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Introduction: Genome-wide association studies (GWAS) have identified genetic
markers for cattle production and reproduction traits. Several publications have
reported Single Nucleotide Polymorphisms (SNPs) for carcass-related traits in
cattle, but these studies were rarely conducted in pasture-finished beef cattle.
Hawai’i, however, has a diverse climate, and 100% of its beef cattle are pasture-fed.

Methods: Blood samples were collected from 400 cattle raised in Hawai’i islands
at the commercial harvest facility. Genomic DNA was isolated, and 352 high-
quality samples were genotyped using the Neogen GGP Bovine 100 K
BeadChip. SNPs that did not meet the quality control standards were removed
using PLINK 1.9, and 85 k high-quality SNPs from 351 cattle were used for
association mapping with carcass weight using GAPIT (Version 3.0) in R 4.2.
Four models were used for the GWAS analysis: General Linear Model (GLM),
the Mixed Linear Model (MLM), the Fixed and Random Model Circulating
Probability Unification (FarmCPU), the Bayesian-Information and Linkage-
Disequilibrium Iteratively Nested Keyway (BLINK).

Results and Discussion: Our results indicated that the two multi-locus models,
FarmCPU and BLINK, outperformed single-locus models, GLM and MLM, in beef
herds in this study. Specifically, five significant SNPs were identified using
FarmCPU, while BLINK and GLM each identified the other three. Also, three of
these eleven SNPs (“BTA-40510-no-rs”, “BovineHD1400006853”, and
“BovineHD2100020346”) were shared by multiple models. The significant SNPs
were mapped to genes such as EIF5, RGS20, TCEA1, LYPLA1, and MRPL15, which
were previously reported to be associated with carcass-related traits, growth, and
feed intake in several tropical cattle breeds. This confirms that the genes identified
in this study could be candidate genes for carcassweight in pasture-fed beef cattle
and can be selected for further breeding programs to improve the carcass yield
and productivity of pasture-finished beef cattle in Hawai’i and beyond.
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Introduction

In Hawai’i, there is a considerable amount of land classified as
pasture, much of which is suitable grazing land (Fukumoto et al.,
2015). Year-round availability of forage favors cattle production and
the beef industry in Hawai’i which significantly contributes to the
state’s economy (Asem-Hiablie et al., 2018). In Hawai’i there are two
distinct climatic seasons: The relatively hot dry season runs from
May to October, and the cool wet season runs from November to
April (Giambelluca et al., 2014). Despite differences in the season,
the tropical location of the Islands provides ample sunlight and
moisture that supports year-round forage growth necessary for
pasture-finished cattle farming which is less common in the
continental United States and other regions. However, cattle
stocking rates are often decreased during the dry season due to
limited forage growth (Adhikari et al., 2022). At present, the total
pasture area in the state is about 448,513 hectares, most of which (>
50%) is located on the Island of Hawai’i (Melrose et al., 2015). The
limited availability of land is the main constraint for pasture-
finished beef production in Hawai’i. Approximately 85% of calves
are exported to the continental United States at weaning age and
only 15% remain for local food supplies, which satisfied only 10%–
13% of the local meat demand, and the gap is fulfilled by the
imported meat (Asem-Hiablie et al., 2018; National Agricultural
Statistics Service, USDA, 2021). There is a growing demand for
pasture-finished beef among tourists and local consumers in
Hawai’i, and genetic improvement of beef cattle is necessary for
Hawai’i to increase production and improve productivity, leading to
a larger local supply.

Carcass weight is a critical factor that affects beef cattle
production and its economic returns (S.-H. Lee et al., 2014). This
trait is impacted by both genetic and environmental factors (Irshad
et al., 2013). Despite its significance, a limited number of studies
have been conducted on Hawai’i cattle. A survey by Asem-Hiablie
et al. (2018) explored the management practices, herd size, feeding,
and marketing strategies under various production systems.
Fukumoto and Kim (2007) examined carcass characteristics of
forage-finished cattle in Hawai’i. Additionally, pasture-finished
beef from Hawai’i competes with feed-lot-finished beef from the
continental United States in terms of tenderness and marbling score
(Kim, Fukumoto, and Kim, 2012). Information on cattle genetics
and dedicated research on genes governing carcass yield and meat
quality is an emerging scientific field that at present is under study in
Hawai’i.

Genetic interventions hold the potential to significantly boost
net carcass production and expand the local supply without
additional retention of cattle heads for finishing. With the
development of genetic testing technologies and the reduction in
the cost of genotyping, significant advances in research have been
made over the past two decades to improve the breeding and
genetics of domestic cattle (Van Tassell et al., 2008; Weller et al.,
2017; Tam et al., 2019). Affordable genotyping cost and the tendency
of single nucleotide polymorphism (SNPs) to follow a pattern of
linkage disequilibrium (LD) across the genome has opened up the
arena for several genomic studies such as ancestry analysis, genomic
selection (GS) and genome-wide association studies (GWAS)
(Gautier et al., 2010; Goddard and Hayes, 2012; Decker et al.,
2014). SNPs have been efficiently used to evaluate economic

traits in cattle, such as carcass weight (Rolf et al., 2012; Costa
et al., 2015; Keogh et al., 2021). Using SNP markers to evaluate
cattle production and productivity is becoming essential in
commercial cattle farming (Smith et al., 2019; Keogh et al.,
2021). Hawai’i cattle, which are raised exclusively on pasture and
thrive in the diverse geography and environment of the state, may
possess unique genetic markers for carcass weight. Previous studies
have successfully reported SNPs related to carcass weight, growth
traits, feed intake, environmental adaptation, and meat quality traits
in grain-finished or grass-finished production systems (Rolf et al.,
2012; Costa et al., 2015; Silva et al., 2017; Smith et al., 2019; Keogh
et al., 2021). However, there is a shortage of research on genetic
markers, candidate genes, and their expression in pasture-finished
beef in the tropical Pacific environment, and no specific genetic
markers have been identified for Hawai’i cattle. (S. H. Lee et al., 2013;
Silva et al., 2017; Edea et al., 2018; Hay and Roberts, 2018). Thus,
focused genome-wide association studies (GWAS) in Hawai’i cattle
can be valuable in discovering unique markers or verifying existing
SNP markers for pasture-finished beef cattle in the tropical
environment of Hawai’i.

One of the main challenges for the GWAS analysis is managing
false positives and false negatives that may occur due to population
structure and familial relationships. To address this issue, mixed
linear models (MLMs) are commonly used, incorporating covariates
for structure and kinship to control for false positives. LD is the non-
random association of SNPs markers at different chromosome loci
and is mainly determined by the physical distance between the
markers, which can influence false positive and false negative rates.
Several factors, such as population stratification, migration,
recombination, mutation, and selection, affect the pattern of LD
in a population (Goddard andHayes, 2012; Karimi et al., 2015; Singh
et al., 2021). In this study, four different statistical models, were
compared for GWAS analysis for carcass weight in Hawaiian beef
herds, including single-locus models: GLM—General Linear Model
and MLM—Mixed Linear Model, and multi-locus models:
FarmCPU and BLINK (Huang et al., 2019; Miao et al., 2019).
GLM uses population structure (Q) as a covariate, and MLM
uses both population structure and kinship (Q + K) as covariates.
The FarmCPU model consists of the fixed-effect model (FEM) and
the random-effect model (REM), which is evaluated iteratively. The
effects in the FEM include the significant principal components, sex,
and pseudo-quantitative trait nucleotides (Liu et al., 2016; Tang
et al., 2019). Unlike GLM and MLM, which rely on one-to-one
markers and trait correlation, FarmCPU trains multiple markers
and builds correlations with significant SNP markers
simultaneously. Additionally, markers from other loci are utilized
as covariates to partially eliminate the confounding effects of the
markers and kinship (Liu et al., 2016). BLINK is an enhanced
version of FarmCPU (Wang and Zhang, 2021), which replaced
REM with FEM for the model selection of the pseudo QTNs.
Consequently, the iterations are eliminated to optimize the
genetic-to-residual variance ratio, generating a higher statistical
power than FarmCPU (Liu et al., 2016; Huang et al., 2019).

Therefore, this study aims to test several statistical models and
determine the most appropriate model for association mapping in
Hawai’i beef cattle by using carcass weight as a phenotype. The main
objective of this paper is to identify SNP markers and candidate
genes related to carcass weight for pasture-finished beef cattle. The
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goal of this research is to advance the genetic enhancement of beef
cattle by incorporating the identified candidate genes in breeding
programs in Hawai’i.

Methodology

Sample collection and genotyping

Samples were collected from 400 beef cattle at the commercial
harvest facility in Kapolei, on the Island of Oahu. The sampling was
random and included representatives from the major eleven ranches
on four Islands in Hawaii: the Island of Hawaii (Big Island), Maui,
Oahu, and Kauai. Both male and female cattle were included, and
the age of the cattle ranged from younger than 30 months to older
than 30 months to ensure that the samples were truly representative
of the Hawai’i cattle population. The original source farms for the
samples are mapped in the base map of Hawaii. However, to
maintain the confidentiality of the commercial farms, we
assigned them a nickname with Alphabet A to K, such as Hawaii
Ranch A (HWRA) and Hawaii Ranch B (HWRB), as shown in
Figure 1. All details about the source farms’ location in the island
chain and the number of cattle heads sampled from each farm can be
found in Supplementary Table S1. At the slaughter plant, 10 mL of
whole blood sample was taken from the jugular vein of each cattle
using EDTA anticoagulant tubes, placed on ice, and eventually
brought back to the laboratory where it was stored at −80°C.
Genomic DNA was isolated from the blood samples using
Quick-DNA Miniprep Plus Kit (Zymo Research, D4069),
followed by the concentration measurement using NanoDrop™
One Microvolume UV-Vis Spectrophotometers. A total of
352 DNA samples with a concentration higher than 100 ng/uL
and OD values between 1.8 and 2.2 were loaded for genotyping
using the Neogen GGP Bovine 100 K BeadChip with the ARS-
UCD1.2 assembly (Rosen et al., 2020). The raw genotypic data were
checked and filtered for missing genotypes greater than 10%, minor
allele frequencies (MAF) less than 0.05, Hardy Weinberg
Equilibrium p-value less than 10–6, and missingness per
individual greater than 10%. SNPs on mitochondrial DNA and
sex chromosomes were removed using PLINK 1.9. Therefore, 85 K
SNPs in 351 cattle after the quality control were used in further
analysis to identify the genetic markers associated with carcass
weight in Hawai’i beef cattle herds. All animal experiments were
conducted in accordance with NIH guidelines for housing and care
of laboratory animals and under the University of Hawaii (UH)
regulations UH IACUC Policy 18.0 after review and approval by the
UHAnimalWelfare and Biosafety Programs Committee (Assurance
number A3423-01).

GWAS analysis

To test for normality, the Shapiro test was performed on the
phenotypic data, specifically the carcass weight. Since the original
data are not normally distributed, a log transformation was
performed to normalize it. The normalized data on carcass
weight were then subjected to a one-way analysis of variance
(ANOVA), followed by post hoc Fisher’s least significant

difference (LSD) test using the Agricolae package (Steel, 1997) in
R 4.2 (https://www.R-project.org/). Statistical significance was
evaluated using an alpha value of 0.05, and any relationships
falling below this value were considered significant. The log-
transformed phenotypic data were eventually used in the GWAS
analysis. GAPIT (version 3.0) R package (Wang and Zhang, 2021)
was used to conduct associationmapping with four different models:
i) General Linear Model (GLM) (Price et al., 2006), ii) Mixed Linear
Model (MLM) (Yu et al., 2006), iii) Fixed and random model
circulating probability unification (FarmCPU) (Liu et al., 2016),
and iv) Bayesian-information and Linkage-disequilibrium
Iteratively Nested Keyway (BLINK) (Huang et al., 2019). Carcass
weight was the phenotype to be tested, where age, sex, and farms
were incorporated as covariates in all models to avoid confounding
effects. All other parameters were set as default. GAPIT comes with a
built-in function for intermediate analysis, which includes principal
component (PC) analysis, kinship matrix calculation, and linkage
disequilibrium decay (LD). To compute the kinship matrix, the
algorithm developed by VanRaden (2008) was used. The developer
team of GAPIT has provided a user-friendly manual (https://zzlab.
net/GAPIT/gapit_help_document.pdf) that includes fundamental
codes and pipelines with a brief explanation of the models and
algorithms used for association mapping. The pipeline was followed
in our study, and the LD decay plot was displayed over distance from
the LD results from TASSEL 5 using R software. To check our
population stratification, the genomic inflation factor, Lambda
(λgc), was estimated, which is determined by comparing the
median of the chi-squared test statistics obtained from a GWAS
to the anticipated median of the chi-squared distribution. The
median value of a chi-squared distribution with one degree of
freedom is 0.4549364. The approach used to calculate lambda
can differ based on the association analysis output, such as
z-scores, chi-square statistics, or p-values (Devlin and Roeder,
1999). In this study, we used p-values from the GWAS outcomes
of all four models (GLM, MLM, FarmCPU, and BLINK) and
computed λgc using the qchisq() function in R Studio 4.2. To
correct for population structure, the first PC was fitted in the
model, and the kinship matrix was added to account for the
confounding effect of ancestry. Marker-trait associations were
considered significant if they met an exploratory threshold of p <
10–6 (-log10p > 6), which were displayed in Manhattan plots. The
validity of associations was verified using the quantile-quantile (QQ)
plot to distinguish between true and spurious results, such as false
positives and false negatives (Stich et al., 2008; Kristensen et al.,
2018). Additionally, the p-value threshold was adjusted for False
Discovery Rate (FDR < 0.05), and any additional SNPs were listed in
Supplementary Table S2.

Candidate gene selection and functional
annotations

The result of linkage disequilibrium decay (LD) was used as a
sliding window to find the genes within a certain distance from the
identified SNP markers using the latest reference genome assembly
for cows (bosTau9 or ARS-UCD 1.2 genome assembly) (Rosen et al.,
2020). Candidate genes were selected within 100 kb upstream and
downstream of the significant SNPs based on LD value for our cattle
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population. Three major genome browsers, UCSC (https://genome.
ucsc.edu/), NCBI (https://www.ncbi.nlm.nih.gov/), and Ensembl
(https://uswest.ensembl.org/index.html), were used to annotate
the significant SNPs identified for carcass weight in Hawai’i cattle
population. The function of the candidate genes, their homologs,
and their roles in carcass-related traits and other mammals were
explored through GeneCards (http://www.genecards.org/) and
UniProt/Swiss-Prot browser (http://uniprot.org).

Results

Population distribution and phenotypic
analysis

The population in our study included cows, steers, and heifers
(N = 351 cattle heads) from eleven diversified farms located across
the Islands of Hawaii (Big Island), Maui, Oahu, and Kauai
(Figure 1). Over 52% of the cattle in this study are located on
the Big Island, and the remaining 48% of the cattle were from
neighboring islands, with at least two farms from each island. As
reported, Hawaii and Maui have the largest cattle herds,
contributing to more than 70% of the cattle heads in the Hawai’i
island chain, followed by Kauai and Oahu (National Agricultural
Statistics Service, USDA, 2021). Most of the ranching activities in
Hawai’i were concentrated on the Big Island and Maui due to the
availability of suitable pasture and their favorable climate for forage
growth. In our study, 70% of the cattle heads were taken from these
two islands (Figure 1), making our sample population
proportionately represent the beef cattle distribution in Hawai’i.

The raw phenotypic data for carcass weight failed the Shapiro
test for normality (p < 0.05), indicating a deviation from a normal
distribution. The results of the raw data revealed a right-skewed

distribution with a few extreme values (Figures 2A, B). Thus, we log-
transformed the raw data before conducting further analysis. The
normality test on transformed data showed a normal distribution
(p > 0.05), with the majority of the data concentrated around the
central value (Figure 2C). Analysis of variance conducted on the log-
transformed carcass values demonstrated a significant difference
(p < 0.05) in carcass yield among the islands. The pair-wise multiple
comparisons mean tests revealed that cattle from Maui Island had
significantly lower carcass weight (p < 0.05) than those from other
neighboring islands (Figure 2D; Supplementary Tables S3, S4),
whereas the carcass weight of cattle from the other three islands
did not differ significantly.

Population structure and linkage
disequilibrium decay

The present study employed principal component analysis
(PCA) to investigate the genetic structure of 351 Hawai’i cattle,
utilizing quality-controlled single nucleotide polymorphism (SNP)
data. The analysis revealed that there were no distinct genetic
clusters among the sampled accessions, as shown in Figure 3A.
This observation is consistent with a uniform genetic background of
cattle across the Island chain, leading to the presence of a single
linear cluster with no population structure. Furthermore, the results
demonstrated that the cattle herds across the Hawai’i island chain
shared similarities, with no distinct clusters based on allelic SNPs
explained by the first two principal components. The scree plot for
eigenvalues revealed that the first two principal components
explained 5% of the total variability. The sharply declined elbow
at the second PC indicates that the first PC was the major source of
variability used to correct for possible population structure, while
subsequent PCs explained less variability after reaching the lowest
elbow point (Figure 3B). Additionally, the heatmap and dendrogram
of the kinship matrix confirmed the absence of clear clusters in the
population, indicating that the cattle population in this study is
unrelated by family (Figure 3C). The square of the correlation
coefficient between the markers at two loci (r2) was used to
evaluate the LD (linkage disequilibrium) estimate. When LD
reaches an r2 value below 0.2, it is typically expected to decay by
half (Vos et al., 2017; Singh et al., 2021). In the case of the Hawai’i
cattle population under investigation, the LD decay reached an r2

value of 0.15 at approximately 100 kb (Figure 4). Thus, to identify
candidate genes associated with the carcass weight of beef cattle, we
searched for genes within a 100 kb range upstream and downstream
of the identified SNPs using the UCSC genome browser.

Association analysis

In this study, four different models were used to compare their
strengths in controlling false positives and false negatives in the
population. Among them, two multi-locus models, BLINK and
FarmCPU, coincided with the expected straight line diagonally
with a sharp deviation at the tail, indicating true association by
controlling both false positives and false negative markers. The
genomic inflation factors (λgc) were calculated for four models to
check our population stratification, where GLM had a λgc of 1.55,

FIGURE 1
The cattle in this study and their distribution on Hawaiian islands.
Eleven Hawaiian ranches coded as HWRA-HWRK are highlighted on
the map of Hawai’i. The pie chart represents the percentage of cattle
heads (N = 351) in each island (Big Island, Maui, Oahu, and Kauai)
sampled in this study.
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MLMhad a λgc of 1.002, FarmCPUhad a λgc of 1.03, and BLINK had
a λgc of 1.11 (Figure 5). The quantile-quantile (qq) plot showed a
significant upward deviation from the straight line in GLM, indicating
a high incidence of false positives. Conversely, the qq plots for the
MLM, FarmCPU, and BLINKmodels exhibited a normal distribution
of p-values, with λgc values close to 1, indicating effective control of
spurious results and a high likelihood of true associations. Among the
four models used in the association study, three models (GLM,
FarmCPU, and BLINK) identified significant SNPs associated with
carcass weight. Five significant SNPs were identified with the
FarmCPU model while the other three significant SNPs were
identified with the model BLINK (p < 10−6) (Figures 5, 6). Two of
these SNPs, “BTA-40510-no-rs” and “BovineHD2100020346”, were
shared between the two models and are considered to have a stronger
association with carcass weight in Hawai’i beef cattle herds (Table 1).
Additionally, a few SNP markers are unique with each model:
“BovineHD0100011931”, and “BovineHD0200007999” on
chromosomes 1 and 2 were found with FarmCPU solely, and
“BovineHD0500025848” on chromosome 5 was found only with
BLINK. Three SNP markers identified with GLM are shared with
other models. Without validation from other more robust models,
results from GLM alone would have been inconclusive. However, the

presence of the same markers in multi-locus models erased the doubt
for false positives by GLM. The MLM was too conservative and was
not able to identify any associated markers for carcass weight (Figures
5, 6). False negatives may have arisen due to model overfitting, as this
population was free from population structure and family relatedness.
In addition, adjusting the p-value threshold to False Discovery Rate
(FDR <0.05) resulted in the identification of a greater number of
significant SNPs. Specifically, 58 significant SNPs were identified after
FDR adjustment, and these are listed in Supplementary Table S2.

Identification of candidate genes

All the significant SNPs identified in our population were
explored for their biological function annotation. Genes within
100 kb upstream and downstream relative to the identified SNPs
were scanned, and eleven genes (ZMAT3, CERS6, PLEKHA5,
MYCT1, RGS20, TCEA1, LYPLA1, MRPL15, EIF5, CKB, and
MARK3) were identified to be associated with carcass weight in
Hawai’i cattle. Also, eight of these genes (ZMAT3, RGS20, TCEA1,
LYPLA1, MRPL15, EIF5, CKB, and MARK3) overlapped with
significant SNPs identified by at least two models (FarmCPU,

FIGURE 2
Phenotypic data analysis for carcass weight of cattle. (A) The histogram displays the distribution of unadjusted carcass weight. (B) The boxplot
summarizes the statistical information of the unadjusted carcass weight, including outliers. (C) The histogram shows the distribution of log-transformed
carcass weight. (D) Fisher’s post hoc least significant difference (LSD) test (p < 0.05) conducted across the islands. This post hoc test followed an Analysis
of Variance (ANOVA) test (p < 0.05). The lowercase letters above the bar plot indicate significant differences among the groups. Groups with the
same letter are not significantly different from each other, while groups with different letters are significantly different.
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BLINK, and GLM) (Table 1). Details of candidate genes (Gene
name, Chromosome number, Ensemble ID) and their biological
functions in other mammals including humans, mice, sheep, pigs,

and dairy cows are presented in Supplementary Table S5. It is worth
mentioning that five of these genes (RGS20, TCEA1, LYPLA1,
MRPL15, and EIF5) have been previously identified in several

FIGURE 3
Population structure analysis. (A) The principal component analysis (PCA) results for 351 Hawai’i cattle from four islands, using 85K quality-controlled SNP
data. Each colored dot represents an individual animal located on a different island. The horizontal and vertical axes represent the first and second principal
components, respectively, contributing to 3.5% and 1.5% of the total variability in the data. The PCA analysis provides insight into the genetic relationships among
cattle populations and identifies patterns of genetic variation. (B) The scree plot illustrates the variance accumulation of the top ten principal components
(PCs). The x-axis represents the top ten PCs, while the y-axis represents eigenvalues that signify the amount of variation. The accumulated variance for each PC is
denotedby anempty circle. The “elbow”point of the curve,where the slopebegins to level off, signifies thenumberof factors that the analysis should generate. (C)
The hierarchical clustering and heat map of the pairwise kinship matrix values, calculated based on 85K quality-controlled SNPs from 351 Hawaiian cattle. The
color histogram illustrates the distribution of the coefficient of coancestry, with stronger red colors indicating higher levels of relatedness among individuals.
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studies to be associated with carcass traits and growth traits in cattle
(Lindholm-Perry et al., 2012; Hay and Roberts, 2018; Doyle et al.,
2020). ZMAT3 has been reported to be correlated to conception rate
and fertility in Brangus cattle (Fortes et al., 2012), and CKB and
MARK3 are related to milk production and somatic cell score in
Holstein dairy cattle (Buaban et al., 2022). PLEKHA5, MYCT1, and
CERS6 were identified for the first time in cattle in our study,
however, these genes are conserved in more than 200 other
organisms, vertebrates, and mammals, including humans,
chimpanzees, rhesus monkeys, dogs, mice, rats, and cows
(https://www.ncbi.nlm.nih.gov/gene/). The specific roles of these
genes in cattle have not been defined yet and may serve as
supporting and maintenance functions.

Discussion

Association mapping and efficient model for
GWAS in cattle

Out of the four models used in this study, BLINK, FarmCPU,
and GLM performed well in predicting significant SNP markers for
carcass weight, while MLM failed to identify the markers with the
same trait. The GLM commonly produced false positives and the

MLM commonly produced false negatives. These results were
consistent with other published results (Tamba et al., 2017; Wen
et al., 2018). Based on the results from this study, it is possible to
conclude that, a conventional single-locus model like MLM was too
stringent to identify the SNP markers. MLM can produce better
results when there is evidence of population structure due to the
geography diversity or family relatedness, but the cattle in this study
were from the same geographic area (Hawai’i Pacific) and
represented several farms, ruling out the alleles to have family
relatedness, which was reflected in our results of no kinship
clusters observed (Figure 3C). However, weaker family
relatedness observed as small patches across the diagonals at
multiple spots in the kinship heat map plot could not be ignored,
and therefore, the kinship matrix was fitted as covariates to adjust
the confounding effect due to family relatedness in our model. MLM
accounts for both covariates due to PC and kinship; therefore, the
model got overfitted and might have resulted in false negative SNPs.
In contrast, QQ plots with the FarmCPU and BLINK models
showed a straight line close to the 1:1 with a slightly deviated
tail, indicating that FarmCPU and BLINK controlled false
positives and false negatives without compromising the results
for associated markers (Figure 5). Our main results i.e., identified
SNPs were primarily from FarmCPU and BLINK, while GLM
identified the same markers as did by the other two models. The
number of PCs seems to affect less multilocus models such as
FarmCPU and there is no concrete gold standard for how many
PCs to be included to correct for the possible population
stratification (Wang and Zhang, 2021). We followed a general
convention of using the number of PC-based observations of the
elbow on the scree plot. Our results had an elbow on the second PC,
indicating the first PC is the major source of variability. Therefore,
we used a single PC to correct for population stratification, which is
almost equivalent to the results of using a sole kinship model with no
PCs as covariates. However, including one PC helped to elaborate
the model making it a full model for GWAS. Further, the genomic
inflation factor (λgc) ranged between 1.002 and 1.11 among MLM,
FarmCPU, and BLINK, indicating that these three models best fitted
for GWAS in Hawaiian cattle herds, while GLM did not fit properly
with λgc above 1.5. Results from GLM would have been
questionable, as the QQ plot deviated sharply from the expected
line (λgc > 1.1). However, three shared SNP markers identified by
multi-locus models increase the validity of the true association
between SNP markers and the trait of carcass weight in our
study, which is similar to a single-trait GWAS study in wheat,
FarmCPU and BLINK performed better than MLM in identifying
the associated markers (Merrick et al., 2022).

In this study, FarmCPU identified five significant markers,
which are more than BLINK identified; two of those significant
SNP markers are common in both models. Researchers are
increasingly using multi-locus models in association mapping,
more exclusively in plants and some in animal studies. In a
similar study in plants, researchers compared several qualitative
traits in soybean and maize flowers using eight popular models
where FarmCPU performed better for most of the traits than other
models, including GLM and MLM (Kaler et al., 2020). FarmCPU is
gaining popularity today due to improved statistical power when
compared to other methods. The problem of model overfitting is
minimized when using the FarmCPU model because of a two-step

FIGURE 4
Genome-wide linkage disequilibrium (LD) decay plot for
351 Hawaiian cattle based on 85K SNP markers. The LD, measured as
the squared correlation coefficient (r2) between pairs of polymorphic
markers, is plotted against their genetic distance (bp) across the
chromosomes. The red line represents the moving average of the
10 adjacent markers, while each gray dot represents a pair of distances
between two markers on the window and their corresponding
squared correlation coefficient. The blue line denotes the LD cutoff of
0.1, and the green line indicates the critical LD at a distance of less than
100 kb.
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adjustment. The first adjustment involves fitting the covariates from
population structure, family relatedness, and pseudo-quantitative
trait nucleotides. The second adjustment involves either refining the
covariates or selective inclusion or exclusion of pseudo-quantitative
traits based on their relationship with the testing markers (Liu et al.,
2016). Therefore, model selection becomes a crucial step in GWAS
to prevent the loss of valuable markers as false negatives and to
control the biased associations that are not truly associated with the
traits and appear as false positives. In addition, single-locus models,
which only consider a one-to-one independent relationship between
markers and traits, do not accurately apply to the biological
phenomena as the interaction of genes is a common
phenomenon in trait expression. In contrast, multi-locus models
simultaneously test the association of multiple markers for a given
trait (Liu et al., 2016), which is closer to biological phenomena
involving gene action and interactions. MLM initially gained

popularity over GLM due to its higher statistical power, however,
multi-locus models like FarmCPU and BLINK surpass both GLM
and MLM in statistical power and computational efficiency (Liu
et al., 2016; Huang et al., 2019). MLM only considers population
structure and kinship as covariates somarkers in various loci that are
not significant sometimes may appear as false positives or false
negatives. In contrast, FarmCPU establishes a relationship with the
marker at one locus and treats all other markers at different loci as
covariates, reiterating again and again and completing the K
iteration, where K = SNPs ((Liu et al., 2016). This way assigning
the non-significant markers at multiple loci as covariates minimizes
the chances of their appearance as false positives or false negatives
with multi-locus models (Liu et al., 2016; Tang et al., 2019; Kaler
et al., 2020), which was also observed in our results where FarmCPU
and BLINK outperformed over MlM. Based on our results, it can be
suggested that using multi-locus models for association mapping in

FIGURE 5
Quantile - Quantile (QQ) plot showing SNP markers with their observed and expected p values for different models including (A) General Linear
Model (GLM), (B) the Mixed Linear Model (MLM), (C) the Fixed and Random Model Circulating Probability Unification (FarmCPU), and (D) the Bayesian-
Information and Linkage-Disequilibrium Iteratively Nested Keyway (BLINK). Blue circles correspond to the p-values derived from the principal
components + kinship model, while the red line indicates the expected p-value distribution under the null hypothesis that the p-values follow a
uniform [0, 1] distribution. The gray shadow area represents the 95% confidence interval for the QQ plot under the null hypothesis of no association
between the SNP and the trait. The -log 10 (p) negative base 10 logarithms of the p-values (probability of type-I error made in GWAS hypotheses testing)
are also shown. This plot provides insight into the distribution of significant associations between the SNP and the trait, with deviations from the expected
distribution indicating the presence of false-positive associations or other factors affecting the association analysis.
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animal-modeled research studies may be a better option than relying
solely on single-locus models, as is commonly done in recent
association studies in plant models.

Candidate genes related to carcass traits in
cattle

Bovine chromosome 14 (BTA14) has been widely explored for
quantitative trait loci (QTL) and genes related to feed intake, weight
gain, and carcass traits in dairy and beef cattle (Smith et al., 2019;
Srikanth et al., 2020). The genes, located in a conserved region on

BTA14, have been reported as a selective sweep region in dairy and
beef cattle breeds (Zhao et al., 2015), and the DNA regions on
BTA14 have been associated with backfat thickness, rib eye muscle
area, marbling, and other carcass traits in beef cattle (Lindholm-
Perry et al., 2012; S. H. Lee et al., 2013; Zhang et al., 2019). In another
recent study, RGS20, TCEA1, LYPLA1, andMRPL15 on BTA14 have
been associated with the back fat thickness (BFT) and Intra
Muscular Fat (IMF) in a composite beef cattle breed (Hay and
Roberts, 2018). RGS20 has also been found to be involved in actin
cytoskeleton organization which governs meat tenderness in
European beef cattle breeds (Mengistie et al., 2022). TCEA1 and
LYPLA1 have been associated with average daily feed intake and
average daily weight gain in composite cattle breeds (Lindholm-
Perry et al., 2012; Grigoletto et al., 2019; Hay et al., 2022).
Furthermore, RGS20 was associated with thigh width in Angus
breeds (Doyle et al., 2020) and average daily weight gain in
Yorkshire pig breeds (Cai et al., 2022). EIF5 gene on
chromosome 21 was also found to be associated with marbling
and carcass traits in Nellore cattle (Carvalho et al., 2019). Expression
of the EIF5 gene positively contributes to the growth of the
longissimus thoracis muscle in Bos. Indicus (Bruscadin et al.,
2021). Candidate genes identified in this study and their roles in
some other breeds of discussed above presented in Table 2. From
these findings and discussions, it can be concluded that RGS20,
TCEA1, LYPLA1, MRPL15, and EIF5 genes are strongly associated
with carcass weight in Hawai’i beef cattle. Additionally,MYCT1 and
CERS6 are possibly candidate genes for carcass weight in cattle, as
their roles have been identified in pigs and sheep (Wu et al., 2020; Xu
et al., 2021). Further studies are required to ascertain the association
of MYCT1 and CERS6 genes with carcass weight and to better
understand their biological roles in cattle.

Candidate genes in other mammals

Previous work identified CERS6 and MYCT1 genes have an
association with carcass-related traits in other animals (Wu et al.,
2020; Xu et al., 2021; Buaban et al., 2022) but not in beef cattle. Few
of the genes (ZMAT3, PLEKHA5, CKB, and MARK3) identified in
our study were reported in dairy cattle (Buaban et al., 2022). Very
little information on above mentioned six genes within beef cattle is
available, however, some details about their biological processes and
homologs in other mammals including humans, mice, sheep, pigs,
and dairy cows are listed in Supplementary Table S5. CERS6 and
MYCT1 have been studied to be associated with obesity, weight gain,
and subcutaneous fats in several mammalian species, including
humans, mice, sheep, and pigs. CERS6 enables sphingosine
N-acyltransferase activity and is involved in the membrane’s
ceramide biosynthetic process. In an association study, CSER6
was associated with fat deposition in sheep (Xu et al., 2021).
Another study found that CERS6 was associated with
subcutaneous fat in lamb in response to a concentrate-
supplemented diet (González-Calvo et al., 2017). CERS6
expression positively correlates with BMI, body fat content, and
obesity in humans. Upregulation of CERS6 and subsequent increase
in specific acyl-chain ceramides contributes to both murine and
human obesity (Turpin et al., 2014). MYCT1 gene was predicted to
regulate specificMYC target genes. The role of theMYCT1 gene in

FIGURE 6
The Manhattan plot for the GWAS of carcass weight in the
Hawaiian cattle population. Each chromosome (x-axis) is represented
by a different color, and the plot is based on -log 10 (p-value) from
GWAS against chromosome position. The green line indicates
the genome-wide significant threshold at p = 10e-6, while vertical
lines highlight the chromosomes containing significant SNPs. (A) SNPs
identified by single-locus GLM. (B) No SNPs were identified by single-
locus MLM. (C) SNPs identified by multi-locus FarmCPU model (D)
SNPs identified by multi-locus BLINK model. This plot provides an
overview of the distribution of significant associations across the
genome, with peaks indicating regions of potential interest for further
investigation.
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cattle has yet to be studied, but it is associated with meat quality
and pH value in Qingyu pigs, specifically, MYCT1 is involved in
skeletal muscle development, regulation of Ca2+ release in the
muscle, and anaerobic respiration, governing superior meat quality
traits in Qingyu pigs (Wu et al., 2020). These genes (CERS6 and
MYCT1) are mostly related to muscles, subcutaneous fat, and
obesity in humans, mice, sheep, and pig’s meat, placing them in
the list of possible candidate genes for carcass-related traits in beef
cattle. CKB (Creatine Kinase B) is conserved in 315 mammals,
including humans, mice, monkeys, and cattle. A previous study
revealed that the CKB gene located in BTA 21 governs the fertility
of cattle (Han and Peñagaricano, 2016). The CKB gene encodes an
enzyme creatine kinase, and the elevated level of creatine kinase in
the sperm causes oligospermia and male sterility (Gergely et al.,
1999). MARK3 is associated with bone mineral density in humans
and mice (Calabrese et al., 2017). The protein encoded by this gene
is activated by phosphorylation and in turn, is involved in the
phosphorylation of tau proteins MAP2 and MAP4. PLEKHA5 has
been associated with milk-fat yield in Holstein cattle (Jiang et al.,
2019; Pedrosa et al., 2021). CKB and MARK3 genes located
together in the same genomic region on chr21 have been
reported to be associated with milk production and somatic cell
score in Holstein cattle (Buaban et al., 2022). Therefore, genes
PLEKHA5, CKB, and MARK3 identified from our study might
indirectly contribute to weight gain and carcass traits during the
early stage of growth under cow-calf operation, ensuring optimum
milk supply before weaning age. However, there is no clear
evidence yet for these genes (ZMAT3, CERS6, PLEKHA5,
MYCT1, MARK3, and CKB) regarding their association with
carcass-related traits in beef cattle, and further research on their

functional validations is required to confirm whether these genes
are indeed associated with carcass weight and meat quality traits in
beef cattle.

Conclusion

Multi-locus models such as FarmCPU and BLINKwere found to
be superior to single-locus models (GLM and MLM) in identifying
SNP markers and minimizing false positives. Two SNP markers
were identified using both multi-locus models. Three other markers
were identified using GLM and FarmCPUmodels, strengthening the
correlation of these SNPs with carcass weight in beef cattle. The EIF5
gene on chromosome 21 and four other genes in the BTA14 region
(RGS20, TCEA1, LYPLA1, and MRPL15) were found to be
associated with carcass weight in Hawai’i beef cattle, and these
results align with the previous findings showing their correlation
with carcass weight and related traits in other cattle breeds. Future
work incorporating selection pressures using these genes (EIF5,
RGS20, TCEA1, LYPLA1, and MRPL15) will facilitate genetic
improvement in Hawaiian beef cattle, enhancing productivity
while utilizing limited resources without harming the delicate
ecosystem of the island.

Data availability statement

Our SNP genotyping data reported are available in the DDBJ
Genomic Expression Archive under the accession number
PRJDB15706.

TABLE 1 List of the significant SNPs (p < 10−6) associated with carcass weight in the Hawaiian beef cattle population.

SNP Position MAF Allele Effect Model Candidate genes

BTA-40510-no-rs chr1: 88012422 0.45441595 G/A 0.054 FarmCPU, BLINK, GLM ZMAT3

BovineHD0200007999 chr2: 27466243 0.36324786 C/T −0.045 FarmCPU CERS6

BovineHD0500025848 chr5: 90643657 0.16524217 A/C 0.052 BLINK PLEKHA5

BTB-01839335 chr9: 89664367 0.48005698 A/G −0.043 FarmCPU MYCT1

BovineHD1400006853 chr14: 21949250 0.09116809 T/C 0.084 FarmCPU, GLM RGS20, TCEA1, LYPLA1, MRPL15

BovineHD2100020346 chr21: 68056605 0.43589744 A/C 0.047 FarmCPU, BLINK, GLM EIF5, CKB, MARK3

Notes: MAF, minor allele frequency; Allele: The first allele is the nucleotide of the reference allele; The second allele is the nucleotide of the alternate allele; Effect: the contributing weightage of

SNPs to carcass weight; Model, the different models that successfully identified SNPs associated with carcass weight; Candidate Genes, the genes that correspond to the significant SNPs in the

range of upstream 100 kb and downstream 100 kb (reference genome, ARS-UCD1.2/bosTau9).

TABLE 2 Candidate genes and their roles in beef cattle.

Candidate gene Role in cattle Literature

RGS20 Back fat thickness, Intramuscular fat, and meat tenderness in composite beef cattle breeds Hay and Roberts (2018)

TCEA1 Growth traits in Montana tropical composite cattle Grigoletto et al. (2019)

LYPLA1 Feed intake, growth, and average daily weight gain in composite beef cattle and cross breeds Lindholm-Perry et al. (2012); Hay et al. (2022)

MRPL15 Residual feed intake in Australian Angus; Muscle growth in cattle Cassar-Malek et al. (2007); Heras-Saldana et al. (2019)

EIF5 Muscle growth, marbling, and meat quality traits in Nellore cattle Carvalho et al. (2019); Bruscadin et al. (2021)
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