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Introduction: Anoikis is a specific form of programmed cell death and is related to
prostate cancer (PC) metastasis. This study aimed to develop a reliable anoikis-
related gene signature to accurately forecast PC prognosis.

Methods: Based on anoikis-related genes and The Cancer Genome Atlas (TCGA)
data, anoikis-related molecular subtypes were identified, and their differences in
disease-free survival (DFS), stemness, clinical features, and immune infiltration
patterns were compared. Differential expression analysis of the two subtypes and
weighted gene co-expression network analysis (WGCNA) were employed to
identify clinically relevant anoikis-related differentially expressed genes (DEGs)
between subtypes, which were then selected to construct a prognostic signature.
The clinical utility of the signature was verified using the validation datasets
GSE116918 and GSE46602. A nomogram was established to predict patient
survival. Finally, differentially enriched hallmark gene sets were revealed
between the different risk groups.

Results: Two anoikis-relatedmolecular subtypes were identified, and cluster 1 had
poor prognosis, higher stemness, advanced clinical features, and differential
immune cell infiltration. Next, 13 clinically relevant anoikis-related DEGs were
identified, and five of them (CKS2, CDC20, FMOD, CD38, and MSMB) were
selected to build a prognostic signature. This gene signature had a high
prognostic value. A nomogram that combined Gleason score, T stage, and risk
score could accurately predict patient survival. Furthermore, gene sets closely
related with DNA repair were differentially expressed in the different risk groups.

Conclusion: A novel, clinically relevant five-anoikis-related gene signature was a
powerful prognostic biomarker for PC.
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1 Introduction

Prostate cancer (PC) is a common solid tumor in men worldwide, and most PCs are
diagnosed as prostate adenocarcinoma (PRAD). Most patients with PC are asymptomatic in
the early stages; however, 17%–33% of patients undergo biochemical recurrence after initial
radical prostatectomy, and 20%–30% of individuals develop advanced or metastatic disease
(Ward et al., 2003; Chandrasekar et al., 2015; Matsumoto et al., 2018). Androgen deprivation
therapy (ADT) is the primary management strategy for advanced or metastatic PC; however,
cancer recurrence often occurs, and this malignancy is likely to progress to castration-
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resistant prostate cancer (CRPC) within 2–3 years after ADT
treatment (Chandrasekar et al., 2015; Achard et al., 2022). CRPC
is associated with very poor prognosis, and its treatment remains a
serious clinical challenge (Ruiz de Porras et al., 2021; Leith et al.,
2022). Considering that PC is highly heterogeneous in terms of
molecular alterations and variable clinical courses (Inamura, 2018),
subtyping provides a novel perspective on the molecular pathologies
of cancer and allows the implementation of personalized therapies.
Therefore, it is necessary to explore cancer subtypes and develop a
reliable prognostic signature for risk stratification of patients
with PC.

Anoikis is a special type of programmed cell death that results
from the loss of cell adhesion or inappropriate cell adhesion
(Kakavandi et al., 2018). Accumulating evidence has revealed
that anoikis can regulate the survival of tumor cells after they are
detached from the extracellular matrix (ECM) and plays a pivotal
role in preventing cancer metastasis (Buchheit et al., 2014; Raeisi
et al., 2022). During PC progression, ECM undergoes intense
changes and plays a key role in cytoskeleton rearrangement
(Rennebeck et al., 2005a). In the process of
epithelial–mesenchymal transition (EMT), tumor epithelial
cells characterized by mesenchymal features can migrate to the
stroma, underlying the activation of survival pathways
(Romashkova and Makarov, 1999). Normal epithelial cells
undergo anoikis when detached from ECM, while tumor cells
are associated with anoikis resistance (Rennebeck et al., 2005a).
The generation of anoikis resistance is considered an important
condition for tumor metastasis because anchorage-independent
growth of tumor cells is an important feature of various human
cancers, including PC (Rennebeck et al., 2005b; Kim et al., 2012;
Lee et al., 2021). It has been reported that, in PC cell lines, the
expression of αvβ3 integrin was vastly reduced, which
contributes to the migratory phenotype of tumor cells (Zheng
et al., 1999). Moreover, targeting anoikis resistance has become a
therapeutic promise for metastatic PC via prevention of tumor
metastasis (Sakamoto and Kyprianou, 2010). Some recent studies
have focused on identifying key anoikis-related genes to reveal
the possible mechanisms of tumor progression and establish
anoikis-related gene signatures for cancer prognosis (Chi
et al., 2022; Zhao et al., 2022). However, the crucial anoikis-
related genes associated with PC prognosis have not yet been fully
elucidated.

Herein, we identified anoikis-related molecular subtypes based
on anoikis-related genes extracted from the literature reported by
Sun et al. (Sakamoto and Kyprianou, 2010) and The Cancer
Genome Atlas (TCGA)-PRAD dataset and analyzed their
differences in disease-free survival (DFS), stemness index (si),
clinical features, and immune infiltration patterns. Differential
expression analysis of the two subtypes and weighted gene co-
expression network analysis (WGCNA) were utilized to investigate
clinically relevant anoikis-related differentially expressed genes
(DEGs). Furthermore, a prognostic signature was constructed
using key anoikis-related genes, and its clinical utility was
validated using the independent validation datasets
GSE116918 and GSE46602. A nomogram containing the risk
score of the prognostic signature and other independent clinical
features was created to predict patient survival. Finally, the
differentially enriched hallmark gene sets between the different

risk groups were revealed. Our efforts were devoted to developing a
novel signature based on anoikis-related genes that could
accurately predict PC, thereby improving treatment options.

2 Methods

2.1 Data acquisition and preprocessing

The gene expression RNA-seq data [log2(fpkm + 1)] in the
Genomic Data Commons (GDC) TCGA-PRAD was downloaded
from the UCSC Xena platform (Goldman et al., 2019). The samples
with tissue number “-01A” and DFS information were selected, and,
finally, 480 PRAD samples were included. The corresponding clinical
information for these samples, including age, nonsynonymous tumor
mutational burden (TMB), Gleason score, primary tumor laterality,
new neoplasm event post initial therapy indicator, overall survival time
and status, N stage, and T stage, was obtained from the cBioportal
website (http://www.cbioportal.org/), The gene expression data
(GSE116918 (Jain et al., 2018) and GSE46602 (Mortensen et al.,
2015) were downloaded from NCBI Gene Expression Omnibus
(GEO) (Barrett et al., 2005). A total of 247 PC samples with DFS
information were retained from the GSE116918 dataset and 36 PC
samples from the GSE46602 dataset. The raw expression profiles were
downloaded and subjected to preprocessing, normalization, and
log2 transformation. Then, the probe number was matched to the
gene symbol according to the platform annotation file. Probes without
matching gene symbols were removed. If multiple probes corresponded
to the same gene symbol, the mean expression value of the identified
gene was calculated.

2.2 Prediction of anoikis-related molecular
subtypes

We extracted 27 anoikis-related genes from the literature
published by Sun et al., (2022) and obtained their expression
values in 480 samples from the TCGA-PRAD dataset. Anoikis-
related molecular subtypes of PC samples were identified using
ConsensusClusterPlus (version 1.54.0) (Wilkerson and Hayes, 2010)
in R 3.6.1. The parameters were set as follows: cluster algorithm:
PAM; correlation method: Spearman; feature subsampling
proportion: 1; and item subsampling proportion: 0.85.

2.3 Prognostic analysis for different subtypes

Based on the DFS information for each sample in the subtypes,
Kaplan–Meier (K–M) survival analyses for different subtypes were
performed, followed by analysis of their differences using the
logrank test.

2.4 Comparison of clinical features between
subtypes

The clinical information relating to different subtypes, including
age, nonsynonymous TMB, Gleason score, primary tumor laterality,
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new neoplasm event post initial therapy indicator, overall survival time
and status, N stage, and T stage was sorted. For factorial variables, the
chi-square test was utilized to compare differences between different
subtypes. For continuous variables, the Wilcoxon test was applied to
analyze the differences between subtypes.

2.5 Analysis of si differences between
subtypes

The si of a sample can be calculated using a one-class logistic
regression (OCLR) machine learning algorithm based on mRNA
expression or DNAmethylation (Malta et al., 2018). In this study, we
extracted the si of TCGA-PRAD samples based on mRNA
expression (mRNAsi). The mRNAsi of the consensus cluster
subtypes was compared using the Wilcoxon test.

2.6 Comparison of immune infiltration
between subtypes

To observe differences in the immune microenvironment between
subtypes, the proportion of 22 types of immune cells in the TCGA-
PRAD samples was calculated using the CIBERSORT algorithm
(Kawada et al., 2021). Differences between subtypes were analyzed
using the Wilcoxon test. The stromal, immune, and ESTIMATE scores
of the TCGA-PRAD samples were assessed using the ESTIMATE
algorithm (Yoshihara et al., 2013), and the differences between
subtypes were also evaluated using the Wilcoxon test. Furthermore,
we extracted the expression levels of key immune checkpoint genes
from the TCGA-PRAD samples and analyzed the differences between
subtypes using a t-test.

2.7 Identification of DEGs between subtypes
and functional enrichment analysis

Based on the TCGA-PRAD data, DEGs between subtypes were
screened using the limma package (version 3.1.3) (Smyth, 2005).
The threshold value for DEG screening was set as |log fold change| >
0.585 and the Benjamini–Hochberg (BH) procedure-adjusted
p-value (adj.p.value) was < 0.05.

Functional enrichment analysis was performed using DAVID
(version 6.8) (Sherman et al., 2022). The significantly enriched Gene
Ontology (GO) (Ashburner et al., 2000) terms and Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and
Goto, 2000) pathways by DEGs were obtained. A
p-value <0.05 and gene count ≥2 were set as the cutoff values.

2.8 WGCNA for selecting clinically relevant
genes

WGCNA was performed to screen clinically significant modules
and explore genes closely related to clinical traits. First, we calculated the
degree of changes in gene expression in the TCGA-PRAD samples and
selected the top 75% genes with the largest variation to construct a
weighted gene co-expression network using the R WGCNA package

(version 1.61) (Langfelder and Horvath, 2008). In the WGCNA
algorithm, the soft-thresholding power that could make gene
connections conforming to a scale-free network was selected. Next,
using clustering and dynamic pruning methods, highly interconnected
genes were clustered into modules using the following parameters:
minModuleSize = 50 and MEDissThres = 0.3. By evaluating the
correlation between gene modules and clinical traits (including age,
nonsynonymous TMB, Gleason score, primary tumor laterality, new
neoplasm event post initial therapy indicator, overall survival time and
status, N stage, and T stage), clinically significant modules were
obtained with a cutoff value of correlation coefficient > 0.5 and
p-value < 0.05. The genes in clinically significant WGCNA modules
were considered clinically relevant.

2.9 Construction and validation of the
prognostic signature

The intersection analysis of DEGs between subtypes and
clinically relevant genes was carried out to obtain overlapping
DEGs related to both anoikis and clinical features of PC. By
combining the expression level of overlapping DEGs with the
DFS information for each sample in the TCGA-PRAD training
dataset, univariate Cox regression analysis was performed using
the survival package (version 2.41-1) (Wang et al., 2016) in R
3.6.1. The genes with p-value < 0.05 were considered prognosis-
related and were selected for further LASSO Cox regression
analysis (Tibshirani, 1997) using the glmnet package (version
2.0-18) (Friedman et al., 2009). The optimal combination of
prognosis-related genes was selected using 20-fold cross-
validation. The prognostic signature was then constructed to
calculate the risk score of the samples, using the following
formula: risk score = ∑βgene × Expgene, where βgene
represented the LASSO Cox regression coefficient of each
gene, and Expgene referred to the gene expression in each
sample.

To confirm the accuracy of the prognostic signature, the risk
scores of each sample in the TCGA-PRAD training dataset and the
GSE116918 and GSE46602 validation datasets were calculated. The
samples in the TCGA-PRAD, GSE116918, and GSE46602 cohorts
were divided into high- and low-risk groups according to themedian
value of the risk score. The K–M survival curves of the two risk
groups were plotted using the survival package (version 2.41-1) in
R3.6.1. The performance of the prognostic signature in evaluating
the 1-, 3-, and 5-year survival probabilities was measured using
receiver operating characteristic (ROC) analysis.

2.10 Establishment and validation of
nomogram

To investigate whether the risk score was an independent
prognostic factor for patients with PC, univariate and
multivariate Cox regression analyses were conducted, combined
with other clinical variables, including age, nonsynonymous TMB,
Gleason score, N stage, and T stage. Independent prognostic factors
were obtained with a p-value < 0.05. These prognostic factors were
then combined to establish a nomogram to assess the probabilities of
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1-, 3-, and 5-year survival. Calibration curves were plotted to assess
the validity of the nomogram.

2.11 Gene set enrichment analysis (GSEA)

Using h.all.v7.4.symbols.gmt fromMSigDB v7.1 (Liberzon et al.,
2011) as the enriched background, based on the gene expresssion
value of in the TCGA-PRAD samples, GSEA was conducted to
determine the enriched hallmark gene sets between the different risk
groups using the R package clusterProfiler (version:3.8.1) (Yu et al.,
2012). The BH procedure-adjusted p-value (adj.p.value) < 0.05 was

used as the cutoff value for screening the significantly enriched
hallmark gene sets.

2.12 Validation of prognostic signature in
metastatic cohort

The dataset of GSE211448 was downloaded from NCBI-GEO
database, which contained nine metastatic PC tissues and three
primary PC samples. The expression levels of five genes (CKS2,
CDC20, FMOD, CD38 and MSMB) in prognostic signature were
extracted, followed by Risk score calculation. We employed ggplot

FIGURE 1
Two anoikis-relatedmolecular subtypes were identified, which had different survival, mRNAsi, and clinical features. (A): Subtype clustering heatmap,
cumulative distribution function (CDF) distribution curve, and Delta area line graph. (B): Kaplan–Meier (K–M) survival curves for samples in two subtypes.
(C): The stemness signature of two subtypes. (D): The distribution of clinical features including Gleason score, TMB nonsynonymous, and N stage in the
two subtypes.
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2 package to compare the risk score between metastasis group and
primary group based on t-test.

In parallel, five pairs of clinical samples were collected from
metastatic PC patients and primary PC patients with informed
consent, and this study was approved by the Committee
on Medical Ethics of the Sunshine Union Hospital of
Weifang. The expressions of five signature genes were
detected by real time PCR assay. The difference between
groups was compared with t-test. Statistical significance was
considered as p < 0.05.

3 Results

3.1 Two anoikis-related molecular subtypes
were clustered, which had different DFS, sis,
and clinical features

Based on the expression patterns of 27 anoikis-related genes
in the TCGA-PRAD samples, two consensus cluster subtypes
(clusters 1 and 2) were identified (Figure 1A). To determine
whether patient prognosis differed in the subtype clusters, we

TABLE 1 The clinical characteristics of two anoikis-related molecular subtypes of prostate cancer.

Characteristics cluster1 (N = 240) cluster2 (N = 240) Total (N = 480) p-value

Age 0.32

Mean ± SD 61.40 ± 6.83 60.66 ± 6.86 61.03 ± 6.85

Median[min-max] 62.00[44.00,78.00] 61.00[41.00,75.00] 61.00[41.00,78.00]

Gleason score 8.10E-05

Mean ± SD 7.79 ± 1.05 7.42 ± 0.93 7.61 ± 1.01

Median[min-max] 8.00[6.00,10.00] 7.00[6.00,10.00] 7.00[6.00,10.00]

Primary tumor laterality 0.24

Bilateral 208(44.07%) 212(44.92%) 420(88.98%)

Left 7(1.48%) 10(2.12%) 17(3.60%)

Right 22(4.66%) 13(2.75%) 35(7.42%)

TMB nonsynonymous 3.70E-05

Mean ± SD 2.47 ± 14.13 1.29 ± 1.21 1.88 ± 10.03

Median[min-max] 1.22[0.53,217.63] 1.07[0.07,16.47] 1.17[0.07,217.63]

New neoplasm event post initial therapy indicator 0.27

NO 141(45.48%) 104(33.55%) 245(79.03%)

YES 43(13.87%) 22(7.10%) 65(20.97%)

Overall survival time 0.81

Mean ± SD 36.41 ± 28.83 34.39 ± 21.89 35.40 ± 25.59

Median[min-max] 30.09[0.76,165.05] 30.59[0.89,141.10] 30.42[0.76,165.05]

Overall survival status 0.13

DECEASED 4(0.83%) 0(0%) 4(0.83%)

LIVING 236(49.17%) 240(50.00%) 476(99.17%)

N stage 2.70E-03

N0 156(38.14%) 178(43.52%) 334(81.66%)

N1 50(12.22%) 25(6.11%) 75(18.34%)

T stage 0.11

T2 81(17.09%) 100(21.10%) 181(38.19%)

T3 152(32.07%) 132(27.85%) 284(59.92%)

T4 6(1.27%) 3(0.63%) 9(1.90%)

The bold values indicates means the p value < 0.05
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performed K–M survival analysis. As illustrated in Figure 1B,
the prognosis of cluster 1 patients was remarkably poorer than
that of cluster 2 patients. We analyzed the stemness signature of
the subtypes and observed a higher mRNAsi in cluster 1 than in
cluster 2 (Figure 1C). Further analysis of the clinical features
showed significant differences in the Gleason score,
nonsynonymous TMB, and N stage between the two subtypes
(Table 1). Compared with cluster 2, cluster 1 showed a higher
Gleason score, nonsynonymous TMB, and N1 stage percentage
(Figure 1D), which might be associated with the poor prognosis
of cluster 1.

3.2 Different immune infiltration patterns
between subtypes

To compare the immune microenvironment of the different
subtypes, the immune infiltration patterns of the two subtypes were
analyzed using the CIBERSORT algorithm. The results suggested
that the proportion of 13 immune cell types, including B cells naïve,
T cells CD4 memory resting, and M0 and M2 macrophages, was
significantly different between the subtypes (Figure 2A). The
stromal, immune, and ESTIMATE scores of the TCGA-PRAD
samples in cluster 1 were significantly lower than those in cluster

FIGURE 2
Differences in immune infiltration patterns in different subtypes. (A): The infiltration proportion of 22 kinds of immune cells in two subtypes. * p <
0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. (B): Differences in the stromal score, immune score, and ESTIMATE score of two subtypes. (C): The
expression of immune checkpoint genes in the two subtypes.
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2 (Figure 2B). Furthermore, except for PVR, the expression levels of
immune checkpoint genes, including PDCD1 (PD-1), CTLA4, IDO1,
CD96,CD274 (PD-L1), LAG3, and TIGIT, were significantly lower in
cluster 1 than those in cluster 2 (Figure 2C).

3.3 DEG identification and functional
enrichment analysis

Based on the cutoff value, 163 up- and 918 downregulated DEGs
were identified between clusters 1 and 2. A heatmap showed that the
samples in two subtypes could be clearly distinguished according to
the expression patterns of the DEGs (Figure 3A). DEGs were
remarkably enriched in 562 GO biological process (BP) terms
(such as cell adhesion), 102 GO cellular component (CC) terms
(such as extracellular region), 98 GOmolecular function (MF) terms
(such as ECM structural constituent), and 55 KEGG pathways (such

as focal adhesion). The top 10 GO terms or pathways are shown in
Figure 3B.

3.4 Identification of clinically relevant genes
using WGCNA

According to the expression value of the top 75% genes with the
largest variation in the PRAD samples, WGCNA was conducted,
and the soft-thresholding power of 8 was selected (Figure 4A). Using
clustering and dynamic pruning methods, highly interconnected
genes were clustered into modules, and the modules with correlation
coefficients greater than 0.7 were merged. Finally, 13 modules were
identified (Figures 4B, C). By analyzing the correlation between
module genes and clinical phenotypes of the PC samples, the green-
yellow module containing 523 genes had the largest correlation
coefficient with the Gleason score and significant correlations with

FIGURE 3
Analysis of differentially expressed genes (DEGs) between subtypes and their functional enrichment analysis. (A): Heatmap of DEGs between
subtypes. (B): GO and KEGG pathway enrichment results. GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes.
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all other clinical features (Figure 4D); therefore, the genes in this
module were regarded as clinically relevant.

3.5 The prognostic signature was
constructed based on five clinically relevant
anoikis-related genes

We conducted an intersection analysis of DEGs between the
subtypes and clinically relevant genes in the green-yellow module
and identified 13 overlapping DEGs related to both anoikis and
clinical features of PC (Figure 5A). According to the expression
value of overlapping DEGs and the DFS information in each
sample, univariate Cox regression analysis indicated that all these
genes were significantly correlated with DFS (Figure 5B). The
optimal gene combination was screened using LASSO Cox

regression analysis (Figure 5C), ultimately leading to a
prognostic signature constructed using five genes: cyclin-
dependent kinases regulatory subunit 2 (CKS2), cell division
cycle 20 (CDC20), fibromodulin (FMOD), CD38 molecule
(CD38), and microseminoprotein beta (MSMB). Based on the
LASSO Cox regression coefficient of the five model genes and
their expression values, the risk score of each sample in the
TCGA-PRAD, GSE116918, and GSE46602 datasets was
calculated. The samples in the three datasets were then
divided into high- and low-risk groups. The K–M survival
curves revealed shorter DFS in the high-risk than in the low-
risk group (Figure 5D). Moreover, the samples in the three
datasets were ranked according to their risk score, and
samples with high-risk scores tended to be recurred or
progressed (Figure 5E). Furthermore, the areas under the ROC
curve (AUC) of the prognostic signature for evaluating the 1-, 3-,

FIGURE 4
Co-expression network analysis by weighted gene co-expression network analysis (WGCNA). (A): Analysis of network topology for various soft-
threshold powers. (B): Module clustering result. (C): Results of gene module merging based on clustering and dynamic pruning methods. Each vertical
line indicates a gene and each branch represents an expression module of highly interconnected genes. Below the dendrogram, different modules are
given different colors. Gray indicated that genes are outside all modules. (D): The correlations of gene modules with multiple clinical features.
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and 5-year survival probabilities of the TCGA-PRAD samples
were 0.782, 0.72, and 0.67, respectively, and those in the
GSE62452 samples were 0.606, 0.692, and 0.689, respectively.
The favorable prognostic value was also determined in the
GSE46602 cohort with 1-, 3-, and 5-year AUCs of 0.612,
0.677, and 0.724, respectively (Figure 5F). In addition, a
heatmap revealed the differential expression patterns of the
five model genes between the high- and low-risk groups in the
three cohorts. The expression of CKS2 and CDC20 was higher in
the high-risk than in the low-risk group, whereas that of FMOD,
CD38, and MSMB was significantly upregulated in the low-risk
samples compared with the high-risk group (Figure 5G).

3.6 The prognostic signature had
independent prognostic value and a
nomogram was established

To investigate prognostic factors for PC (including risk score,
age, nonsynonymous TMB, Gleason score, N stage, and T stage),
we conducted univariate and multivariate Cox regression
analyses. Univariate analysis indicated that risk score,
nonsynonymous TMB, Gleason score, N stage, and T stage
were related to DFS (p < 0.05, Figure 6A). Multivariate
analysis revealed that risk score, Gleason score, and T stage
were independent prognostic factors for patients with PC (p <

FIGURE 5
Construction and validation of the prognostic signature that was established by five anoikis-related genes. (A): Venn plot showed the overlapping
DEGs related to both anoikis and clinical features of prostate cancer. (B): Univariate Cox regression analysis showed that the overlapping DEGs were all
significantly correlated with DFS of patients. (C): The LASSO coefficient spectrumof the prognostic DEGs and optimized lambda determined in the LASSO
regression model. (D): Kaplan–Meier (K–M) survival curves showed the survival differences between the two risk groups based on TCGA-PRAD
training dataset and GSE116918 validation dataset. (E): The scatterplots showed the distribution of the risk score and recurred/progressed time of patients
based on TCGA-PRAD training dataset and GSE116918 validation dataset. (F): ROC curves revealed the predictive performance of the gene signature in
predicting 1-, 3-, and 5-year survival probabilities based on TCGA-PRAD training dataset and GSE116918 validation dataset. (G): Heatmap showed
significant differences in the expression of the five model genes between the high- and low-risk samples in the TCGA-PRAD training dataset and
GSE116918 validation dataset.
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0.05, Figure 6B). A nomogram was then established using these
independent prognostic factors, which could accurately predict
the 1-, 3-, and 5-year survival probabilities (Figure 6C). The
calibration curves displayed satisfactory overlap in the predictive
and actual 1-, 3-, and 5-year survival probabilities, indicating the
validity of our constructed nomogram (Figure 6D).

3.7 Analysis of differentially enriched
hallmark gene sets between different risk
groups

To better understand the possible regulatory mechanism
underlying PC in the different subtypes, we conducted GSEA to
identify the functions of enriched hallmark gene sets derived from
the different risk groups. A total of 10 upregulated hallmark gene
sets, such as DNA repair, and 18 downregulated hallmark gene sets,

such as androgen response, with p-value < 0.05 were acquired from
the high-risk compared with the low-risk group. The top five
enriched hallmark gene sets are shown in Figure 7.

3.8 Prognostic signature for metastatic PC

The risk score of each sample in GSE211448 cohort was
calculated based on the formula mentioned above. As depicted in
Figure 8A, the mean risk score was significantly higher in the
metastasis group compared to primary group (p < 0.05),
indicating the predictive value of the 5-gene signature in PC
metastasis. Besides, RT-qPCR assay indicated that CKS2 and
CDC20 were overexpressed in metastatic PC samples compared
with primary ones, while FMOD andMSMB were de-expressed (p <
0.05, Figures 8B–E). No significant changes of CD38 were observed
(p > 0.05, Figure 8F), which could be verified in a large sample size.

FIGURE 6
The anoikis-related gene signature was an independent prognostic factor and a nomogram was established. (A): Univariate Cox regression analysis
shows the correlation between survival and risk score of the anoikis-related gene signature and various clinicopathological features. (B): Multivariate Cox
regression analysis showed that Gleason score, T stage, and risk score were independent prognostic factors. (C): A nomogram was constructed for
estimating the 1-, 3-, and 5-year survival probabilities of patients. (D): The calibration curves showed the concordance of the prediction probability
and actual probability of 1-, 3-, and 5-year survival.
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4 Discussion

PC poses a significant public health burden, and advanced or
metastatic disease has a poor prognosis. The current risk evaluation
and management strategies for PC mainly refer to clinical indicators
of patients, such as serum prostate-specific antigen (PSA) and
Gleason score (Huber et al., 2015). However, such indicators are
not sufficient to accurately evaluate disease risk and treatment
response (Harlan et al., 2003; Huber et al., 2015). Therefore, it is
necessary to explore additional biomarkers for predicting PC risk
and for assessing prognosis.

Herein, to the best of our knowledge, we first identified two
anoikis-related molecular subtypes of PC with different DFS,
mRNAsi, clinical features, and immune infiltration patterns. The
DEGs between subtypes were significantly enriched in functions
and pathways associated with focal adhesion. By combining with
the WGCNA results, we screened 13 overlapping DEGs related to
both anoikis and clinical features of PC. We then constructed a
prognostic signature combining five of the 13 clinically relevant
anoikis-related genes (CKS2, CDC20, FMOD, CD38, andMSMB),
which had favorable performance for prognosis. A nomogram
that combined Gleason score, T stage, and risk score was
generated that could accurately predict patient survival.
Furthermore, key hallmark gene sets related to DNA repair
were differentially enriched between the high- and low-risk
groups.

Anoikis is a specific form of apoptotic cell death that combats
tumor metastasis. Compelling evidence has determined that this
specific mode of apoptosis is relevant with survival in metastatic PC
patients (Rennebeck et al., 2005a). The reactive stroma and EMT are
involved in metastatic PC development, which is the structure basis
for anoikis resistance. Accumulating evidence has implicated
anoikis-related genes and pathways in the progression of various
cancers, including lung cancer (Wang et al., 2022), nasopharyngeal
carcinoma (Hao et al., 2020), and colorectal cancer (Takagi et al.,
2020). However, the anoikis players in PC has not been fully

understood. Herein, based on the expression of anoikis-related
genes, two anoikis-related molecular subtypes were identified.
Patients in cluster 1 were characterized by worse prognosis,
higher sis, and advanced clinical features (higher Gleason score,
higher nonsynonymous TMB, and more advanced N stage).
Stemness is always applied to assess the degree of similarity
between tumor and stem cells (Saba et al., 2021). Tumor
development has been attributed to progenitor-like and stem cell
characteristics (Malta et al., 2018). Tumors with cancer stem cell
properties have a higher probability of aggressive migration
or distant metastasis (Celià-Terrassa and Jolly, 2020). Therefore,
we speculate that higher sis and advanced clinical features may be
responsible for the poor prognosis of cluster 1. Moreover, the tumor
microenvironment plays a significant role in survival and prognosis
(Hinshaw and Shevde, 2019). Diverse immune cells in the
tumor microenvironment are associated with PC development
and immunotherapy outcomes (Kwon et al., 2021). Differential
immune cells, such as M0 and M2 macrophages, had higher
infiltration levels than other differential immune cells between
subtypes and may be key immune cells between subtypes.
Meanwhile, decreased expression of most immune checkpoint
genes, such as PD-1, PD-L1, and CTLA4, was observed in
cluster1, implying an association between subtype and
immunotherapy outcomes, and patients in cluster 1 may benefit
more from immune checkpoint therapy. Taken together, these
data suggest that anoikis-related genes may affect the disease risk
in different subtypes by affecting stemness, clinical features, and
the tumor microenvironment. However, it is no longer convincing
to use BULK data to discuss immune infiltration status, and the
results of this study will be further explored in other types of
datasets.

Several anoikis-related gene signatures have been developed to
assess tumor progression and prognosis in patients with diverse
cancers, such as endometrial carcinoma (Chen et al., 2021), low-
grade gliomas (Zhao et al., 2022), and head and neck squamous cell
carcinoma (Chi et al., 2022). In the present study, the anoikis-related

FIGURE 7
Gene set enrichment analysis (GSEA) of differentially enriched hallmark gene sets between different risk groups. (A): The up-regulated hallmark gene
sets in the high-risk group. (B): The down-regulated hallmark gene sets in the high-risk group.
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gene signature comprised five genes (CKS2, CDC20, FMOD, CD38,
andMSMB) and exerted a high prognostic value in both the training
and independent PC validation cohorts. With regard to the critical
role of anoikis in metastasis, we verified the predictive value of the
identified anoikis-related gene signature in metastatic PC. Based on
GSE211448 database, the risk score of each sample was calculated
based on the expression of five anoikis-related genes. Results showed
that the risk score was significantly different between metastatic and
primary PC group, implying the potential predictive value of
anoikis-related gene signature in the metastatic PC. CKS2 is a
key regulator of the cell cycle and highly expressed in many
cancers (You et al., 2015; Yu et al., 2015). Wang et al. revealed
that CKS2 is associated with the recurrence and prognosis of PC
(Wang et al., 2020). CDC20 is also a regulator of cell cycle
checkpoints, and its increased expression is related to poor

pathological features and poor prognosis in a variety of human
cancers (Moura et al., 2014; Zhang et al., 2019; Jeong et al., 2022). In
metastatic PC, CDC20 is also highly expressed and related to poor
DFS (Dai et al., 2021). FMOD, a small leucine-rich proteoglycan in
the ECM, has been implicated in the pathogenesis of several
pathological conditions, including tumors (Al-Qattan and Al-
Qattan, 2018). FMOD shows increased expression in PC tissues
andmay be used as a potential biomarker for PC (Bettin et al., 2016).
CD38, a druggable ectoenzyme, has been shown to be expressed on
diverse prostate tumor-infiltrating immune cells (TIICs), and the
CD38+ TIIC density is independently related to worse overall
survival of patients with PC (Guo et al., 2021). MSMB is a major
secretory product of prostate epithelial cells and plays a protective
role in the suppression of PC (Haiman et al., 2013). MSMB has been
suggested as a biomarker for the progression and recurrence of PC

FIGURE 8
Prognostic signature for metastatic PC. (A): The mean risk score between metastasis group and primary group. (B–F): CKS2, CDC20, FMOD, MSMB
and CD38 expression detected by RT-qPCR. *p < 0.05.
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(Whitaker et al., 2010). Most of the five genes were confirmed to be
differentially expressed in metastatic PC tissues, compared with
primary PC. Our study also showed that these anoikis-related genes
were related to PC prognosis, suggesting their usefulness as potential
prognostic biomarkers (Bendifallah et al., 2016).

To better understand the possible regulatory mechanism
underlying the different risks for PC recurrence, GSEA was
performed and upregulated hallmark gene sets, such as DNA repair,
were enriched in the high-risk samples. DNA repair is a complex pr
ocess tightly linked to many types of human cancers considering that
DNA repair defects have been associated with higher mutation rates,
elevated genomic instability levels, and increased intratumoral
heterogeneity (Gavande et al., 2016; Turgeon et al., 2018). Several
studies have also demonstrated the effect of DNA repair defects on
PC progression (Warner et al., 2019; Bryce et al., 2020). Based on our
results, we speculate that anoikis-related genes may regulate PC
development by affecting DNA repair.

5 Conclusion

Two related molecular subtypes of PC were identified, and cluster
1 had a poor prognosis, which was associated with higher stemness,
advanced clinical features, and differential immune cell infiltration. A
novel, clinically relevant five-anoikis-related gene signaturewas revealed
as a powerful prognostic biomarker for PC. Our findings expand our
knowledge of anoikis in PC and contribute to a more accurate
prognostic evaluation of patients with PC.
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