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Background: The tumormicroenvironment (TME) of breast cancer (BRCA) is a complex
and dynamic micro-ecosystem that influences BRCA occurrence, progression, and
prognosis through its cellular and molecular components. However, as the tumor
progresses, the dynamic changes of stromal and immune cells in TME become unclear.

Objective: The aim of this study was to identify differentially co-expressed genes
(DCGs) associated with the proportion of stromal cells in TME of BRCA, to explore
the patterns of cell proportion changes, and ultimately, their impact on prognosis.

Methods: A new heuristic feature selection strategy (CorDelSFS) was combined
with differential co-expression analysis to identify TME-key DCGs. The expression
pattern and co-expression network of TME-key DCGs were analyzed across
different TMEs. A prognostic model was constructed using six TME-key DCGs,
and the correlation between the risk score and the proportion of stromal cells and
immune cells in TME was evaluated.

Results: TME-key DCGs mimicked the dynamic trend of BRCA TME and formed
cell type-specific subnetworks. The IG gene-related subnetwork, plasmablast-
specific expression, played a vital role in the BRCA TME through its adaptive
immune function and tumor progression inhibition. The prognostic model
showed that the risk score was significantly correlated with the proportion of
stromal cells and immune cells in TME, and low-risk patients had stronger adaptive
immune function. IGKV1D-39 was identified as a novel BRCA prognostic marker
specifically expressed in plasmablasts and involved in adaptive immune responses.

Conclusions: This study explores the role of proportionate-related genes in the tumor
microenvironment using a machine learning approach and provides new insights for
discovering the key biological processes in tumor progression and clinical prognosis.
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1 Introduction

Breast cancer (BRCA) is the most common cancer among
women worldwide, accounting for 25.4% of all cancer cases in
women and placing a heavy burden on both the health and
finances of these patients (Ahmad, 2019). BRCA has a complex
tumor microenvironment (TME), and the different cell types
and altered gene expression patterns in the TME are all factors
contributing to tumor heterogeneity that cannot be ignored.
TME is a dynamic entity, characterized by changes in the types
and quantities of various cell populations (Shalapour and Karin,
2015; Wang et al., 2020) that promote or inhibit tumor cell
proliferation and metastasis throughout its evolution. Changes

in stromal cells in the TME matter considerably in suppressing
and promoting tumor metastasis during tumor evolution and
metastasis initiation (Guo and Deng, 2018). For example, the co-
evolution of malignant breast epithelial cells and their
underlying mechanisms drive and support the occurrence of
cancer-associated fibroblasts (CAFs) as a hallmark event in the
development of most cancers (Roswall et al., 2018). The
complement regulatory protein CD55 regulates the immune-
promoting or immunosuppressive effects of tumor B cells by
controlling the ICOSL + B cell production (Lu et al., 2020).
However, the proportions of these important cell types within
the TME were often overlooked. The composition of cell types
within the TME varies between patients at different pathological
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stages (Yin et al., 2021), and the prognosis of the TME also
differs in different states (Lohr et al., 2013; Germain et al., 2014;
Goc et al., 2014; Giraldo et al., 2019). Additionally, the treatment
measures for patients with different TME conditions are diverse
(Ros and Vermeulen, 2018; Abou Khouzam et al., 2020; Shelton
et al., 2021; Tiwari et al., 2022). Therefore, understanding the
changes in cell types during breast cancer development can help
us grasp the changing patterns of the TME in patients and thus
provide targeted treatment for patients with different tumor
microenvironments, improving their prognosis. Pseudo-
temporal analysis can be used to simulate the development
process of diseases and explore key molecular mechanisms
(Gupta and Bar-Joseph, 2008; Tucker et al., 2015; Campbell
and Yau, 2018). For example, PhenoPath has unsupervisedly
simulated the disease trajectory of colorectal cancer and found
that its trajectory fairly identified the immune contribution to
the progression of colorectal cancer (Campbell and Yau, 2018).
Therefore, pseudo-temporal analysis is helpful in analyzing the
dynamic changes in the TME in breast cancer patients. In
addition to changes in a cell type with tumor progression, at
the transcriptomic level, some genes, such as the ferroptosis gene
ACSL4/GPX4 (Sha et al., 2021); the pyroptosis genes GZMB,
IL18, IRF1, and GZMA (Wang et al., 2022); and the glycolysis-
related genes PGK1, SDHC, PFKL, and NUP43, play a role in
TME inhibition or promotion of tumor evolution and serve as
prognostic markers (Zhang et al., 2021). However, these studies
fail to assess the importance of a global perspective on tumor
development and place no focus on the impact of dynamic
changes in the cell type and proportion in the current TME
on tumor development and prognosis. Furthermore, the
regularity of dynamic changes in the proportion of different
cell types during tumor development and the related genes is
rarely reported.

Machine learning can efficiently identify potential target
genes and can be used to identify genes related to changes in
cell proportions in the BRCA TME. Many studies have
developed feature selection algorithms for the removal of
invalid and redundant features (Kong et al., 2009; Ekins et al.,
2019; Mi et al., 2021), and machine learning models have been
constructed for medical imaging diagnosis, cancer staging, and
drug response prediction by selected genes or other biological
variables (Curtis et al., 2012; Chiu et al., 2019; Liu et al., 2019).
TME, as a dynamic network (Marx, 2013), features dynamically
changing gene synergy, and individual genes cannot explain the
biological processes of the TME in tumor progression (Tse and
Kalluri, 2007; Im et al., 2021; Barkley et al., 2022). Therefore, we
need to determine the connections between genes related to cell
proportions. Yu et al. (2011) developed a differential co-
expression analysis (DCEA) method to identify differentially
co-expressed genes (DCGs) and differentially co-expressed gene
pairs (DCLs) so as to precisely identify dynamic changes in the
co-expression between gene pairs at different states. The bulk
RNA cannot precisely determine whether the expression of key
genes is driven by certain cell types (Li et al., 2022) or explain the
altered gene co-expression relationships in relation to the
proportion and function of cell types. However, single-cell
transcriptomics (scRNA) can accurately localize the specific
expression of genes in different cell types and the specific

functions of each cell type (Grün and van Oudenaarden,
2015). The identification of genes affecting dynamic changes
in the stromal cell proportion in the TME by machine learning
and the construction of a cell type-specific co-expression
network (CCEN) in the TME by DCEA combined with
scRNA can explore changes in cell type-specific genes and co-
expression patterns that drive changes in the cell proportion and
function of different cell types during tumor progression, and
thus facilitate the exploration of individual differences and
prognosis.

Therefore, potential genes (TME-key genes) in the TCGA-
BRCA cohort affecting changes in the stromal and immune cell
proportion in BRCA TME were hereby identified based on an
improved sequential forward selection (SFS) (Marcano-Cedeño
et al., 2010) signature selection strategy. Furthermore, CCEN
was constructed by DCEA and primary BRCA-scRNA to
characterize the trajectory of stromal and immune cell
proportions with tumor development, revealing the specific
cell types in the TME and their underlying mechanisms.
Finally, a TME-key-related prognostic model and new
prognostic markers were constructed based on a series of
prognostic analyses, including lasso regression, thereby
providing new prognostic markers and new potential targets
for immunotherapy and drug treatment.

2 Materials and methods

2.1 Data source

The data used for analysis included The Cancer Genome Atlas
(TCGA)-gene expression matrix for breast cancer (TCGA-BRCA) (n =
1052), the Genotype-Tissue Expression (GTEx) database’s gene
expression matrix for normal breast tissue (n = 179), and the single-
cell data on primary BRCA (BRCA-scRNA) (Wu et al., 2021). A total of
130,246 single cells from BRCA-scRNAwere downloaded from https://
singlecell.broadinstitute.org/single_cell/study/SCP1039/. These cells
underwent quality control and were annotated using the typical
canonical lineage.

The validation dataset used in this study was obtained from
multiple origins. First, additional nine normal breast
transcriptome samples were included, consisting of four breast
tissue samples from GSE31448 (Sabatier et al., 2011) and five
breast tissue samples from Anton Buzdin et al.’s atlas of RNA
sequencing profiles for normal human tissues (GSE120795)
(Suntsova et al., 2019). These external datasets were used to
validate the analysis results based on GTEx normal breast tissue
and TCGA-BRCA data. Furthermore, the transcriptome data on
99 adjacent normal tissues from TCGA-BRCA were used to
demonstrate the biological differences between adjacent
normal and normal breast tissues. The samples of adjacent
normal tissues, which lie between normal and tumor tissue,
served as transitional data to validate the conclusions of this
study. Finally, breast cancer samples from GSE31448 were
employed to validate the prognostic model, and the
Kaplan–Meier plotter (Lánczky and Győrffy, 2021) online
website was used for the overall survival analysis (OS) of
prognostic genes.
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In addition, all transcriptome expression matrices were in the
form of FPKM matrices. To remove batch effects and normalize the
data, the “normalizeBetweenArrays” function from the R package
“limma” was used.

2.2 The feasibility of jointly calculating
differential genes from TCGA and GTEx

Due to the potential impact of tumor–stroma interactions
on the transcriptional profiles of adjacent normal tissue in the
tumor microenvironment, this study avoids the use of adjacent
normal tissue from TCGA-BRCA samples as the control group
for differential gene (DEG) analysis compared to TCGA-
BRCA. Instead, large-scale transcriptome data from GTEx
breast tissue are utilized to calculate DEGs alongside
TCGA-BRCA.

The “normalizeBetweenArrays” function in R language is
employed to correct batch effects between two datasets.
Additionally, to demonstrate the differences in transcript levels
between TCGA-BRCA’s cancer-adjacent tissue and normal breast
tissue, we conducted sample clustering analysis based on principal
component analysis (PCA) and Uniform Manifold Approximation
and Projection (UMAP). This analysis was performed to assess the
similarity between samples and ensure the authenticity and
reliability of our research results.

A rank-sum test was used for DEG’s analysis of TCGA
transcriptome matrix. Multiple testing corrections were carried
out to control the overall error rate using the
Benjamini–Hochberg false discovery rate (FDR), and an FDR <
0.05 and a |log2 fold change (FC)| > 2 were adopted as the cut-off
criteria to identify the final DEGs.

2.3 Single-cell differential gene analysis

BRCA-scRNA was used to search for cell type-specific highly
expressed genes and investigate the mechanism of action of
related cell types on the TME. The R package “Seurat” was
used for BRCA-scRNA analysis. The cellranger output file of
BRCA-scRNA (Wu et al., 2021) was read into R and converted
into Seurat objects, giving each cell of the Seurat object the
corresponding cell type and information on the UMAP
coordinate of the clusters. The “FeaturePlot” function
determined the type of cells with high gene expression, the
parameter order was set to TRUE, and the cells expressing the
gene were placed at the top of the graph. The “FindAllMarkers”
function calculated the DEGs of different cell types with default
parameters, where logFC ≥ 0.25.

2.4 Forward non-kicking SFS signature
selection for the identification of genes
driving potential changes in cell proportions

A large amount of irrelevant information in features can lead to
the degradation of model generalization performance in the case of
too few samples and too many features in the dataset. An

appropriate feature selection method can eliminate useless and
redundant features, and capture the optimal subset of features
beneficial for predicting the target information (predictor
variables) so that the generalization performance of the model
can be improved. Herein, the performance of feature selection
was utilized to capture target information and genes that could
be closely associated with changes in the stromal cell proportion.
Specifically, a multi-step feature selection and model construction
strategy (CorDelSFS) was proposed.

2.4.1 Construction of the dataset
The DEGs were used as the original feature selection dataset, and

to target the DEGs potentially associated with the TME, the R
package “ESTIMATE” (Yoshihara et al., 2013) was used to calculate
the TME scores for the entire TCGA tumor cohort. The immune cell
relative proportion score (ImmuneScore) and stromal cell relative
proportion score (StromalScore) were used as predictor variables for
learning models in the feature selection strategy.

2.4.2 Different correlation metrics for ranking the
importance of genes to be selected

The maximum information coefficient (MIC) (Reshef et al.,
2011), distance correlation coefficient (dcor) (Székely et al., 2007),
and Pearson correlation coefficient were used to calculate the
correlation between the expression of genes and the two TME
scorings, with a higher correlation indicating a higher-level
importance of the gene in the TME. Finally, the genes were
ranked in accordance with their importance to determine the
order of the gene input into the model.

2.4.3 Improved SFS strategy
SFS (Marcano-Cedeño et al., 2010) is a classical wraparound

feature selection method based on the principle of selecting one
feature Xi at a time from the feature set X to join the feature subset S
so that the loss function J (S + Xi, Y) can be maximized or
minimized. In short, this method selects one feature at a time
that makes J (S + Xi and Y) optimal. Furthermore, “forward”
implies that the algorithm can only add features instead of
removing them. Unimproved SFS algorithms may lead to
redundancy due to their inefficiency in removing features. For
example, the information space of feature A is a subset of
features B and C. Suppose the SFS algorithm adds A, B, and C to
the feature subset, the feature subset contains the redundant feature
A, which will exert an impact on the prediction results of the model.
Herein, an improved SFS algorithm was proposed. First, the features
of TME importance ranking were input into the SFS model one by
one to calculate the RMSE. Then, the algorithm used the RMSE as
the judgment criterion to add useful features, following the principle
of retaining useful features and rejecting useless features.
Specifically, let the set of TME importance ranked features be
X = [X1, X2, X3, . . . , Xi, . . . , Xn]; the number of features, n;
the current set of introduced features, S; the number of introduced
features, s; the number of unintroduced features, m; and the subset
of unintroduced features, M (M = X-S); the introduction criterion
and the loss function J (X and Y) is minimum. The introduction
criterion for the s + 1 feature is

J S +Xm+1, Y( )< J S +Xm,Y( ). (1)
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2.4.4 Root-mean-square error (RMSE) as a loss
function J

CorDelSFS predicts the dependent variable Y-pre using a linear
regression model, with some error compared to the true Y. This
error may be attributed to the performance of the learning machine
or the noise of the trained dataset. To evaluate the merit of the
trainingmodel and the feature genes, RMSE was thereby taken as the
evaluation criterion for the model. The formula is as follows:

RMSE �
�������������������∑n
i�1

ytest i − ŷtest i( )2/n.

√
(2)

2.4.5 Comparison of other wraparound feature
selection methods and machine learning models

To verify the superiority of CorDelSFS, other feature selection
models were hereby used for comparison. From the feature selection
strategy level, the compared feature selection methods included all
without feature selection, the classical recursive feature elimination
with cross-validation (RFEcv) and SFS without modification, the
univariate filter with only relevance indicators, including MIC,
Pearson, and dcor, and the method of inputting into SFS after
sorting the correlation indicators (CorSFS). In terms of the level of
embedded machine learning models, other machine learning
methods embedded in the previously mentioned wrapped feature
selection methods were used for the comparison with the hereby
proposed feature selection models, including support vector
machine regression (SVR), linear regression, random forest
regression model (RF), decision tree (tree), and neural
network (MLP).

2.5 Construction of the TME cell-specific
differential co-expression network by
integrating bulk RNA and single-cell RNA
data

To investigate the unique co-expression patterns in the BRCA
tumor microenvironment (TME), we performed differential co-
expression analysis. However, differential co-expression
networks based on bulk transcriptome can only measure the
average level of gene expression changes in the tissue and cannot
reveal the cell-type heterogeneity of gene expression. Single-cell
transcriptomics, a technology that provides genome-scale
molecular information at single-cell resolution, has been used
to identify previously unknown cell types and associated markers
(Treutlein et al., 2014; Zeisel et al., 2015; Shekhar et al., 2016).
Therefore, we combined BRCA single-cell RNA sequencing data
with differential co-expression analysis to assign cell-type labels
to each gene node in the co-expression network and explore the
TME cell-type heterogeneity in the network. The details are given
in the following paragraphs.

2.5.1 DCGL package to build differential co-
expression networks

DCEA identifies DCGs by comparing altered gene expression
patterns under different conditions. Herein, such clear differential
co-expression relationships between genes were used for identifying

key markers of disease (Chen et al., 2021) and key signaling pathway
screening (Savino et al., 2020) among others.

The DCGL v2.0 (Liu et al., 2010) package in R was used to
predict DCGs and differentially co-expressed linkages (DCLs), as
well as to identify DCGs. The Pearson coefficient count (PCC) of any
two genes, which reveals their co-expression relationship, was also
calculated using DCGL v2.0 software. DCLs are hereby classified
into three categories: a co-expression pattern present in normal
samples but not in tumor samples, a co-expression linkage that is
absent in normal samples while specifically present in BRCA
samples, and a co-expression pattern present in normal samples
but a complete reversal of this co-expression pattern in tumor
samples.

BRCA-specific DCLs build co-expression networks. Herein,
interaction information from DCGs and DCLs was input to
Cytoscape software (Shannon et al., 2003) to establish the
differentially co-expressed network. DCLs with absolute values of
the correlation less than 0.3 (|cor|<0.3) were defined as irrelevant.
DCLs with the correlation only in tumor patients (|cornormal|
<0.3 and |corcancer|≥0.3) were constituted as the BRCA TME-
specific subnetwork. Finally, the DCLs of the subnetwork
were filtered according to their correlation coefficient
|corcancer|≥0.5 and |corcancer-cornormal|≥0.5 (|cor.diff|≥0.5), and
displayed using Cytoscape.

2.5.2 Markers of cell type-specific highly expressed
genes in the network based on BRCA-scRNA

DEGs were calculated for each cell type of BRCA-scRNA. The
“FindAllMarkers” function calculated the DEGs of different cell
types with default parameters. DEGs in different cell types in BRCA-
scRNA were filtered by logFC ≥ 1. If the gene node in the network is
a DEG of certain cell types, then the gene node is labeled by this cell
type, and the cell type with the highest logFC was taken as the cell
type-specific marker for the gene node, in the case of the gene that is
specifically highly expressed in different cell types. The cell-type
specificity of gene nodes is marked with different colors in the
network.

In addition, we also associated the TME-key enriched pathways with
the cell types of gene nodes and mapped pathway activity in each cell in
BRCA-scRNA to verify the relationship between enriched pathways and
cell types at the single-cell level. Therefore, CCEN not only has
differential co-expression information on genes but also mapping
information on cell types and pathways. The impact of TME-key
genes on the TME can be studied from multiple dimensions,
including the gene level, cell level, and functional level. The
Metascape website was used for pathway enrichment analysis.

Gene Ontology (GO) and KEGG pathway analyses were
performed using the Metascape bioinformatics tool (http://
metascape.org) (Zhou et al., 2019), and only terms with p
values ≤ 0.05, minimum counts ≥ 3, and enrichment factors ≥ 1.
5 were considered significant.

2.6 Area under curve (AUC) of ROC for gene
set activity

The R package AUCell was used to calculate gene set enrichment
scores, and the “area under the curve” (AUC) was adopted to
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FIGURE 1
CorDelSFS filtering of the TME-key gene and model comparison: (A) UMAP plot for sample clustering. PCA and UMAP were utilized to demonstrate
the similarity between samples. The samples were sourced from TCGA-BRCA, TCGA-BRCA adjacent normal tissue, GTEx normal breast tissue, ANTE
database normal breast tissue, and GSE31448 normal breast tissue. (B) Heatmap showing the expression of DEGs in normal samples (GTEx) and BRCA
samples (TCGA-BRCA). (C) The RMSE of the learningmodel during feature selection is reduced. MIC, dcor, and Pearson are three different indicators
of gene importance ranking. ImmuneScore and StromalScore are the predictor variables. (D,E) The Venn diagram represents the overlap of the subset of
genes screened by CorDelSFS for three correlation (MIC, dcor, and Pearson) rankings. (D) StromalScore as the predictor variable. (E) ImmuneScore as the
predictor variable. (F) The Venn diagram represents the intersection of subsets of genes screened by CorDelSFS with StromalScore and ImmuneScore as
predictor variables, with a total of 296 intersecting genes (TME-key genes). (G,H) Comparison of heuristic feature selection methods, including all DEGs

(Continued )
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calculate whether a subset of the input gene set was enriched in
expressed genes in each sample. The distribution of AUC scores
across all samples made it possible to explore the relative expression
of features. Given that the scoring method was based on ranking,
AUCell was independent of the gene expression units and
normalization procedures.

2.7 Trajectory analysis

Pseudo-temporal analysis is a method of mapping high-
dimensional molecular data to a series of one-dimensional
quantities called pseudo-time. These pseudo-time measurements
quantify the relative progression of each individual in the biological
process of interest, such as disease progression or cell development,
allowing us to understand the (pseudo) temporal behavior of
measured features without explicit time-series data. All pseudo-
temporal analyses include three important pieces of information: 1)
the key genes, which are the result of feature selection, 2) the pseudo-
time, which is a one-dimensional ordering space, and 3) the
ordering, which represents the evolutionary trajectory of the
study object. Therefore, the selection of key genes for pseudo-
time analysis is crucial as it can directly affect the meaning of the
ordering results.

We designed the CorDelSFS feature selection algorithm to
identify genes related to changes in cell-type proportions in the
breast cancer tumor microenvironment (TME) and further screened
for breast cancer-specific co-expressed genes through differential co-
expression analysis. These genes were used as input features for

pseudo-temporal analysis to ensure that the final ordering results of
the samples reflect the dynamic changes in the TME.

Specifically, based on the expression of 101 TME-key DCGs in
the transcriptomic data from TCGA-BRCA patients and normal
breast tissue of GTEx in a proposed time series, trajectory analysis
was performed using the R package “Monocle2” (v2.18.0), which
was run with GTEx as the reference starting point and the function
“orderCells.” In addition, the “plot_genes_branched_heatmap”
function was used to plot the heatmap of genes associated with
changes in cell proportions along the differentiation trajectory.

In the end, we validated the developmental trajectory of the
tumor microenvironment (TME) by utilizing external datasets from
nine normal breast tissues and 99 TCGA-BRCA adjacent tissues.
These samples were merged into a transcriptional matrix with GTEx
normal breast tissues and TCGA-BRCA samples to reconstruct a
pseudo-time trajectory, which served as the validation trajectory.
We compared the relative positions of different sample sets,
including normal breast tissue samples from various sources,
TCGA adjacent tissue samples, and TCGA-BRCA samples, along
the pseudo-time trajectory.

2.8 Determination of genes in the TME-key
DCGs closely related to the prognosis in
BRCA

The TME-key DCGs in BRCA were analyzed using Cox regression
and the LASSO technique for their prognostic significance.

To select genes that contribute to the prognosis of BRCA,
univariate Cox regression was first performed, with p-values less
than 0.05 indicating statistical significance for genes. Genes
having the biggest effects on the prognosis of BRCA were
identified using the LASSO approach with an L1 penalty. By
reducing the number of indicators with a final weight of non-zero
and the regression coefficient, an L1 penalty was applied by
LASSO to identify indicators contributing the most
(Tibshirani, 1996). Furthermore, the glmnet package in R was
hereby used to perform LASSO and thus reduce the number of
genes using 1000 iterations and 10-fold cross-validations. The
following related parameters were chosen: cv = 10 and maxiter =
1000. After 1,000 iterations of LASSO, the ability of the associated
gene to predict the prognosis became stronger, and the non-zero
coefficient was higher. Following the incorporation of the chosen
genes into a multivariate Cox regression model, forward selection
and backward removal were used to identify the gene set with the
best prognostic value for BRCA.

FIGURE 1 (Continued)
(ALL), RFECV SFS, the univariate filter with only relevance indicators, including MIC, Pearson, and dcor, and the method of inputting into SFS after
sorting the correlation indicators (CorSFS). All feature selection methods have embedded linear learning models. The RMSE of CorDelSFS is lower than
other feature selection methods. (G) StromalScore as the predictor variable. (H) ImmuneScore as the predictor variable. (I,J) Comparison of learning
model performance in feature selection methods, including linear, SVR, RF, tree, and MLP, with a lower RMSE in the linear method. (I) StromalScore
as the predictor variable. (J) ImmuneScore as the predictor variable. (K,L) Heatmap showing model performance comparison of feature selection
methods combined with machine learning. CorDelSFS (MIC-CorDelSFS, DCOR-CorDelSFS, and R-CorDelSFS) shows the best performance. Feature
selection methods include all DEGs (ALL), RFECV, SFS, and the univariate filter with only relevance indicators, including MIC (MIC filter), Pearson (Pearson
filter), and dcor (DCOR filter), and the method of inputting into SFS after sorting the correlation indicators (MIC-CorSFS, Pearson-CorSFS, and DCOR-
CorSFS), and CorDelSFS. The shade of red indicates the RMSE value, and the lighter red indicates the lower RMSE and better model performance (K)with
StromalScore as the predictor variable and (L) ImmuneScore as the predictor variable.

TABLE 1 CorDelSFS screening signature genes and their error assessment.

Number RMSE

StromalScore MIC 291 97.446

dcor 294 98.404

Pearson 301 99.098

All - 234.584

ImmuneScore MIC 283 66.588

dcor 270 66.897

Pearson 285 62.325

All - 146.521

Note: “All” indicates that all genes were entered into the model for prediction.
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FIGURE 2
Differential co-expression network analysis of the TME and inference of state trajectories: (A) Venn diagram showing that TME-key genes contain
101 DCGs. (B) Specific occurrence of CCEN in BRCA TME (cor.diff≥0.5). The node shape indicates whether the gene is a DCG. The color of the node
indicates the gene’s cell-type specificity. The color of the links indicates the difference in the correlation (cor.diff) compared to the normal control; red
indicates the positive correlation, blue indicates the negative correlation, and the color shade indicates the size of the cor. diff value. (C) Pathway
specificity of IG gene subnetworks. The color of the node represents pathways. (D)Metascape pathway enrichment analysis of 101 genes. (E) Scoring of
the AUC activity of adaptive immune responses on BRCA-scRNA. (F) Scoring of the AUC activity of membrane invagination on BRCA-scRNA. (G–Q) The
continuous change in the expression pattern of 101 TME-key DCGs simulates the continuous change in the TME state by the proposed time series
analysis. The TME trajectory differentiates into two branches. The upper branch indicates the direction to tumor cells. The lower branch indicates the

(Continued )
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2.9 Establishment and validation of a
prognostic model

The gene set identified using themultivariate Cox regression was
adopted to construct a prognostic model. The prognostic score
formula was set up as follows: Risk Score = (a1 *
TNFRSF14 expression level) + (a2 * SUSD3 expression level) +
(a3 * COX7A1 expression level) + (a4 * ROBO3 expression level) +
(a5 * FBLN5 expression level) + (a6 * IGKV1D-39 expression level).
The median was used as a cutoff to distinguish between the high-risk
and low-risk BRCA patients having survival data, while K–M curves
and ROC curve analyses were used to assess the accuracy of the
prognostic model in making predictions.

2.10 TME stromal cell scoring and analysis of
the level of immune cell infiltration

The level of immune cell infiltration was calculated using the R
package “MCPcounter,” which predicted the abundance of 10 cell
populations from transcriptome profiles (CD3+ T cells, CD8+ T cells,
CTLs (cytotoxic lymphocytes), NK (natural killer) cells, B
lymphocytes, monocyte lineage cells, bone marrow dendritic cells,
neutrophils, endothelial cells, and CAFs) (Becht et al., 2016) as
continuous variables.

Then, risk score and prognosticmarker expressionwere divided into
the high and low groups according to the median values. The Wilcoxon
rank-sum test was performed to compare the differences in cell
infiltration levels, ImmuneScore, and StromalScore between the high
and low groups.

Correlations between risk score, gene expression, infiltration levels of
different cell types, immune inhibitor, and immune stimulator were
calculated using the Pearson correlation coefficient (p < 0.05).

2.11 GSEA pathway enrichment

The samples were divided into two groups according to the
expression of genes. All genes in the two groups were sorted by
logFC, and the enrichment of the gene sets was calculated
using GSEA.

GSEA pathway enrichment was performed using the function
“GSEA” from the R package “clusterProfiler,” and the pathway
database was downloaded from the GO database as “c5. go.v7.4.
symbols”. Pathways of GOBP were selected, and the top five
pathways with p < 0.05 and the highest NES values were
selected. In addition, the high- and low-risk groups of the
samples were taken by the GSEA of the prognostic model as the
grouping in the calculation of the ranking.

3 Results

3.1 Machine learning identifies genes
associatedwith stromal cell and immune cell
proportions

The graphical abstract presents an overview of the entire
analytical process of the study (Graphical Abstract). First, based
on the clustering analysis of tumor samples, adjacent normal
samples, and normal breast samples, it was demonstrated that the
GTEx normal samples formed a distinct cluster together with
nine samples from two additional external normal datasets. They
were completely separated from the TCGA-BRCA samples and
adjacent data (Figure 1A). Additionally, the TCGA-BRCA
adjacent tissue samples formed a separate cluster and were
located closer to the TCGA-BRCA tumor samples, indicating
the influence of tumor cells on the adjacent tissue. Therefore,
GTEx normal breast tissue was utilized as the control group to
calculate differentially expressed genes with BRCA, and two
additional normal external datasets were used for subsequent
result validation. A total of 930 DEGs (647 downregulated and
283 upregulated) were identified between TCGA-BRCA patients
and GTEx normal breast tissue based on FDR<0.05 and
logFC>2 thresholds (Figure 1B; Supplementary Table S1).
Furthermore, we identified genes related to StromalScore and
ImmuneScore among the 980 DEGs using CorDelSFS, a novel
feature selection method integrated in this study for identifying
genes associated with changes in cell proportions.

The process was followed by a decrease in RMSE as useful
genes were retained (Figure 1C). Finally, the MIC-CorDelSFS,
DCOR-CorDelSFS, and Pearson-CorDelSFS models based on
StromalScore and ImmuneScore filtered 291, 294, and 301;
and 283, 270, and 285 genes, respectively. The loss function
RMSE of CorDelSFS was significantly lower than the full range of
DEGs (Table 1). The correlation metrics presented their own
characteristics (Rudra et al., 2017). In StromalScore-based
CorDelSFS, MIC-CorDelSFS identified 91 unique genes, dcor-
CorDelSFS had 66 genes, and Pearson-CorDelSFS contained
74 genes (Figure 1D). Meanwhile, in the ImmuneScore-based
CorDelSFS, the MIC-CorDelSFS identified 103 unique genes, the
dcor-CorDelSFS had 88 genes, and the Pearson-CorDelSFS
contained 79 genes (Figure 1E). To this end, it could
reasonably be claimed that different correlation algorithms
could identify different correlations. Then, the gene sets of the
correlation metrics were combined to reduce the loss of TME
information. Finally, the intersection of the StromalScore and
ImmuneScore gene subsets was taken to screen TME-key genes,
and a total of 296 TME-key (TME-key) genes were successfully
screened (Figure 1F; Supplementary Table S2).

FIGURE 2 (Continued)
direction to stromal cells and immune cells. (G) Simulated time-series (Pseudotime) value of the differentiation trajectory. (H)Demonstration of the
trajectory of TCGA-BRCA samples and GTE breast normal tissue. (I–K) Tumor purity (I), stromal cell scoring (J), and immune cell scoring (K) of TCGA-
BRCA samples calculated using ESTIMATE. (L–P) Relative proportion of different types of infiltrating cells, including T cells (L), B lineage (M), myeloid
dendritic cells (N), fibroblasts (O), and endothelial cells (P), as calculated by MCPcounter. (Q) Clinical survival status of BRCA patients. (R) Trajectory
of validation. Based on the pseudo-temporal trajectories of tumor tissue, adjacent tissue, and normal breast tissue, we validated the stability of
constructing TME differentiation trajectories using 101 TME-key DCGs.
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To verify the efficacy of the selection strategy, CorDelSFS was
compared with other strategies (Figures 1G, H). The selection
strategies were divided into three categories, i.e., the unmodified
classical RFECV and SFS, methods to filter genes using only
correlation metrics, and SFS without correlation metric ranking.

The RMSE of CorDelSFS is significantly lower than that of other
methods, and the results have statistical significance as tested by the
paired t-test. Therefore, CorDelSFS is considered to be significantly
superior to other feature selection methods. In addition, the classical
linear model with good robustness was hereby used as a training

FIGURE 3
Differential genes in BRCA-scRNA in plasmablasts and pathway enrichment analysis: (A) Heatmap showing the expression of 101 TME-key DCGs
differentiated from the origin (GTEx) along different branches. (B,C) Scoring of AUC activity in TCGA-BRCA and GTEx normal breast tissue for adaptive
immunity (B) and the membrane invagination pathway. (C). (D) Heatmap showing the expression of the top 50 DEGs upregulated in plasmablasts. (E)
Pathway enrichment analysis of the top 200 DEGs upregulated in plasmablasts.
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FIGURE 4
Prognostic model construction and identification of prognostic markers. (A) LASSO coefficient profiles. (B) Using 10-fold cross-validation based on
the OS minimum criterion, the tuning parameters (lambda) in the LASSO model are chosen. (C) Forest map indicating independent predictors of
prognosis in BRCA. (D) Analysis of OS survival in high- and low-risk patients. (D1) TCGA training cohort. (D2) TCGA test cohort. (D3)GSE31448 cohort. (E)
Distribution of risk scores andOS of the TCGA training cohort (E1), TCGA test cohort (E2), and GSE31448 cohort (E3). (F). Validation of the prognostic
value of the prognostic index at 1, 3, and 5 years in TCGA training cohort (F1), TCGA test cohort (F2), and GSE31448 cohort (F3) using survival-dependent
ROC curves. (G) The risk score was significantly correlated with age (G1), menopause status (G2), person neoplasm cancer status (G3), race (G4), breast
carcinoma surgical procedure name (G5), and pathologic T-stage (G6). (H) Validation of OS survival analysis of FBLN5 (H1), SUSD3 (H2), TNFRSF14 (H3),
and IGKV1D-39 (H4) in TCGA-BRCA. (I) Validation of OS survival analysis in the GSE31448 cohort of SUSD3 (I1) and IGKV1D-39 (I2). (J) Validation of OS
survival analysis in Kaplan-Meier plotter online sites for FBLN5 (J1), TNFRSF14 (J2), and SUSD3 (J3).
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FIGURE 5
Prognostic model and prognostic markers with microenvironmental correlations: (A,B) The risk score was significantly correlated with
ImmuneScore (A) and StromalScore (B). (C,D) The IGKV1D-39 expression was significantly correlated with ImmuneScore (C) and StromalScore (D). (E,F)
MCPcounter calculations of immune cell infiltration levels of the 10 immune cell subgroups in the high–low risk group (E) and the high–low IGKV1D-39
expression groups (F). (E,F)Differences in immune cell infiltration levels of the 10 immune cell subgroups calculated byMCPcounter in the high–low
risk groups (E) and the high–low IGKV1D-39 expression groups (F). (G) Correlation analysis of risk scores, prognostic genes, and the level of immune cell
infiltration. Using Pearson calculations, p < 0.05 reached significant. (H) Correlation between risk scores, prognostic genes, and immune inhibitors and
stimulators. Using Pearson calculations, p < 0.05 reached significance. (I) Cell clustering UMAP plot of BRCA-scRNA showing specifically high expression
in the IGKV1D-39 gene in plasmablasts. (J–L) Risk scores (J), risk grouping (K), and the expression of IGKV1D-39 (L) in TCGA-BRCA patients are shown on

(Continued )
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machine within CorDelSFS to evaluate the validity of each input
gene. The linear regression model was compared with other learning
machines, such as neural networks, support vector machines, and
random forest regression models. The results still show that the
linear model is slightly better than the support vector machine
model and significantly better than the other models (Figures 1I, J).
This result was also subjected to paired t-test analysis,
demonstrating statistical significance.

Finally, all the previously mentioned training machines, feature
selection strategies, and relevance metrics were combined, involving
a total of 59 combinations, and the RMSE of all the combined
models was calculated. The results show that among all the selection
strategies, MIC-CorDelSFS, Dcor-CorDelSFS, and Pearson-
CorDelSFS have the smallest test-set RMSE (Figures 1K, L).

3.2 Cell type-specific differential co-
expression networks and TME dynamic
changes

The tumor microenvironment is a dynamic network (Im et al.,
2021). The co-expression patterns of genes and the proportion of
each cell type in the TME are in the dynamic change as the tumor
develops. Herein, a total of 101 DCGs (TME-key DCGs) and
100,258 associated DCLs (Supplementary Tables S3, S4) were
identified from TME-key genes (Figure 2A). Pathway enrichment
results show that 101 TME-key DCGs are mainly enriched to
pathways such as adaptive immunity, membrane invagination,
cell adhesion, cell junctions, and negative regulation of cell
proliferation (Figure 2D).

The BRCA TME-specific gene co-expression pattern determines
the biological mechanisms specific to BRCA TME, such as
angiogenesis and stronger immune response. Thus, TME-specific
CCEN was further constructed using co-expression patterns specific
to the disease state, and the cell types of node genes in the network
(Figure 2B) were mapped to analyze the dynamics of TME-key
DCGs and the roles they played in the TME. There was a certain
pattern in the distribution of genes marked by different cell types in
the co-expression network in BRCA TME. In the network, genes
were specifically expressed by immune class cells and non-immune
class stromal cells form tight sub-networks, respectively. Genes
specific to immune cells such as myeloid, T cells, B cells, and
plasmablasts were co-expressed, while those specific to non-
immune classes of stromal cells such as PVL, CAFs, and
endothelial were more closely linked. The genes enriched in
adaptive immune response and membrane invasion were mainly
derived from the plasmablast-specific IG gene subnetwork
(Figure 2C) encoding immunoglobulin components, and the
AUC activities of the two pathways were also the highest in
plasmablasts. Other immune cell types also had a higher activity
of adaptive immune response pathways (Figures 2E, F).

To investigate the global changes in the stromal cell proportion, a
trajectory analysis was performed by integrating GTEx and TCGA-
BRCA samples and using the expression of 101 TME-key DCGs. The
trajectory analysis mapped the expression of the 101 TME-key DCGs
to a one-dimensional space to simulate the dynamic processes of
stromal and immune cell proportions during tumor development
(Figure 2G). The TME differentiation trajectory begins with normal
breast tissue and differentiates into two major branches over time
(Figure 2H). The upper branch shows an increase in BRCA tumor
purity and a decrease in the TME stromal score with simulated time,
indicating a direction favorable for the development of BRCA cancer
cells (Figure 2I). The lower branch shows a higher TME stromal score
and lower tumor purity, indicating a direction favorable for the
survival of stromal cells (Figures 2J–P; Supplementary Figure S1).
Furthermore, patients at the end of the lower branch had a lower
mortality rate (Figure 2Q).

To validate the authenticity of the trajectory of changes in cell
proportions, we included nine normal breast tissue samples and
TCGA-BRCA adjacent tissue samples as an external validation
dataset. We reconstructed a pseudo-temporal trajectory as the
validation trajectory. The results showed that the shape of the
validation trajectory closely resembled the original trajectory
(Figure 2R). Normal tissues from different data sources were
positioned closer to the starting point of the trajectory, while
adjacent tissues occupied the “mid-transition zone” of the
trajectory, and tumor tissues predominantly clustered along the
trajectory branches. These results suggest that the cell proportion
trajectory constructed based on the expression patterns of 101 TME-
key DCGs is robust and not affected by data batches. It further
suggests that tumor cells have a non-negligible impact on the
surrounding tissue, and therefore, adjacent tissue cannot be
considered normal tissue directly.

With the passage of pseudo-time, the expression of 101 TME key
DCGs showed varying degrees of changes in two branches, among
which the plasma cell-specific IG gene (cluster4) had opposite
expression patterns in two different branches (Figure 3A). The
IG gene was expressed higher in the lower branch, and the IG
gene-related endocytosis and adaptive immune pathways had higher
activity in the lower branch (Figures 3B, C). The plasmablast-specific
IG gene co-expression network matters considerably in the
environmental interactions and immune function of the BRCA
immune microenvironment, influencing the trajectory of TME
development and the survival of BRCA patients.

Furthermore, the top 50 differentially upregulated genes in
plasmablasts in BRCA-scRNA contained many genes encoding
antibody-like immunoglobulin light and heavy chains (IG genes)
(Figure 3D). Pathway enrichment analysis of plasmablast DEGs
shows that plasmablasts are mainly involved in adaptive immune
response, SRP-dependent co-translational protein targeting to
the membrane, B-cell receptor signaling pathway, etc.
(Figure 3E), and that they play a role in the TME by

FIGURE 5 (Continued)
the TME trajectory. (M, N) GSEA plot in high- and low-risk groups. The top five pathways with p < 0.05 and the highest NES values. (M) Upregulated
pathways in high-risk patients. (N) Downregulated pathway in high-risk patients. (O,P) GSEA in the high–low IGKV1D-39 expression groups. The top five
pathways with p < 0.05 and the highest NES values. (O)Upregulated pathways of the highly expressed IGKV1D-39 group. (P)Downregulated pathways of
the highly expressed IGKV1D-39 group.
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synthesizing immunoglobulins to resist tumor cells and stop the
progression and metastasis of BRCA.

3.3 Prognostic model construction and
identification of prognostic markers in TME-
key DEGs

The impact of 101 TME-key DCGs on the clinical prognosis of
BRCA was also explored. A total of six prognostic marker genes,
i.e., COX7A1, ROBO3, FBLN5, IGKV1D-39, SUSD3, and TNFRSF14,
were hereby identified by univariate Cox regression analysis, LASSO
regression (Figures 4A, B), and multivariate Cox regression analysis
(Figure 4C), and a risk model was correspondingly constructed. The
formula of the risk model is as follows: Risk Score = (−0.694 *
expression level of TNFRSF14) + (−0.131 * expression level of
SUSD3) + (0.517 * expression level of COX7A1) + (0.967 *
expression level of ROBO3) + (−0.407* expression level of
FBLN5) + (−0.341* expression level of IGKV1D-39).

All cases were divided into the high-risk and low-risk groups
based on the median value of the risk score. According to
Kaplan–Meier analysis, the survival curves of the high-risk
patients were significantly lower than those of the low-risk
patients (Figures 4D, E). Additionally, the AUCs based on the
TCGA training cohort, TCGA test cohort, and GSE31448 cohort
for 1-year, 3-year, and 5-year periods are shown in Figure 4F.

A study was conducted to correlate prognostic models with
the clinical characteristics of BRCA based on the Wilcoxon rank-
sum test. Higher risk scores were found in patients of advanced
age (Age ≥ 65) (Figure 4G1). In menopause, patients in the post-
menopause stage were exposed to a significantly higher risk than
patients in the pre-menopause stage (Figure 4G2). In neoplasms,
patients with tumors had a significantly higher risk score than
that in those who were tumor-free (Figure 4G3). Among the
different races, the risk score of white people was significantly
higher than that of black people and African Americans
(Figure 4G4). In the procedure, patients with modified radical
mastectomy had significantly higher risk scores than those with
lumpectomy and simple mastectomy (Figure 4G5). In the
T-stage, patients in T4 were exposed to a significantly higher
risk than other patients (Figure 4G6).

K–M survival analysis of TCGA-BRCA, GSE31448 cohort, and
Kaplan–Meier plotter showed that among the six prognostic genes,
FBLN5, IGKV1D-39, SUSD3, and TNFRSF14 were of great
significance in at least two datasets. FBLN5, IGKV1D-39, SUSD3,
and TNFRSF14 were significant in TCGA-BRCA cohort
(Figure 4H). In the GSE31448 cohort, IGKV1D-39 and SUSD3
survival reached significance (Figure 4I). Kaplan-Meier plotter
results present significant survival for FBLN5, SUSD3,
TNFRSF14, and ROBO3 (Figure 4J). Currently, FBLN5, SUSD3,
and TNFRSF14 have been reported as prognostic markers for BRCA
(Mohamedi et al., 2016; Aushev et al., 2018; Chen et al., 2022), and

FIGURE 6
Molecular mechanisms of B-cell differentiation into plasmablasts. (A) Schematic diagram of the activation of B cells into plasmablasts. (B) Annotation
of each cell type in the UMAP clustering map of BRCA-scRNA. (C)UMAP plot showing the expression of theCD79A gene in different cell types. (D) UMAP
plot showing the expression of the CD79B gene in different cell types.
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IGKV1D-39 is a new potential BRCA prognostic marker
discovered here.

3.4 Effect of different patient risks and
IGKV1D-39 expression on BRCA TME

The relationship between the risk scores and TME of the
patients, and the specific role played by the prognostic marker
IGKV1D-39 in the TME was further investigated. Risk scores
and IGKV1D-39 expression in TCGA-BRCA patients were found
to be significantly different from their ImmuneScore and
StromalScore, which are, indeed, lower in high-risk patients
(Figures 5A, B). Analysis of immune cell infiltration levels
showed that BRCA high-risk patients had fewer relative immune
cell types (Figure 5E), which was significantly negatively correlated
with the relative immune cell proportion (Figure 5G). In the
correlation analysis with immune-related gene expression, the
patient risk was found to be significantly and negatively
correlated with the vast majority of immune inhibitors and
immune stimulators (Figure 5H). IGKV1D-39 expression was
negatively correlated with patient risks, and patients with a
higher IGKV1D-39 expression had higher ImmuneScore and
StromalScore (Figures 5C, D). Additionally, they also had a
significant positive correlation with the proportion of multiple
immune cells (Figures 5F, G), with the highest correlation in the
B lineage (0.561). IGKV1D-39 was specifically highly expressed in
the plasmablasts of BRCA-scRNA (Figure 5I), and its expression was
significantly and positively correlated with most immune inhibitors
and stimulators (Figure 5H). On the TME differentiation trajectory,
the risk scores of these patients were elevated toward the direction of
tumor progression (Figure 5J), and more of those in the high-risk
group were distributed in the branch in the direction of tumor
progression (Figure 5K). However, IGKV1D-39 was more expressed
in the lower branches that favored stromal cell survival (Figure 5L).

GSEA pathway enrichment analysis found that the risk of patients
upregulated energy metabolism, positive regulation of amine transport,
and regulation of cell morphology, thereby possibly promoting BRCA
proliferation and metastasis, and immune-related pathways were
downregulated (Figures 5M, N). The expression of IGKV1D-39
upregulated immune-related pathways and downregulated pathways
related to cell division and proliferation, such as chromosome
segregation and vascular transport function. In this case, the
IGKV1D-39 gene might play an important immune role in BRCA
TME and inhibit the activity of cancer cells (Figures 5O, P). IGKV1D-
39, as a potential prognosticmarker for BRCA, provides a new reference
for the therapeutic target and prognosis of BRCA.

4 Discussion

Different stromal cell proportions in the TME affect tumor
progression, and global changes in cell proportions reveal the
direction of tumor development or even affect patient survival
and prognosis, making it necessarily important to understand the
cellular fractions in the TME and their phenotypes, so as to better
understand the mechanisms of cancer progression and
immunotherapeutic response.

CorDelSFS identifies genes associated with the stromal cell and
immune cell proportions, and possesses a lower RMSE than other
feature selection methods. Herein, the suitability of the
characteristics of the learning model for the present feature
selection strategy was analyzed, and the simplest classical linear
regression model was found to be the most suitable for the feature
selection strategy, followed by SVR, which was speculated to be
related to the good robustness of linear regression. Neural networks
might be more suitable for the prediction of rather large samples,
such as image recognition.

The interaction between tumor cells and stromal cells leads to
continuous changes in their abundance and function. Previous
studies have overlooked the “dynamic” and “continuous” changes
in cell proportions. Changes in cell abundance during the dynamic
development of tumors and after certain critical biological events
have been rarely studied. The TME-key genes identified by
CorDelSFS are related to the proportion of stromal cells in
different tumor states and can therefore reflect changes in cell
proportions throughout tumor development. We constructed a
pseudo-temporal ordering of tumor microenvironment
development based on pseudo-temporal analysis. The process of
TME changes is divided into two branches, with the upper branch
developing in a direction favorable to tumor cells, with a low
abundance of stromal cells, and the lower branch developing in a
direction unfavorable to tumor cells, with a high abundance of
stromal cells. Therefore, we have effectively simulated the dynamic
process of the impact of TME cells on tumor development.
Importantly, by combining CCEN and TME developmental
trajectories, the plasmablast-specific IG gene subnetwork has
contributed to the development of BRCA TME through adaptive
immune responses toward branches favoring good patient
prognosis. The immune gene CXCL9 is a core gene (Figure 2K)
that is co-expressed with IG genes and may play a key regulatory
role. In addition, IGKV1D-39 in the prognostic model constructed in
TME-key DCGs is a newly identified prognostic marker of BRCA
specifically expressed in plasmablasts.

The role of B cells has been actually underestimated.
However, B cells and antibodies matter considerably in the
antitumor immune response (Zitvogel and Kroemer, 2015;
Sharonov et al., 2020). The density of B cells and mature
tertiary lymphoid structures (TLSs) is a major predictor for
the response to immunotherapy (Engelhard et al., 2021). The
presence of antibody-secreting cells and TLSs in the TME is
generally associated with a favorable clinical prognosis (Petitprez
et al., 2020; Meylan et al., 2022). Furthermore, plasmablasts are
activated by B cells and exercise adaptive immune functions,
while B-cell receptor (BCR) is a transmembrane protein on the
surface of B cells, composed of CD79 and immunoglobulins,
which will differentiate into plasmablasts after antigenic
stimulation (Figure 6A). Then, plasmablasts can proliferate
and differentiate into plasma cells in a short period of time
and produce a large number of antibodies, which can be used
to guide the immune system in producing correct immune
responses to different types of foreign invaders encountered
(Market and Papavasiliou, 2003). In BRCA-scRNA, CD79A
and CD79B are specifically highly expressed in B cells and
plasmablasts (Figures 6B–D), while plasmablasts secrete a
large number of immunoglobulins in response to the variable
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TME, including IGKV1D-39 (Figure 5I). Additionally, the
adaptive immune and membrane invagination pathways,
which are significantly enriched in TME-key DCGs, are
likewise most active in plasmablasts. More importantly, the
adaptive immune function exerted by plasmablasts affects the
state of the entire immune microenvironment and the process
of the tumor, thereby resulting in a favorable patient prognosis.
In this case, plasmablasts are important in BRCA by secreting
large amounts of antibody-like immunoglobulins. Many
researchers have investigated the role of antibody-like
immunoglobulins in the antitumor process (Lacombe et al.,
2022), and natural antibodies remind the adaptive immune
system of the presence of transformed cells during early
tumorigenesis (Rawat et al., 2022). Early neoantigen
recognition and initiation of adaptive immunity require
immune surveillance by natural IgM (Atif et al., 2018).
Moreover, allogeneic IgG combined with dendritic cell
stimulation induces antitumor T-cell immunity (Carmi et al.,
2015). A new study by Mazor et al. has recently demonstrated
that the immune system of cancer patients can produce
antibodies against tumors (Mazor et al., 2022). However,
antigenic specificity and the function of tumor-infiltrating
B cells remain largely unknown, and natural antitumor
antibodies show great potential for adjuvant immunotherapy.
They hereby discovered that the BRCA prognostic marker
IGKV1D-39, as a component of the immunoglobulin light
chain, participates in the anti-tumor process through
adaptive immunity, and may contribute to the study of
unknown targets on the surface of tumor cells, thus
providing new ideas for the clinical prognosis of BRCA and
the development of immunotherapy drugs.

However, the present study is also subject to some limitations.
Due to the complexity of the feature selection algorithm, only DEGs
can be used for identification, with other important genes as well as
co-expression patterns possibly overlooked. Inadequate sample size
and incomplete information on the TME in BRCA patients may
result in the incompleteness of the information on the development
of the TME trajectory, and some key information may be lost.
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