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Objective: Most methods to detect copy number variation (CNV) have high false
positive rates, especially for small CNVs and in real-life samples from clinical
studies. In this study, we explored a novel scatterplot-based method to detect
CNVs in microarray samples.

Methods: Illumina SNP microarray data from 13,254 individuals were analyzed
with scatterplots and by PennCNV. The data were analyzed without the prior
exclusion of low-quality samples. For CNV scatterplot visualization, themedian
signal intensity of all SNPs located within a CNV region was plotted against the
median signal intensity of the flanking genomic region. Since CNV causes loss
or gain of signal intensities, carriers of different CNV alleles pop up in clusters.
Moreover, SNPs within a deletion are not heterozygous, whereas heterozygous
SNPs within a duplication show typical 1:2 signal distribution between the
alleles. Scatterplot-based CNV calls were compared with standard results of
PennCNV analysis. All discordant calls as well as a random selection of
100 concordant calls were individually analyzed by visual inspection after
noise-reduction.

Results: An algorithm for the automated scatterplot visualization of CNVs was
developed and used to analyze six known CNV regions. Use of scatterplots and
PennCNV yielded 1019 concordant and 108 discordant CNV calls. All concordant
calls were evaluated as true CNV-findings. Among the 108 discordant calls, 7 were
false positive findings by the scatterplotmethod, 80were PennCNV false positives,
and 21 were true CNVs detected by the scatterplot method, but missed by
PennCNV (i.e., false negative findings).

Conclusion: CNV visualization by scatterplots allows for a reliable and rapid
detection of CNVs in large studies. This novel method may thus be used both
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to confirm the results of genome-wide CNV detection software and to identify
known CNVs in hitherto untyped samples.
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Introduction

Copy number variation (CNV) is defined as the genomic
presence of a given DNA sequence element >50 bp in copy
number different from a reference genome. CNVs are a
common type of structural variation in eukaryotic genomes,
and single nucleotide polymorphism (SNP) microarray
technology enables high-throughput, genome-wide detection
of CNVs in many species, including humans. However, due to
high noise-to-signal ratios, inter-sample variability and technical
differences between microarray platforms, reliable detection of
CNVs remains challenging (Carter, 2007; Grond-Ginsbach et al.,
2018). Most current methods of CNV detection have
unacceptably high false positive rates, in particular for small
CNVs (i.e., CNVs covered by fewer than 20 SNPs) (Lin et al.,
2011). One popular way to overcome these limitations has been
manual expert review of the original CNV calls, aimed at
filtering-out false positives before further downstream analysis,
or experimental validation (Ginsbach et al., 2013; Grond-
Ginsbach et al., 2017; Glessner et al., 2021). In the present
study, we developed a novel scatterplot-based method drawing
upon the visualization of SNP signal intensities to detect
individual CNVs. The method exploits the observation that
samples with duplication or deletion alleles appear as satellite
clusters with increased or decreased signal intensities,
respectively, in scatterplots. The characteristic distribution of
the B-allele frequency (BAF) in samples with a copy number
(CN) between 0 and 4 was used to confirm CNVs called from
satellite clusters in the corresponding scatterplots.

Materials and methods

Illumina 2.5 M SNP data from 13,245 individuals from the
Health and Retirement study (Aschwanden et al., 2019),
genotyped at the Center of Inherited Disease Research (CIDR) of
the Johns Hopkins University School of Medicine, Baltimore,
United States, were used for analysis. The study population is
part of the Copy Number Variation and Stroke (CaNVAS) study
(Cole et al., 2021). CNV analysis was also performed in all samples
using the PennCNV software as described before (Wang et al., 2007;
Grond-Ginsbach et al., 2017).

Six genomic regions with 10 genic CNVs were chosen for
visualization with scatterplots (Table 1). The CNVs were
selected in such a way that 1. The CNV-region included at
least one protein-coding gene, 2. The minor allele count was
not too low and 3. That all observed variants in the region had
similar or identical size. All selected CNVs have been reported
previously in scientific publications (Edsgärd et al., 2011; Tse
et al., 2011; Bertelsen et al., 2016; Crawford et al., 2019) or were
listed as gold standard variants in the DGV database of human

structural variants. For each CNV region, the median signal
intensities (Log R Ratios, LRR) of the SNPs located within the
region and within both flanking regions were calculated for each
individual sample. CNV target and flanking regions were chosen
to be similar in size and to contain at least 30 SNPs. Scatterplots
were created by plotting the sample-specific median signal
intensity of the target CNV region (x-axis) against that of the
5′- or 3′-flanking regions (y-axis). Information about the B-allele
frequencies (BAF) of SNPs located within the target region was
used for further CNV characterization. Three different metrics
were calculated to this end for each sample, namely, 1) the total
number of homozygous SNPs (defined as BAF<0.01 or
BAF>0.99), 2) the total number of di-allelic heterozygous
SNPs (defined as 0.47<BAF<0.53), and 3) the total number of
tri-allelic heterozygous SNPs (defined as 0.3<BAF<0.36 or
0.63<BAF<0.69). Finally, the difference Δ between the
median SNP signal intensity within the target and each
flanking region was calculated for each CNV region and
sample. Supplementary file 1 and 2 give a more detailed
explanation of the scatterplot tool as well as an instruction
for use and some more examples of application. A python
code for the scatterplot-based calculations, a datafile for the
CNV regions analyzed in this study, and an instruction for use
are available at https://github.com/thelevinsonlab/
CaNVAS_CNV.

Separate satellite clusters that comprised samples of increased or
decreased signal intensity were interpreted as harboring duplication
or deletion alleles. We did not use predefined cut-off levels to
discriminate between carriers of a normal (Copy Number = 2)
CNV region and those with a deletion or a duplication. Instead, the
scatterplot script produced clearly separated clusters for each
analyzed CNV region. Subsequently, individuals were genotyped
for this specific CNV region on the basis of the observed pattern of
clustering. For further validation of an identified satellite cluster, Δ
was plotted against the number of either di-allelic or tri-allelic
heterozygous SNPs.

Scatterplot-based findings made in the six selected CNV
regions were compared to PennCNV calls. A PennCNV call was
considered ‘positive’ for a given CNV if it overlapped the target
region of the CNV by at least 50%, but was no larger than twice that
region. For the validation of both PennCNV and scatterplot-based
findings, the microarray data were analyzed with the ‘noise-free-
cnv’ software. A CNV call was considered a true positive finding
when was validated by visual inspection as described (Ginsbach
et al., 2013).

Sample-wise quality control of the SNP-microarray data
was performed with three different metrics: 1) the total number
of PennCNV calls per sample, 2) the variance of all autosomal
LRR values per sample, and 3) the percentage of successfully
genotyped SNPs (“call rate”) per sample. Samples were ranked
according to each quality metric and labelled better (i.e., fewer
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(i.e., non-outlier number of) PennCNV calls, lower variance, or
higher call rate) than x% of all analyzed samples.

Results

Six CNV regions were analyzed with two different CNV calling
methods in 13,254 high-density SNP microarray datasets (Table 1).
All regions studied contained protein-coding genes. Both deletion
and duplication alleles were found in four of the six regions, two
regions contained only deletions as B-alleles.

Analysis with PennCNV software yielded 1099 CNV calls whilst
scatterplot visualization suggested the presence of 1047 CNVs in all
regions combined (Figure 1). Of the total of 1127 CNV findings,
1019 were consistently identified with both PennCNV and scatterplot
analysis. The remaining 108 CNV calls were discordant in the sense
that they were made with only one of the two tools.

Visual inspection of the 108 discordant calls and of 100 randomly
selected concordant calls revealed that all concordant calls were most
likely true CNVs. Of the 108 discordant calls, 80 were PennCNV false

TABLE 1 CNV regions studied with PennCNV, scatterplots and subsequent visual inspection after noise reduction.

CNV region Chr2:110 Chr 3:151 Chr6:29 Chr6:31 Chr9:5 Chr17:33 Total

5′breakpoint (hg19) 2:110852875 3:151514590 6:29096414 6:31360225 9:5304710 17:33684035

3′breakpoint (hg19) 2:110942946 3:151546695 6:29161435 6:31451680 9:5337760 17:33768199

No. SNPs 97 33 58 241 27 93

Protein-coding genes MALL, NPHP1, MTLN AADAC OR2J2 MICA, HCP5 RLN2, RLN1 SLFN11, SLFN12, SLFN13

Human DGVa ID esv3591950 esv3598188 esv3619374

No. Duplications

True 99 0 20 45 103 0 267

False negatives

PennCNV 3 0 1 0 0 0 4

Scatterplot 0 0 0 0 0 0 0

False positives

PennCNV 0 0 0 0 1 0 1

Scatterplot 0 0 1 0 2 0 3

No. Deletions

True 69 262 36 199 154 53 773

False negatives

PennCNV 1 11 1 0 4 0 17

Scatterplot 0 0 0 0 0 0 0

False positives

PennCNV 57 3 5 8 0 6 79

Scatterplot 0 3 0 0 1 0 4

In the CaNVAS HRS sample (n = 13,524), six CNV regions were analyzed with PennCNV and with scatterplots. The results visualized were obtained after noise reduction with the ‘noise-free-

cnv’ software for CNV validation.

Human DGVa-ID: identifier from the Human DGVa Structural Variation database; true: CNV call confirmed by visual inspection after noise-reduction; false: CNV call that could not be

confirmed by visual inspection after noise-reduction.

FIGURE 1
CNV calling with PennCNV and scatterplot analysis. Venn-
diagram of PennCNV calls (uninterrupted line) and scatterplot-based
CNV calls (dotted line). CNV calls considered true findings after visual
inspection are highlighted in grey.
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positives and 7 were scatterplot false positives (Figure 1). The
remaining 21 discordant calls were true CNVs detected with
scatterplots, but not PennCNV. These calls thus represented
PennCNV false negatives; no false negative calls were made with
scatterplots (Figure 1). False findings were observed in each of the six
analyzed CNV-regions. Most false PennCNV-findings were false-
positive deletions in region 2:110852875-110942946.

Overall, 1040 true CNVs comprising 267 duplication and
773 deletion B-alleles were recorded in the six regions studied
(Table 1). Figure 2 exemplifies the scatterplot-based calling of the
CNV region on chromosome 2. It also highlights the validation of a
suggestive deletion that was not identified with PennCNV. After
noise-reduction of the LRR values by subtraction of LRR values of
another sample with similar genomic waves (Figure 2), this deletion
was confirmed to be a true finding. Supplementary file 3 show

scatterplots in different study populations and analyzes one example
of a CNV in a region of clonal mosaicism.

Since quality control (QC) filtering and the exclusion of low-quality
samples is common practice prior to PennCNV analysis, we assessed the
performance of PennCNV and the novel scatterplot-based method after
QC filtering steps of varying stringency (Figure 3). The ratio of false-to-
true CNV findings was calculated for the whole study dataset (n =
13,254) and for subsets resulting from the exclusion of 1%, 5%, 10%,
15%, 25%, and 50%, respectively, of low-quality samples. The latter were
defined by 1) a high (“outlier”) number of PennCNV calls, 2) a high
variance of LRR values, or 3) a low SNP call rate. The ratio of false-to-
true CNV findings was consistently found to be about 10-fold higher for
PennCNV than for the scatterplot-based method. QC filtering by the
exclusion of samples with high LRR variance reduced the rate of false
findings most efficiently, followed by an exclusion based upon an outlier

FIGURE 2
Scatterplot visualization and subsequent visual inspection of individual findings. Left panel: Scatterplots of CNV region chr2:110852875-110942946.
Every dot corresponds to one of 13,254 analyzedmicroarray SNP datasets. In the upper left panel, each dot represents the signal intensity within the CNV-
region (x-axis), plotted against the signal intensity of the left flanking region (y-axis). Three separate cluster appear. The central cluster is centered in both
axes around zero, suggesting “normal” signal strength in the CNV-region as well as in the flanking region for all individuals in this cluster. Outlier dots
of this cluster follow a diagonal pattern, indicatingmicroarrays with reduced or increased signal intensities in this region in both the CNV region and in the
flanking region. The outlier dots apparently represent microarrays with strong genomic waves, affecting both the CNV and the flanking regions. Two
individuals with particularly strong waves, but apparently belonging to different clusters, were labelled “A” and “B” and will be individually visualized in a
second step, as shown in the right panels. Dots in the satellite clusters represent microarrays with signal intensities that differ between the of CNV-region
and flanking region. In the left cluster, the CNV region has lower signal intensity (the cluster centers around −0.5). In the right cluster, dots represent
sampleswith higher signal intensity in theCNV (values around+0,25) compared to the flanking region (baseline values around 0). Signal intensities of SNPs
of a large region of chromosome 2 of two individual microarray samples were shown in the right panels. The visualized genomic region includes CNV-
region chr2:110852875-110942946. The selected individuals (sample A and sample B) were represented in the clusterplots at the left side of panel by dots
A and B. The low signal intensities of the flanking regions of both individuals (negative values of y-axis) corresponds to the strong wave pattern seen of the
signal intensities int he right side panels. This strong waves may falsely suggest the presence of duplications (strong signal across a region) or deletions
(weak signals). The pattern of genomic waves in sample A and sample B seems similar. However, subtraction of signal intensities of sample A and B (A-B)
reveaed that individual A and individual B have different signal intensities in CNV region chr2:110852875-110942946, as inferred from the scatterplots.
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number of PennCNV calls. Exclusion of samples with low SNP call rate
had the smallest effect upon the quality of CNV calling.

Discussion

The present study has two key findings: 1) Visualization of CNV
regions by signal intensity scatterplots allows a rapid validation of
PennCNV calls, even in large study populations, and 2) compared to
PennCNV, scatterplot-based CNV calling has lower false positive
and negative rates, even without the prior exclusion of low-quality
samples from further analysis. In the large dataset analyzed here,
PennCNV yielded about 10% false positive and negative findings
combined whilst the error rate of scatterplots was around 1%. Our
study also revealed that the exclusion of low-quality samples results
in a significant reduction of the error rate mostly for PennCNV, and
less so for the scatterplot-based approach. Overall, it may thus be
concluded that the use of scatterplots not only allows rapid and
reliable validation of PennCNV calls, but also enables the extension
of CNV analyses to low-quality cases which would otherwise be
excluded. Finally, scatterplots may help to identify some PennCNV
findings in discovery samples as false positives, and may identify
additional true CNVs that went undetected by PennCNV.

The above notwithstanding, our study also has some limitations.
Only a small number of known CNV regions were covered. The
performance of the scatterplot analysis across different SNP-
microarray platforms and in cases with clonal mosaicism was only
illustrated in a supplementary file and not analyzed in depth. CNV-
regions close to the centromeres or telomeres may be subject to very
strong genomic waves andmay therefore be enriched for false-positive
PennCNV deletions. None of the CNV-regions analyzed in this study
was located in subtelomeric or pericentric regions. We nevertheless
observed heterogeneity across the analyzed CNV regions with the
majority of the false-positive PennCNV findings occurring in a single
region. Since this clearly gives our current work the character of a pilot
study, we are planning a follow-up study to analyze a larger set of
syndromic CNVs (Wang et al., 2007) in samples from the CaNVAS
study (Cole et al., 2021), genotyped on different platforms.

Visual inspection of discordant CNV calls, both with or without
prior reduction of systemic noise, allowed us to distinguish between
true and false positive findings. The final set of confirmed true CNVs
was then used as a ‘gold standard’ for the comparative evaluation of
the false positive and negative rates of PennCNV and of our
scatterplot-based method of CNV detection. Since CNVs that
were not recognized by either tool were not considered, this post
hoc evaluation did not allow estimation of the underlying sensitivity
and specificity values of the two approaches.

It is important to underline some fundamental differences
between tools that were developed for the genome-wide detection
of any potential CNV (like PennCNV) and the current scatterplot
method that is a tool for the analysis of CNV in a specific,
predefined genomic region. Whereas PennCNV allows the
identification of an infinite number of different CNVs, the
scatterplot tool discriminates between a very limited number of
copy number states within a single genomic locus. As a
consequence, there is an innumerable set of potential false
PennCNV findings, whereas the number of potential false
scatterplot findings is small. Another important difference
between both strategies is that scatterplots of very large study
populations show particularly clear clusters, whereas PennCNV
analysis of very large study population becomes extremely
laborious. Whereas the PennCNV tool was developed for the
genome-wide analysis of single individuals one after another,
the scatterplot tool was developed for the genotyping of a single
CNV-locus simultaneously in a large study population.

CNV calling with the aid of scatterplots has several advantages.
Similar to SNP genotyping (Lovmar et al., 2005; Schillert et al., 2009),
visualization of CNVs provides an easily comprehensible and
transparent means to identify carriers of variant alleles and also of
instances of unsuccessful genotyping. The clear separation of CNV
genotype clusters, or their partial overlap, clearly corresponds to the
straightforwardness, or other, of a particular CNV genotype. Noisy
CNV scatterplot clusters may also point towards a variety of distorting
factors, including the presence of multiple variants of different size, the
choice of false CNV region breakpoints, CNVs within the flanking
regions, or low quality of the underlying microarray SNP data. Notable
in this context, one strength of the scatterplot-based approach is its
ability to obviate the need for stringent exclusion of low-quality cases
from analysis. This not only increases the ability to detect rare CNVs in
large study samples, but high-quality SNP genotyping must not
necessarily remain the only suitability criterion for CNV analysis.

FIGURE 3
Rate of false CNV calls after case-level quality control filtering.
Percentage of false CNV calls by PennCNV (black lines) and
scatterplot-based analysis (gray lines). False call rates (represented on
the y-axis) were calculated for the whole study dataset and for
subsets following the exclusion of 1%, 5%, 10%, 15%, 25% or 50% of
low-quality samples (x-axis). Quality control filtering was based upon
variance of LRR values (interrupted lines), number of outlier PennCNV
calls (dotted lines), or SNP genotyping call rate (continuous lines).
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Our results also demonstrated that PennCNV yields false positive and
negative findings at considerable rates, again predominantly in low-
quality cases. Finally, we observed that QC filtering based upon LRR
variance may be at least as efficient as QC filtering based upon outlier
numbers of PennCNV calls.

In conclusion, our study demonstrates that the use of scatterplots
represents an efficient tool for both CNV visualization and validation.
The method could be incorporated into existing analysis pipelines to
evaluate CNVs called ab initio by other, automated detection
algorithms, or may be used for the targeted analysis of known
pathogenically relevant CNV regions in large study populations.
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