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Cancer is one of the most dangerous diseases in the world, killing millions of
people every year. Drugs composed of anticancer peptides have been used to
treat cancer with low side effects in recent years. Therefore, identifying anticancer
peptides has become a focus of research. In this study, an improved anticancer
peptide predictor named ACP-GBDT, based on gradient boosting decision tree
(GBDT) and sequence information, is proposed. To encode the peptide sequences
included in the anticancer peptide dataset, ACP-GBDT uses a merged-feature
composed of AAIndex and SVMProt-188D. A GBDT is adopted to train the
prediction model in ACP-GBDT. Independent testing and ten-fold cross-
validation show that ACP-GBDT can effectively distinguish anticancer peptides
from non-anticancer ones. The comparison results of the benchmark dataset
show that ACP-GBDT is simpler and more effective than other existing anticancer
peptide prediction methods.
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1 Introduction

Cancer, one of the deadliest diseases in the world, kills millions of people every year
(Hani et al., 2021). The development of anticancer drugs with high effectiveness and low side
effects is gaining more attention. The traditional cancer treatment strategy is chemotherapy,
but the shortcomings of chemotherapy drugs are high costs and side effects (Sun et al., 2022).
Compared with traditional chemotherapy, anticancer drugs can effectively kill cancer cells
and have low side effects. Therefore, researchers have put more effort into identifying and
designing new anticancer drugs (Yang et al., 2023).

In recent decades, peptides with anticancer activity have become a potential
alternative for cancer treatments. Compared with traditional chemotherapy, peptide-
based therapy has many advantages, such as high tumor penetration, high specificity,
low production cost, and ease of synthesis and modification. Anticancer peptides (ACPs)
are short peptides with anticancer properties, consisting of 10–50 amino acids. They are
molecular polymers between proteins and amino acids, consisting of dozens of amino
acids connected by peptide bonds (Dong et al., 2021; Huo et al., 2022). ACPs have been
widely studied as one of the most reliable anticancer drugs. They can kill cancer cells
without destroying normal human cells. Based on these benefits, ACPs are increasingly
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used in clinical trials. Therefore, their accurate identification is
important for exploring their action mechanism and developing
therapeutic varieties.

Experimental methods for identifying ACPs are usually time-
consuming and prohibitively expensive. Machine learningmethods are
completely based on sequence information and zero-cost. In recent
years, many anticancer peptide recognitionmethods based onmachine
learning have been developed, including AntiCP, Hajisharifi’s model,
iACP, ACPred-FL, PEPred-Suite, ACPred-Fuse, DeepACP, and ACP-
MCAM. AntiCP (Tyagi et al., 2013) consists of three models. The first
is AntiCP-ACC, which encodes amino acid sequences with amino acid
composition and trains by using a support vector machine. The second
model is AntiCP-DC, which uses dipeptide composition as a
characteristic of peptide sequences and uses a support vector
machine to train. The third model is AntiCP-BP, which is a binary
profile-based support vector machine model. Hajisharifi et al. (2014)
constructed an ACP classification model using PseACC as a feature
representation method and SVM with a local alignment kernel. This
method claims 83.82% accuracy on the built-in dataset.Wei Chen et al.
(2016) proposed the ACP predictor called iACP, which represents
peptide sequences with pseudo-amino acid composition with a G-gap
dipeptide mode and uses SVM as the classifier. Wei et al. (2018)
developed the ACP predictor ACPred-FL. This developed an effective
feature-representation learningmodel, which can automatically extract
the features from a pool of models, which is constructed on peptide
sequence-based feature descriptors using an SVM algorithm. They
subsequently proposed an improved predictor named “PEPred-Suite,”
which can predict eight therapeutic peptides with different functions,
including ACPs (Wei et al., 2019). Rao et al. (2020) developed a
predictor called “ACPred-Fuse,” which can automatically identify
whether a peptide sequence has anticancer efficacy. The feature
representation learning model, which can use a variety of multi-
view information, is first established. The random forest is then
trained on these multi-view features. Yu et al. (2020) proposed a
computational approach to identifying ACPs named DeepACP based
on deep learning. They systematically compared the performance of
three main deep learning architectures—recurrent, convolutional, and
convolutional–recurrent neural networks—to distinguish ACPs and
non-ACPs. They concluded that a recurrent neural network with
bidirectional long short-term memory cells performs best. Wu et al.
(2022) introduced a tool for predicting ACPs based on a multi-kernel
CNN and attentionmodel—ACP-MCAM. It can automatically extract
effective information from the amino acid sequence and obtain feature
encoding on node features and sequence features. Experimental results
show that the model performs better than the other models mentioned
previously. Although the existing predictors have made a lot of
progress, their overall prediction accuracy is still not adequate for
actual treatment application. In this study, the novel predictor ACP-
GBDT is proposed, which encodes the peptide sequence with the
merged-features consisting of SVMProt-188D and AAIndex
descriptors. The merged-features show strong specificity and can
distinguish anticancer from non-anticancer peptides. In our
method, a gradient boosting decision tree (GBDT) was used to
establish the identification model. Experimental results show that
our method is more concise, efficient, and achieves better
performance than the previously published methods.

2 Materials and methods

2.1 Framework of ACP-GBDT

The framework of this study’s proposed anticancer peptide
predictor based on gradient boosting decision tree (ACP-GBDT)
is shown in Figure 1. First, the dataset used in this paper is the same
as the ACPred-FL method. Second, the SVMProt-188D and
AAIndex descriptors are extracted from the peptide sequences
and merged to be used as the input of the classifier. Finally, a
GBDT is used as the classifier to identify anticancer and non-
anticancer peptides.

2.2 Dataset

This study directly used the datasets proposed in ACPred-FL.
These were collected and collated by Leyi Wei et al. from three
main resources: Tyagi et al., Chen et al., and a public ACP database,
CancerPPD (Tyagi et al., 2015). The initial extracted positive
samples include 3,212 ACPs. The negative samples include
2,250 non-ACPs extracted from CAMP, APD, and DADP. The
homological bias of sequences can influence performance, so all
samples included positive and negative examples filtered by CD-
HIT (Li and Godzik, 2006; Wei et al., 2022) with the threshold 0.9.
Samples with a similarity of more than 90% are thus removed. The
final samples include 332 positive and 1,032 negative examples. To
ensure the balance of datasets, 332 non-anticancer peptides were
randomly selected from negative datasets. The selected samples
were divided into a training set and a test set. The training set
(Train-500) consisted of 250 anticancer and 250 non-anticancer
peptides; it was used to train the model evaluating by ten-fold
cross-validation. The test set (Test-164) consisted of 82 anticancer
and 82 non-anticancer peptides and was employed to measure the
generalization ability of the model’s evaluation by independent
validation.

2.3 Feature extraction

In building a peptide predictor, feature extraction is the first and
most significant step (Yones et al., 2021; Ao et al., 2022a; Yan et al.,
2022). A feature with strong identification and high specificity can
effectively differentiate positive from negative samples, thus greatly
improving the performance of the predictor. We represented the
peptide sequence with a merged-feature model, composed of the
AAIndex descriptor (Peng and Zhu, 2022) and SVMProt-188D (Jiao
et al., 2021). The merged-feature can encode peptide sequences from
a different perspective and has some achievement in bioinformatics.
SVMProt-188D encodes peptide sequences based on the frequency
of 20 different amino acid compositions of the peptide sequence and
eight physical and chemical characteristics. SVMProt-188D has
effectively predicted diabetic protein markers (Qu et al., 2021)
and antioxidant proteins (Caa et al., 2020). AAIndex encodes
peptide sequences based on the AAIndex database, which
consists of many physical and chemical properties of amino
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acids. Each amino acid is encoded into the numerical values
according to its physicochemical properties. AAIndex has had
great success in some bioinformatics problems such as predicting
tumor T-cell antigens (Herrera-Bravo et al., 2021) and FAD binding
sites (Ho et al., 2021). In this study, SVMProt-188D and AAIndex
are first extracted from peptide sequences. Then, SVMProt-188D
and AAIndex are merged. Finally, this merged-feature model is
input into the classifier to predict whether a peptide is anticancer or
non-anticancer. The experimental results are shown in Section 3.1.
A detailed description of SVMProt-188D and AAIndex is given in
the following sections.

2.3.1 SVMProt-188D
According to the amino acid composition and the physical and

chemical properties of peptide sequences, SVMProt-188D encodes
peptides as a 188-dimensional vector. SVMProt-188D thus consists
of two parts. One describes the frequency of 20 different amino acids
in the peptide sequence, obtaining a 20-dimensional feature vector.
The other part describes the eight physicochemical properties of
amino acids, each property corresponding to 21 characteristic
values. A 168-dimensional feature vector is thus obtained.

The first 20-dimensional feature vector corresponding to the
composition information of amino acids is defined as

v1, v2, ..., v20( ) � Ni

L
, (1)

where Ni denotes the number of the ith amino acid in the peptide
sequence and L denotes the total number of amino acids in the
peptide sequence. Thus, ∑ vi � 1.

The latter 168-dimensional feature vector is related to eight
physicochemical properties: secondary structure, hydrophobicity,
charge, polarizability, normalized van der Waals volume, solvent
accessibility, polarity, and surface tension. Each physicochemical
property is classified into three groups, and the 21 characteristic
values will be calculated according to these three groups for each
physicochemical property.

A 21-dimensional feature vector is obtained for each
physicochemical property. In detail, using hydrophobicity as an
example, Group-1 is named “hydrophilicity,” Group-2 is
“hydrophobicity,” and Group-3 is named “neutrality”. The
frequency of amino acids belonging to each group is computed,
obtaining the three-dimensional feature vector. Considering the
situation of one amino acid in a group followed by another
amino acid in another group—such as the transition from
hydrophilicity to hydrophobicity, from hydrophilicity to
neutrality, or from hydrophobicity to neutrality—the frequency is
computed, and another three-dimensional feature vector is
obtained. By calculating the proportions of the first, n*25%,
n*50%, n*75%, and the last amino acids in the peptide sequence,
a 15-dimensional feature vector is obtained. Therefore, a 21-
dimensional feature vector is obtained for each physicochemical

FIGURE 1
Framework of ACP-GBDT.
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property. A 168-dimensional feature vector can be constructed by
considering the eight physicochemical properties. Therefore, the
188-dimensional feature vector is obtained.

2.3.2 AAIndex descriptor
Each amino acid has its own various properties. The

combination of properties is specified by the genetic code, which
is responsible for the diversity and specificity of biological functions
and protein structure. Amino acids are the components of protein
and have different characteristics in volume, shape, and chemical
reactivity. Much theoretical and experimental research has been
conducted to describe the biochemical and physicochemical
properties of a single amino acid. The derived property is usually
termed “amino acid indices,” which is a vector consisting of
20 numerical values. A total of 222 amino acid indices have been
collected from the literature by Nakai et al. (1988), and their
interrelationships have also been investigated using hierarchical
cluster analysis. Tomii and Kanehisa (1996) not only extended
the size of the collection to 402 amino acid indices but also
collected 42 amino acid mutation matrices from research papers.
Based on this, the AAIndex database was established by Nakai et al.
and then developed by Tomii and Kanehisa.

A numerical value is given for each amino acid according to each
physicochemical property. This means that there is a one-to-one
correspondence between the 20 amino acids and numerical values.
The current AAIndex database includes 544 physicochemical
properties (Kawashima and Kanehisa, 2000). After removing the
physicochemical properties with value “NA,” 531 physicochemical
properties remain. The AAIndex is usually used to represent
peptides of equal length. The AAIndex has performed well in
protein malonylation site prediction (Chen et al., 2018) and
protein ubiquitination site prediction (Tung and Ho, 2008).

This study employed the iLearn platform (Chen et al., 2020) to
extract the AAIndex feature. The AAIndex descriptor must be
applied to encode peptides of equal length. For the dataset used
in this paper, the sequences are unequal. Therefore, to extract an
AAIndex feature from the unequal sequence, truncation is required.
The new equal sequences, which are used to extract AAIndex
features, are obtained by extracting the first ten and last ten
letters from the original sequences and then combining them.

2.4 Identification model

scikit-learn (Pedregosa et al., 2011) is a mature machine learning
algorithm software package based on the Python programming
language. It includes a large number of classification, regression,
and clustering algorithms and is designed to be used in conjunction
with Python’s numerical science libraries NumPy and Scipy. In this
paper, we chose a GBDT as our identification algorithm, which is
included in the scikit-learn platform. The experimental results are
given in Section 3.2.

GBDT is an iterative decision tree algorithm composed of
multiple decision trees, with the conclusions of all trees added up
to make the final decision. The basic structure of GBDT is a forest of
decision trees, and the learning method is gradient upgrading. GBDT
has been employed to solve many bioinformatics problems (Gao et al.,

2020), such as prognostic biomarker discovery (Li et al., 2022) and
Parkinson’s disease prediction (Lee et al., 2022; Yu et al., 2022).

The basic idea behind GBDT is to combine many weak learners to
build a strong learner. An individual decision tree acts as one weak
learner; all the weak learners are sequentially connected and each tries to
minimize the error of the one previous. The sequential connectionmakes
the boosting algorithm learn slowly but more accurately. In general,
statistical learning models which learn slowly can perform better.

GBDT generates decision subtrees one by one, thus constructing
the whole forest. GBDT generates a new subtree based on the
residual of the sample label value and the current forest
prediction value. GBDT constructs a strong learner by
aggregating the result of each step. The existing trees are not
changed when a new tree is added to the forest.

2.5 Performance evaluation

The following evaluation indicators are used to demonstrate the
performance of our model, including accuracy (ACC), sensitivity
(SE), specificity (SP), Mathew’s correlation coefficient (MCC), and
the area under the ROC curve (AUC). These evaluation indicators
are commonly used in bioinformatics (Zhou et al., 2022; Zhou and
Wang, 2022; Chen et al., 2023; Zhang et al., 2023). The calculation
formulas of these indicators are as follows:

ACC � TP + TN

TP + TN + FP + FN
, (2)

SE � TP

TP + FN
(3)

SP � TN

TN + FP
(4)

MCC � TP × TN − FP × FN��������������������������������������������
TP + FN( ) × TP + FP( ) × TN + FP( ) × TN + FN( )√

(5)
where TP (true positive) represents the number of anticancer peptides
correctly predicted, FP (false positive) represents the number of non-
anticancer peptides predicted as anticancer peptides, TN (true
negative) indicates the number of non-anticancer peptides
correctly predicted, and FN (false negative) represents the number
of anticancer peptides predicted as non-anticancer. SP and SE evaluate
the predictive performance of predictors for negative and positive
examples, respectively. ACC, MCC, and AUC measure the overall
ability of predictors on all examples. The AUC value can be obtained
by calculating the area enclosed by the ROC curve. AUC ranges from
0.5 to 1; a larger AUC value indicates that the model is achieving a
better and more robust predictive performance.

3 Results and discussion

In this section, the performance evaluation of different features
is given, under the condition that the classifier is GBDT. Second, the
performance evaluation of the classifier is discussed under the
condition of using the merged-feature of SVMProt-188D and
AAIndex. Finally, the comparison experiment between ACP-
GBDT and other methods is given.
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3.1 Performance of different features

As shown in the framework of our predictor in Figure 1, the
merged-features of AAIndex and SVMProt-188D are used to
represent the peptide sequences. In this section, we conducted an
experiment to prove the validity of our merged-feature using cross-
validation on Train-500 and independent testing on Test-164.

GBDT is here employed as the classifier, and the merged-feature is
compared withmany features based on Train-500, including SVMProt-
188D, AAIndex, BLOSUM62 (Lee et al., 2011), CTDD (Dubchak et al.,
1995), QSOrder (Chou, 2000), PAAC (Chou and Com, 2001), and
some of their combinations. SVMProt-188D encodes peptides as a 188-
dimensional vector according to the amino acid composition and the
physical and chemical properties of the peptide sequence. AAIndex
describes 531 physicochemical properties of amino acids using the
AAIndex database. BLOSUM62 uses amatrix (m row and n column) to
encode the peptide sequences, where m is set to 20 and n denotes the
peptide length. Each row represents the information of one amino acid.
CTDD consists of 13 types of physicochemical properties. The
20 amino acids are classified into three categories for each property.
CTDD uses five values to represent the peptide sequence of each of the
three categories. QSOrder encodes a peptide sequence according to
sequence order effect. QSOrder defines a set of sequence-order coupling
numbers to represent the sequence-order effect on the condition of the
physicochemical distance between amino acids. QSOrder has been
successfully applied in protein subcellular location prediction. The full
name of PAAC is “pseudo-amino acid composition”; it further extends
the amino acid compositionwith the information of sequence order and
successfully predicts the function of rice proteins (Liu et al., 2022).

The experimental results of ten-fold cross-validation on Train-
500 are shown in Table 1. Comparing the values of AUC, MCC, and
ACC, the merged-feature of AAIndex and SVMProt-188D adopted in
this study has a higher value than other feature representation
methods. Our merged-feature thus performs better overall.
Considering the SE indicator, the value of our merged-feature is
still the highest among all methods, demonstrating that our feature
representation method can best distinguish anti-cancer peptides from

true anti-cancer peptide sequences. Considering the SP indicator, our
merged-feature still has a higher value than all the other methods,
demonstrating that our method can better identify non-anticancer
peptides from negative examples. From all indicators, the merged-
featur performance is significantly better than other methods.

In order to verify the generalization performance of using the
merged-feature, our merged-feature is compared with other features
on the independent test dataset Test-164. As shown in Table 2,
according to SE, SP, AUC, MCC, and ACC, the merged-feature
achieves the highest value of all feature representation methods,
including single feature and some combinational features. The
merged-feature SVMProt-188D/ AAIndex performs better than
single SVMProt-188D or single AAIndex. Therefore, it verified
that performance can be improved by combining the different
features. Comparing the identification performance of six single-
features in Table 2, AAIndex achieves the highest value of all
evaluation indicators. The physicochemical properties of amino
acids can thus better identify ACPs.

By considering the ten-fold cross-validation on Train-500 and
independent test verification on Test-164, we find that the merged-
feature best recognizes ACPs.

3.2 Performance of different classifiers

We chose GBDT as the classifier to identify anticancer from
peptide sequences. To verify the validity of the classifier GBDT, the
performance of GBDT is compared with other classifiers on Train-
500 and Test-164. The classifiers used for comparison include
XGBoost, random forest, AdaBoost, decision tree, k-nearest
neighbor, logistic regression, and GaussianNB. eXtreme Gradient
Boosting (XGBoost) is an implementation of a boosting algorithm. It
is a meta-algorithm that can integrate weak classifiers to build strong
classifiers (Schaduangrat et al., 2019; Prabha et al., 2021). XGBoost is
essentially a GBDT. Compared with the GBDT algorithm, XGBoost
maximizes speed and efficiency. Random forest (RF) is an effective
machine learning algorithm (Ao et al., 2022b; Tran and Nguyen,
2022; Naik et al., 2023) which is a random composition of many

TABLE 1 Feature comparison on Train-500.

SE SP ACC MCC AUC

188D + AAIndex 90.0 90.8 90.4 81.4 94.5

188D 86.4 86.4 86.4 72.9 92.1

AAIndex 84.8 88.4 86.6 73.7 92.9

BLOSUM62 84.8 90.4 87.6 75.7 92.8

CTDD 83.6 86.4 85.0 70.2 92.2

QSOrder 75.2 79.2 77.2 54.7 85.6

PAAC 76.0 81.6 78.8 58.0 85.3

AAIndex + BLOSUM62 84.8 90.0 87.2 75.0 92.7

CTDD + QSOrder 85.2 87.2 86.2 72.6 92.8

CTDD + PAAC 86.4 85.6 86.0 72.1 92.9

QSOrder + PAAC 76.0 80.4 78.2 56.9 85.9

The maximum values in the table are bold.

TABLE 2 Feature comparison on Test-164.

SE SP ACC MCC AUC

188D + AAIndex 90.2 92.7 91.5 83.0 95.6

188D 84.1 84.1 84.1 68.3 92.8

AAIndex 85.4 92.7 89.0 78.3 92.9

BLOSUM62 85.4 89.0 87.2 74.4 92.8

CTDD 84.1 81.7 82.9 65.9 91.7

QSOrder 80.5 76.8 78.7 57.4 88.3

PAAC 78.0 79.3 78.7 57.3 86.3

AAIndex + BLOSUM62 85.4 92.7 89.0 78.3 93.0

CTDD + QSOrder 85.4 80.5 82.9 65.9 92.3

CTDD + PAAC 85.4 86.6 86.0 72.0 91.7

QSOrder + PAAC 78.0 79.3 78.7 57.3 88.1

The maximum values in the table are bold.
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unrelated decision trees. When judging the category of a new
sample, each RF decision tree makes an independent judgment
and finally selects the category with the highest probability value.
Adaptive Boosting (AdaBoost) (Rojas, 2009) is an adaptable
boosting algorithm that changes the weights of samples classified
by a prior basic classifier. Samples with new weights are then input
into a new weak classifier to produce enhanced training results.
Finally, a strong classifier will be obtained when the minimum error
rate or the maximum number of iterations is reached. The decision
tree classification algorithm constructs a tree-type classification
model from the training samples (Shabbir et al., 2021). The
decision nodes (non-leaf nodes) in the tree are used to judge the
category, and each leaf node represents the classification of the
sample. For a new sample, the decision tree can give a path from the
root node to some leaf nodes, with the latter representing the
prediction category of the sample. The K-Nearest Neighbors
(KNN) (Kramer, 2013) classification algorithm is very simple: it
determines the category of the target point by “voting” through the
category of n points closest to the target point. The algorithm stores
the learned data and classifies unseen data by computing its distance
with training data. Logistic regression is actually a classification
method that assumes that the data are subject to Bernoulli
distribution and solves the parameters by the maximum
likelihood function and gradient descent methods to achieve data
classification (Ksiazek et al., 2021). Gaussian Naive Bayes
(GaussianNB) (Bong and Kim, 2022) is a naive Bayes with a
priori Gaussian distribution; the conditional probability of each
characteristic dimension of the sample is assumed to obey Gaussian
distribution, the posterior probability of each category of the new
sample under a certain characteristic distribution is then calculated
according to the Bayes formula, and finally, the category of the
sample is determined by maximizing the posterior probability.

Using the merged-feature of SVMProt-188D and AAIndex as the
feature representation of the anticancer peptide sequences, the ten-fold
cross-validation results of the GBDT and the other classifiers on Train-
500 are shown in Table 3. GBDT’s value is higher than the other
classifiers in ACC, MCC, and AUC indicators. GBDT thus outperforms
the other classifiers on the anticancer peptide dataset. Considering the
indicator SE, the value of GBDT is still higher than all the other
classifiers, meaning that it performs best in identifying anti-cancer
peptides in peptide sequences. For the SP indicator, the value of
GBDT is slightly lower in RF but higher in the SE indicator,

meaning that RF is more biased than GBDT in classifying an unseen
peptide as negative sample. GBDT especially achieves higher values than
RF for the ACC, MCC, and AUC indicators; GBDT thus has better
overall performance than RF. Therefore, in general, the GBDT classifier
has better recognition capability.

To verify the generalization performance, the GBDT adopted in this
paper is compared with the other seven classifiers on the independent
test dataset Test-164; the result is shown in Table 4. We found that
GBDT achieves the best value among all classifiers on all indicators. The
accuracy of using GBDT reaches a maximum value of 91.5%. Therefore,
the GBDT classifier better generalizes anticancer datasets.

3.3 Comparison with other methods

To measure the effectiveness of ACP-GBDT, we compared it with
the other eight existing methods (Wu et al., 2022)—ACP-MCAM,
ACP-Fuse, AntiCP_ACC, AntiCP_DC, PEPred-Suite, ACPred-FL,
iACP, and Hajisharifi’s method—on Train-500 and Test-164. The
ten-fold cross-validation results on Train-500 are given in Table 5.
The independent test results on Test-164 are given in Table 6.

In Table 5, the ACP-GBDT predictor has a larger value than other
methods in the AUC, ACC, and MCC indicators, reaching 90.4%,
81.4%, and 94.5%, respectively. The ACP-GBDT predictor thus

TABLE 3 Classifier comparison on Train-500.

SE SP ACC MCC AUC

GBDT 90.0 90.8 90.4 81.4 94.5

XGBoost 87.2 88.8 88.0 76.4 94.3

RandomForest 87.2 92.0 89.6 79.8 94.4

AdaBoost 82.4 81.6 82.0 64.4 89.6

DecisionTree 87.6 81.6 84.6 70.0 84.6

Kneighbors 82.4 74.8 78.6 57.7 87.1

LogisticRegression 75.6 72.4 74 48.1 79.4

GaussianNB 74.8 80.8 77.8 56.1 80.6

The maximum values in the table are bold.

TABLE 4 Classifier comparison on Test-164.

SE SP ACC MCC AUC

GBDT 90.2 92.7 91.5 83.0 95.6

XGBoost 89.0 92.7 90.9 81.8 94.9

RandomForest 84.1 91.5 87.8 75.8 94.2

AdaBoost 85.4 92.7 89 78.3 93.6

DecisionTree 80.5 86.6 83.5 67.2 83.5

Kneighbors 81.7 64.6 73.2 47.0 81.3

LogisticRegression 85.4 83.0 84.1 68.3 88.6

GaussianNB 73.2 65.9 70.0 39.1 72.8

The maximum values in the table are bold.

TABLE 5 Comparison with state-of-the-art methods on Train-500.

SE SP ACC MCC AUC

ACP-GBDT 90.0 90.8 90.4 81.4 94.5

iACP 57.2 84.0 70.6 42.8 80.9

ACPred-FL 71.6 84.4 78.0 56.5 84.6

PEPred-Suite 72.8 88.0 80.4 61.5 86.0

ACPred-Fuse 77.2 87.6 82.4 65.2 88.2

AntiCP_ACC 66.8 78.4 72.6 45.5 82.4

AntiCP_DC 71.6 77.6 74.6 49.3 82.5

Hajisharifi’s 67.2 83.6 75.4 51.5 83.1

ACP-MCAM 85.6 95.2 90.4 81.3 91.9

The maximum values in the table are bold.
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performs better overall than other state-of-art methods. For SP, the
value of our method is higher than the other methods except ACP-
MCAM. For SE, ourmethod is higher than the othermethods, meaning
that it best identifies anti-cancer peptides from positive samples.
Comprehensively considering SP and SE, ACP-MCAM is biased to
classifying an example as negative compared with ACP-GBDT.
Therefore, ACP-GBDT performs better than the other predictors.

In Table 6, the identification ability of the ACP-GBDT predictor
is superior to the other methods based on the AUC, MCC, and ACC
indicators, reaching 91.5%, 83.0%, and 95.6%, respectively.

For SE and SP, the ACP-GBDT predictor has a higher value than
the other methods except ACP-MCAM, which means that our
method better classifies an unseen sample than other methods,
except ACP-MCAM.

Although ACP-MCAM has a higher value than ACP-GBDT on
SP, its SE value is lower than our method. ACP-MCAM is thus
biased toward classifying an example as a non-anticancer peptide. In
general, experimental results on an independent test dataset
demonstrated that our predictor is superior to the others for
anticancer identification.

4 Conclusion

In this study, we developed a simple and effective anticancer
peptide predictor and named it “ACP-GBDT.” Considering the
physicochemical properties and composition of amino acids, a
feature merge of AAIndex and SVMProt-188D was built. GBDT
was employed to classify anticancer and non-anticancer. The

experimental test on features and classifiers has been given. The
feature experiments show that the performance of merged-feature is
better than that of single-feature and their combinations. The classifier
experiments on the independent test set and ten-fold cross-validation
set show that the GBDT classifier performs better than other
classifiers. In the future, we plan to add a feature selection strategy.
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