with
GOCS to ensure long-term success of their breeding programs.
Consequently, the GOCS should be tested and deployed in all
closed-nucleus breeding programs.
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