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Genomic evaluations in pigs could benefit from using multi-line data along with
whole-genome sequencing (WGS) if the data are large enough to represent the
variability across populations. The objective of this study was to investigate
strategies to combine large-scale data from different terminal pig lines in a
multi-line genomic evaluation (MLE) through single-step GBLUP (ssGBLUP)
models while including variants preselected from whole-genome sequence
(WGS) data. We investigated single-line and multi-line evaluations for five traits
recorded in three terminal lines. The number of sequenced animals in each line
ranged from 731 to 1,865, with 60k to 104k imputed to WGS. Unknown parent
groups (UPG) and metafounders (MF) were explored to account for genetic
differences among the lines and improve the compatibility between pedigree
and genomic relationships in the MLE. Sequence variants were preselected based
on multi-line genome-wide association studies (GWAS) or linkage disequilibrium
(LD) pruning. These preselected variant sets were used for ssGBLUP predictions
without and with weights from BayesR, and the performances were compared to
that of a commercial porcine single-nucleotide polymorphisms (SNP) chip. Using
UPG and MF in MLE showed small to no gain in prediction accuracy (up to 0.02),
depending on the lines and traits, compared to the single-line genomic evaluation
(SLE). Likewise, adding selected variants from the GWAS to the commercial SNP
chip resulted in a maximum increase of 0.02 in the prediction accuracy, only for
average daily feed intake in themost numerous lines. In addition, no benefits were
observed when using preselected sequence variants in multi-line genomic
predictions. Weights from BayesR did not help improve the performance of
ssGBLUP. This study revealed limited benefits of using preselected whole-
genome sequence variants for multi-line genomic predictions, even when tens
of thousands of animals had imputed sequence data. Correctly accounting for line
differences with UPG or MF in MLE is essential to obtain predictions similar to SLE;
however, the only observed benefit of an MLE is to have comparable predictions
across lines. Further investigation into the amount of data and novel methods to
preselect whole-genome causative variants in combined populations would be of
significant interest.
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1 Introduction

Genomic evaluations have been successfully implemented in pig
breeding programs to increase the accuracy of predicting genomic EBV
(GEBV) and better identify the best animals to be parents of the next
generation. However, most evaluations are single-line, or at most,
include phenotypes from crossbred progeny to help better evaluate
purebred parents. Combining multiple lines could be a possible strategy
to allow the comparison of animals across lines and the identification of
the best gene combinations (VanRaden et al., 2007). Additionally, small
lines can benefit from the increased reference size to have higher GEBV
accuracy. Several studies have investigated the impact of combining
multiple lines or breeds in farm animals, such as dairy and beef cattle,
chicken, and pigs (Calus et al., 2014; Rolf et al., 2015; Song et al., 2017;
Cesarani et al., 2022). However,multi-line genomic evaluation (MLE) in
pigs is still challenging because the main breeding objective is to
improve pure lines for crossbred performance. In contrast, lines
have heterogeneous genetic backgrounds and may be distantly related.

Single-step genomic BLUP (ssGBLUP) has been commonly used
for genomic evaluation in pigs (Chen et al., 2011; Pocrnic et al., 2019;
Song et al., 2019). The fundamental idea of this method is to use all
available data, connecting genotyped and non-genotyped animals
through a joint relationship matrix (H) (Legarra et al., 2009;
Christensen and Lund, 2010). For this, ssGBLUP relies on the
compatibility between pedigree (A) and genomic (G) relationship
matrices (Misztal et al., 2013). Two significant causes of
incompatibility between A and G are missing pedigrees and
heterogeneous base populations (Vitezica et al., 2011; Misztal
et al., 2013). In theory, allele frequencies to construct G would
correspond to the ones from the base population in the pedigree
(VanRaden, 2008); however, base animals are seldom genotyped,
making base allele frequencies unknown (Legarra et al., 2015). The
incompatibility issue becomes critical in multi-line populations
because of the heterogeneous base population across lines.
Macedo et al. (2020) reported that better genomic predictions
could be obtained for such scenarios if the differences in base
populations are correctly modeled. Unknown parent groups
(UPG) could mitigate this issue by modeling the differences in
the genetic base across classes of missing parents and accounting for
the differences among breeds or lines; however, UPG assume that
the base populations are unrelated (Legarra et al., 2007). Legarra
et al. (2015) proposed using metafounders (MF), which are pseudo-
animals that act as proxies for the base individuals and can be
related. A few studies investigated using ssGBLUP with MF in pigs,
but only for crossbred (Xiang et al., 2017; van Grevenhof et al., 2019)
and single-line (Fu et al., 2021) evaluations.

Another factor affecting the performance of genomic predictions in
MLE is the inconsistent linkage disequilibrium (LD) structure between
single-nucleotide polymorphisms (SNP) and quantitative trait loci
(QTL) across lines. Pig populations have a smaller effective size (Ne)
than dairy and beef cattle, resulting in smaller numbers of independent
chromosome segments (Me) (Pocrnic et al., 2016b). Therefore, if the
lines are distantly related, they are not likely to sharemany chromosome
segments. This could lead to no benefits from combining multiple lines

in genomic predictions. Song et al. (2017) evaluated genomic
predictions for growth and reproductive traits in pigs using a
combined dataset with genotypes for 80k SNP, but no benefits were
observed over the single-line genomic evaluation (SLE). In another
study, the same authors (Song et al., 2019) showed that pruned whole-
genome sequence (WGS) data outperformed the 80k SNP chip for
genomic predictions in combined populations; however, no benefit was
observed through the direct use of WGS data. This could be due to the
redundancy of many SNP across the whole genome with strong LD
extent to each other in certain genomic blocks. Therefore, the
preselection of significant SNP or removal of redundant SNP could
be a possible strategy to improve the accuracy of genomic predictions
when WGS data are used. In the case of MLE, a joint preselection of
SNP from WGS can help identify variants segregating across lines,
which may not be possible with commercial SNP chips because of the
limited number of SNP (~40k to 80k).

In the current study, we aimed to 1) investigate strategies to
combine different lines in a multi-line evaluation through the use of
unknown parent groups or metafounders and 2) evaluate the impact
of using jointly preselected SNP fromWGS in multi-line evaluations
under ssGBLUP without and with weights from BayesR (Erbe et al.,
2012).

2 Materials and methods

2.1 Data

All datasets were provided by Pig Improvement Company (PIC;
Hendersonville, TN). We investigated the average daily feed intake
(ADFI), average daily gain (ADG), backfat thickness (BF), ADG
recorded in crossbred animals (ADGX), and BF recorded in
crossbred animals (BFX) in three terminal pig lines named TL1,
TL2, and TL3. These three terminal lines were chosen from the seven
lines analyzed in a previous study by Jang et al. (2022a) and Ros-
Freixedes et al. (2022). These three lines were chosen because of their
large numerical size, completeness of pedigree, and availability of
phenotypic data for terminal traits. A two-trait model was
considered for the ADFI and ADG (ADFI model), whereas a
four-trait model was used for ADG, BF, ADGX, and BFX
(GROWTH model). Since ADG and BF were measured in both
purebred and crossbred animals (ADGX and BFX), we grouped
them together in the four-trait model. Two scenarios were
considered in this study: SLE and MLE. The same data were
considered for SLE in each line as described in Jang et al.
(2022a). For the MLE scenario, all the data from every single line
were combined. The total number of records and animals in the
pedigree for each line and MLE are given in Table 1. General
statistics of the analyzed five traits are given in Table 2.
Individuals in each line were genotyped with either GGP-Porcine
LD or HD BeadChip (GeneSeek, Lincoln, NE) and jointly imputed
for MLE. We filtered out the monomorphic SNP and SNP with a call
rate lower than 0.90, minor allele frequency lower than 0.01, and the
difference between observed and expected genotype frequencies
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greater than 0.15. Genotyped pigs with more than 10% missing
genotypes were removed as well. For MLE, all genotyped individuals
in the three terminal lines were combined. Identical quality control
was applied to the imputed MLE chip data (Chip). The total number
of genotyped animals in all lines and SNP after quality control is
given in Table 3.

2.2 Whole-genome sequencing and
imputation

The WGS data used in this study were generated by Ros-
Freixedes et al. (2020), Ros-Freixedes et al. (2022). In brief, a
low-coverage sequencing strategy was followed by joint calling,

phasing, and imputing the whole-genome genotypes using the
“hybrid peeling” method implemented in AlphaPeel (Whalen
et al., 2018). The “hybrid peeling” method used all marker array
and WGS data that were available across the pedigrees. Imputation
was carried out separately in each line. Individuals with low
predicted imputation accuracy were excluded, as described by
Ros-Freixedes et al. (2020). A total of 60,474 (TL1), 41,573
(TL2), and 104,661 (TL3) WGS individuals remained in each line
after quality control. The number of WGS and imputed sequenced
individuals for each line is given in Table 3. These individuals were
predicted to have an average dosage correlation of 0.97 (median:
0.98), as described in Ros-Freixedes et al. (2022). SNP with a minor
allele frequency lower than 0.023 were removed since their estimated
dosage correlations were lower than 0.90 (Ros-Freixedes et al., 2020).

TABLE 1 Number of records and animals in the pedigree for single- and multi-line datasets.

Lines ADFI ADG BF ADGX BFX Number of animals in pedigree

TL1 35k 0.36M 0.34M 150k 149k 1.13M

TL2 40k 0.30M 0.30M 158k 156k 0.84M

TL3 64k 0.94M 0.86M 299k 247k 3.14M

MLE 140k 1.60M 1.50M 578k 525k 5.28M (5.17M)

aThe number of animals in the pedigree for the ADFI model is shown within brackets.
bADFI: average daily feed intake; ADG: average daily gain; BF: backfat thickness; ADGX: ADG recorded in crossbred; BFX: BF recorded in crossbred.
cTL1: terminal line 1; TL2: terminal line 2; TL3: terminal line 3; MLE: multi-line evaluation.

TABLE 2 General statistics for the five traits.

TL1 TL2 TL3 MLE

Min Max Mean SD Min Max Mean SD Min Max Mean SD Min Max Mean SD

ADFI (g/d) 1.10 3.50 2.17 0.30 1.10 3.50 2.03 0.29 1.10 3.49 2.15 0.35 1.10 3.50 2.12 0.33

ADG (g/d) 417 1,123.90 686.84 87.75 423.20 1,092.1 694.94 82.47 450 1,149.4 697 97.46 417 1,149.4 694.32 92.76

BF (mm) 4.80 35 9.98 2.79 5 36.70 9.68 2.75 5 39.70 9.39 2.78 4.80 39.70 9.58 2.78

ADGX (g/d) 302 814 535.20 59.32 300 839 520.19 59.94 300 885 534.12 68.15 300 885 530.68 64.47

BFX (mm) 4.50 49.50 16.39 4.28 4.50 48.00 15.28 3.98 4.50 78.70 16.06 4.90 4.50 78.70 16.01 4.55

aADFI: average daily feed intake; ADG: average daily gain; BF: backfat thickness; ADGX: ADG recorded in crossbred; BFX: BF recorded in crossbred.
bTL1: terminal line 1; TL2: terminal line 2; TL3: terminal line 3; MLE: multi-line evaluation.
cMin: minimum value in each trait; Max; maximum value in each trait; Mean: mean value in each trait; SD: standard deviation in each trait.

TABLE 3 Number of genotyped individuals, SNP, and sequenced animals in single- and multi-line datasets.

Lines Number of genotyped
individuals

Number
of SNP

Number of sequenced
individuals

Number of imputed sequenced
individuals

TL1 60,450 37,909 731 60,474

TL2 41,561 42,897 760 41,573

TL3 104,622 44,022 1,865 104,661

MLE 206,634 41,303 3,356 206,708

aAll genotyped individuals were imputed to sequencing using the sequence individuals as the reference.
bTL1: terminal line 1; TL2: terminal line 2; TL3: terminal line 3; MLE: multi-line evaluation.
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To account for the information from the relatives in genotype calling
and reduce the uncertainty from low coverage, genotypes were called
after imputation even for the pigs that were directly sequenced.

2.3 Training and test sets

Before the SNP preselection, all animals with (imputed) WGS
data were split into two non-overlapping datasets: training and test
by line. Test sets were generated by extracting genotyped individuals
in the litters from the last generation of the pedigree to resemble the
selection candidate evaluation performed by pig breeding
companies. Only litters with a minimum of five full-sibs were
considered as a way to balance the representation of different
families in the test sets, and all remaining individuals were
considered training sets. The training sets were additionally
defined as those individuals with a pedigree relationship
coefficient with any individual in the test set that was lower than
0.5 to reduce the relationship between the training and test sets.
Therefore, we can avoid the initially high accuracy generated by the
close relationship between the two sets. For multi-line scenarios, the
training set was formed by merging the training sets that had been
defined for each line. Training datasets were included in the
discovery sets for multi-line GWAS in this study. Although using
the same sets for training and GWAS can reduce accuracy and
increase the bias of genomic predictions (Veerkamp et al., 2016;
MacLeod et al., 2017), Ros-Freixedes et al. (2022) observed no
systematic changes in the accuracy after splitting the training set
into two exclusive subsets, one for the GWAS and one for genomic
prediction, using same datasets as in the current study.

2.4 Preselected SNP panels

Five different preselected SNP panels were created from WGS
for genomic predictions. Two of them were as described in Jang et al.
(2022a); Ros-Freixedes et al. (2022): 1) Top40k and 2) ChipPlusSign.
Three additional preselected panels were designed for the current
study: 3) TopSign, 4) LDTags, and 5) AllComb. Preselection of
variant sets (1) to (3) was performed following amulti-line GWAS as
described in Ros-Freixedes et al. (2022), which encompassed the
training sets of TL1, TL2, TL3, another terminal line, and three
maternal lines. Top40k included the variants with the lowest p-value
(not necessarily below the significance threshold) in each
consecutive non-overlapping 55-kb window along the genome,
based on multi-line GWAS analyses, so that a similar number of
variants than in Chip was retained. TopSign only included
significant variants (p ≤ 10−6), where the significance threshold is
based on a significance level of 0.05, accounting for multiple testing
through the Bonferroni correction, assuming that markers from
Chip were independent, from the multi-line GWAS in a way that
when a 55-kb window contained more than one significant variant,
only that with the lowest p-value was selected. ChipPlusSign
combined TopSign and Chip because sometimes the number of
significant variants was too small, and empirical results have shown
that augmenting marker arrays with WGS variants can be a
successful strategy to improve prediction accuracy (VanRaden
et al., 2017; Lopez et al., 2021). The LDTags were tag variants

retained after pruning, based on LD with an r2 > 0.1. This very
stringent threshold was adopted to remove many SNP. AllComb
contained variants from LDTags, Top40k, TopSign, and Chip. The
preselected variant sets (1) to (3) were trait-specific, and the
preselected variants for the traits included in each of the ADFI
and GROWTHmodels were combined for our analyses. Thus, in the
ADFI model, preselected variants for ADFI and ADG were
combined and used for the genomic predictions. Likewise,
preselected variants from ADG and BF were merged and used
for genomic predictions in the GROWTH model; variants were
not selected for ADGX and BFX because crossbred animals were not
sequenced. For a fair comparison to the commercial SNP chip data
(i.e., Chip), 206,634 animals were extracted from each preselected
variant set. Afterward, quality control was performed with the same
aforementioned criteria, and those individuals with parent–progeny
conflicts were also removed. Table 4 depicts the number of
genotyped animals and SNP for all preselected SNP panels after
quality control.

2.5 Single-line genomic prediction

To compare the performance of genomic prediction using
single-line and multi-line evaluation, Chip data were tested for
SLE. Multi-trait linear mixed models were used to perform
genomic predictions with two and four traits for the ADFI and
GROWTHmodels, respectively. Only a four-trait GROWTHmodel
(ADG, BF, ADGX, and BFX) of TL1, TL2, and TL3 is described here:

y � Xb +Wc + Zu + e,

where y is the vector of phenotypes; b is a vector of fixed effects; c is a
vector of random litter effects; u is a vector of random additive
genetic effects; and e is a vector of residual effects. Matrix X is an
incidence matrix relating phenotypes in vector y to the fixed effects
(contemporary group as a fixed effect for all traits, off-test weight
(weight measured at about 140 days of age), and carcass weight as a
covariate only for BF and BFX, respectively) in vector b;matrixW is
an incidence matrix for random litter effects in vector c; and matrix
Z is an incidence matrix for random additive genetic effects in
vector u.

2.6 Multi-line genomic prediction with
unknown parent groups and metafounders

Multi-trait linear mixed models were used to carry out genomic
predictions with two and four traits for the ADFI and GROWTH
models, respectively. Two UPG methods or MF were used to model
the heterogeneous base across the lines. Herein, only the four-trait
GROWTH model (ADG, BF, ADGX, and BFX) is described:

y � Xb +Wc + Zu + ZQg + e,

where Q is an incidence matrix relating animals in vector u to the
UPG in vector g. All other matrices and vectors were already
described.

The genomic predictions were performed with ssGBLUP
without and with weights from BayesR (WssGBLUP) using the
BLUPF90 family of programs (Misztal et al., 2014b). In ssGBLUP
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and WssGBLUP, the inverse of the realized relationship matrix
(H−1), which combines pedigree and genomic relationships, is
represented as follows (Aguilar et al., 2010):

H−1 � A−1 + 0 0
0 G−1 − A−1

22
[ ],

where G−1 is the inverse of the genomic relationship matrix and A−1

and A−1
22 are the inverses of the pedigree relationship matrix for all

and genotyped individuals, respectively. G was created with method
1 of VanRaden (2008) as

G � M − 2P( )D M − 2P( )′
2∑m

i�1pi 1 − pi( ) ,

where M contains genotypes coded as 0, 1, and 2; D is a matrix of
weights (D = I in ssGBLUP and D ≠ I in WssGBLUP); and P is a
matrix in which columns contain observed frequencies of the second
allele at a locus pi across the entire genotyped population. To avoid
singularity issues, G was blended with 5% of A22. The GEBV for
UPG models was calculated as follows:

GEBV � Qg + u.

We investigated two ways to fit UPG in ssGBLUP. The first
considered UPG in A, A22, and G (Misztal et al., 2013) and was
called UPG1. H−1 with UPG1 is described as follows:

HUPG1
* � A* +

0 0 0
0 G−1 − A−1

22 − G−1 − A−1
22( )Q

0 −Q′ G−1 − A−1
22( ) Q′ G−1 − A−1

22( )Q
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,

where A* is the inverse of A with UPG constructed with the QP
transformation (Quaas, 1988). The second model related UPG only
to A and A22, was called UPG2, and had H−1 represented by

HUPG2
* � A* +

0 0 0
0 G−1 − A−1

22 −A−1
22Q

0 −Q′A−1
22 Q′A−1

22Q

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦.
Alternatively to the UPG models, we used MF to fit the

heterogeneous genetic base across different lines (Legarra et al.,
2015). Based on the MF theory, the pedigree relationship matrices
are modified to be compatible with G centered with allele

frequencies of 0.5 (G0.5) (Christensen, 2012; Legarra et al., 2015).
H−1 with MF is described as follows:

HΓ−1 � AΓ−1 +
0 0 0
0 G−1

05 − AΓ−1
22 0

0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
where AΓ−1 and AΓ−1

22 are the altered A−1 and A−1
22 with the parameter

Γ, which is a matrix of relationships within and across MF. The Γ
matrix was computed using SNP markers under a generalized least
square approach (Garcia-Baccino et al., 2017) through the
gammaf90 program of the BLUPF90 software suite (Misztal
et al., 2014b).

For UPG andMFmodels, five groups of base animals were defined
based on the lines of origin. The first three were assigned to TL1, TL2,
and TL3; one was assigned to another terminal line (TL4), and the other
represented a crossbred line (CL). TL4 is another important terminal
line, and it contributed to generating the commercial crossbred data that
were used in this study, so we defined it as one group of base animals.
Due to an issue of estimating Γ with all animals far back in the pedigree,
animals born before 2000 were removed. Therefore, the total number of
pedigreed animals was 5.16M for the GROWTHmodel and 5.04M for
the ADFI model after data truncation. Because of the unequal number
of phenotypes between the two models, the total number of pedigreed
animals differed. The description of groups of UPG and MF is given in
Table 5.

To efficiently computeG−1 without the direct inversion ofG, the
algorithm for proven and young (APY) (Misztal et al., 2014a) was
applied to SLE and MLE. The number of core animals in each line
corresponded to the number of the largest eigenvalues, explaining
98% of the total variation in G constructed with Chip data (Pocrnic
et al., 2016a). Therefore, the number of core animals was 3,996,
5,739, and 6,848 for TL1, TL2, and TL3, respectively. The number of
core animals for MLE was selected as mentioned previously but after
combining all three terminal lines. Therefore, the number of core
animals in MLE was 8,574. To fairly select the core animals from
each line, we sampled 30% (2,572), 20% (1,715), and 50% (4,287)
from TL1, TL2, and TL3, respectively. Those numbers were
equivalent to the proportion of genotyped animals in each line
for the MLE scenario.

TABLE 4 Number of animals and SNP in all preselected panels used for multi-line evaluations.

Number of genotyped animals Number of SNP

SNP panels ADFI GROWTH ADFI GROWTH

Chip 206,634 206,634 41,303 41,303

ChipPlusSign 206,452 206,630 62,906 59,756

LDTags 202,891 202,891 105,720 105,720

AllComb 205,729 205,680 215,361 210,619

Top40k 206,232 206,238 51,297 49,738

TopSign 206,228 206,228 21,772 18,593

aADFI: two-trait ADFI model (ADFI and ADG).
bGROWTH: Four-trait GROWTH model (ADG, BF, ADGX, and BFX).
cChip: imputed chip data; ChipPlusSign: preselected SNP panels combining TopSign with Chip; LDTags: preselected SNP panels after LD pruning; AllComb: preselected SNP panels combining

Chip, LDTags, Top40k, and TopSign; Top40k: preselected SNP panels consisting the variants with the lowest p-value in each 40k window; TopSign: preselected SNP panels consisting of only

significant variants.
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In WssGBLUP, BayesR (Erbe et al., 2012) was used to estimate
individual SNP variances, which were considered weights. Each
iteration stored individual SNP variances, and posterior SNP
variance was calculated as the average variance across all the
iterations. Afterward, the weights were re-scaled so that the trace of
D was equal to the number of SNP. More details about using BayesR
weights in WssGBLUP are described in Gualdrón-Duarte et al. (2020).
To ensure the quality of results from ssGBLUP, traditional BLUP
(BLUP) was also performed for both SLE and MLE.

2.7 Validation

The LR validationmethod (Legarra and Reverter, 2018) was used to
evaluate model performance. A total of 5,970 (TL1), 3,750 (TL2), and
11,308 (TL3) youngest genotyped animals in the test sets had their
phenotypes removed from the evaluation. In theMLE scenario, the total
number of records in the ADFI model was 1,476,644 (TL1), 1,478,431
(TL2), and 1,472,021 (TL3). For the GROWTH model, the number of
records was 2,187,538, 2,189,326, and 2,182,916 for TL1, TL2, and TL3,
respectively. These will be referred to as the reduced data and will be
represented by the subscript r. On the other hand, the whole data, with
no phenotype truncation, will be represented by the subscript w. Under
the LR method, the accuracy of GEBV was calculated as
âcc �

�������
cov(ûw,ûr)
(1−�F)σ̂2u

√
, where û is the vector of GEBV; �F is the average

inbreeding coefficient for validation animals; σ̂2u was additive genetic
variance in each model. Bias was calculated as the difference between
the mean of GEBV from the reduced and whole datasets, which is
μw,r � ûr − ûw. Bias was then standardized by the respective additive
genetic standard deviation to compare all traits on the same scale, with
an expected estimator of 0 if unbiased. Dispersion of GEBV was
assessed as the deviation of the regression coefficient (b1) from 1,
where b1 was obtained from the regression of ûw on ûr: ûw � b0 + b1ûr.
Under the condition of neither over nor under dispersion, the
expectation of this estimator would be 1.

3 Results

3.1 Population structure and
metafounders (Γ)

Principal component analysis (PCA) was performed to
investigate the population structure of the three terminal lines

(Figure 1). Chip data were used for 33,714 genotyped animals
(TL1: 9,282, TL2: 7,900, and TL3: 16,532). These were selected
among 206,634 genotyped animals for efficient computation and
had at least one progeny. The PCA plot showed a clear separation
among the lines, with the first two principal components explaining
22.1% of the genetic variation. These results reinforce the need to
account for different genetic bases when having a multi-line
evaluation.

The relationships within and between MF (Γ) are given in
Table 5. The relationships within the MF (diagonal values of Γ)
were greater than 1 for TL1, TL2, and TL4, indicating that the base
populations for those lines are inbred (Legarra et al., 2015).
Contrarily, TL3 and CL had values lower than 1, indicating a
high frequency of heterozygosity compared to the population
mean. All the relationships between the MF (off-diagonal values
of Γ) showed positive values between 0 and 1, suggesting an overlap
between ancestral populations.

3.2 Accuracy of GEBV

Figure 2 shows the accuracy of predicting GEBV in SLE and
MLE with UPG1, UPG2, and MF for five traits using Chip data.
The difference in prediction accuracy between SLE and MLE was
up to 0.04 (Figure 2). The results for TL1 are shown in Figures 2A.
Only ADFI showed greater accuracy with MLE than with SLE
(0.56) for UPG1 (0.58), UPG2 (0.57), and MF (0.58). On the other
hand, SLE had similar or better performance than MLE for the
other four traits in the growth model. Among MLE scenarios,
UPG1 outperformed UPG2 and MF for many traits, but the
differences were minimal. The results for TL2 followed similar
patterns (Figures 2B), that is, all MLE scenarios outperformed
SLE for ADFI (0.63 vs. 0.61). Additionally, prediction accuracies
of MLE scenarios were very similar for TL2. In general,
TL3 reported greater prediction accuracies than TL1 and TL2;
however, using MLE was not favorable. Only MLE with
UPG1 outperformed SLE, which was for BFX (0.76 vs. 0.74).
A comparison of MLE scenarios showed that UPG1 performed
best for ADG, BF, ADGX, and BFX, with an accuracy gain of up
to 0.03 (ADG in TL3).

In the current study, five preselected genotype panels created
from WGS were compared to Chip for genomic prediction. As
UPG1 showed the best prediction accuracy with Chip among all
MLE scenarios, the only results with UPG1 are given in Table 6. The

TABLE 5 Number of animals related to each unknown parent group or metafounder and Γ value.

Γ

MF Males Females TL1 TL2 TL3 TL4 CL

TL1 3,649 2,713 1.03 0.45 0.5 0.67 0.46

TL2 2,083 1,949 0.45 1.26 0.44 0.39 0.42

TL3 7,148 6,135 0.5 0.44 0.62 0.43 0.38

TL4 30,141 29,707 0.67 0.39 0.43 1.06 0.42

CL 37,150 41,741 0.46 0.42 0.38 0.42 0.58

aTL1: terminal line 1; TL2: terminal line 2; TL3: terminal line 3; TL4: terminal line 4; CL: crossbred line.
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results with UPG2 andMF are given in Supplementary Tables S1, S2,
respectively. In the results of TL1, no benefits of using preselected
WGS genotype panels were observed, meaning that Chip performed
the best. Among WGS preselected panels, ChipPlusSign showed the
greatest prediction accuracy for all five traits. Top40k, TopSign, and
AllComb had very similar prediction accuracies. However, LDTags
displayed the lowest prediction accuracy among all genotype panels.
Similar patterns were observed for TL2. In TL3, ChipPlusSign
reported the greatest prediction accuracy only for ADFI (0.81).
Likewise, for TL1 and TL2, Top40k, TopSign, and AllComb showed
very similar results to each other, but lower accuracy was noticed
with AllComb. LDTags underperformed compared to the other
genotype panels. For comparisons, the results of the accuracy of EBV
with traditional BLUP for SLE and MLE are given in Supplementary
Table S3.

3.3 Bias of GEBV

Figure 3 shows the bias of GEBV when using SLE and MLE with
UPG1, UPG2, and MF for five traits in each line using Chip data.
Overall, almost no bias was observed in all lines and models, except
for ADFI with SLE in TL2 (Figures 3B). For TL1, only a slight bias
(−0.08–0.02) was displayed for all the traits and models. The
maximum bias was for ADG with the MLE-UPG1 model
(−0.08). Similarly, TL2 and TL3 also showed a negligible bias for
almost all the traits and models, but a large bias of 0.40 for ADFI
with the SLE in TL2 was observed.

Bias was also evaluated when the preselected genotype panels
from WGS were used for genomic predictions. The results with
UPG1 are given in Table 7. Other results with UPG2 and MF are
given in Supplementary Tables S4, S5, respectively. For TL1, Top40k
indicated less bias for ADFI than Chip. In addition, AllComb
showed less bias than Chip for ADG, ADGX, and BFX. Except
for these, Chip reported the smallest bias for other traits. Among the
preselected panels, Top40k displayed the greatest bias in ADG, BF,
ADGX, and BFX. Especially, for ADG and ADGX, the bias was large
(−0.58 in ADG and −0.46 in ADGX) with Top40k. ADFI showed
almost no bias. Only one case of smaller bias than Chip was
identified in TL2 for ADGX with AllComb (0.00). The Chip data
showed the smallest bias for the other four traits. AllComb reported
the least bias among the WGS preselected panels, whereas other
panels indicated inconsistent results varying according to the traits.
Interestingly, for TL3, both ChipPlusSign and AllComb reported
less bias than Chip for ADG, BF, ADGX, and BFX. In addition,
Top40k and TopSign also showed a smaller bias than Chip for
ADGX. Contrary to the other WGS preselected genotype panels,
bias with LDTags was always greater than with Chip. The results of
bias for EBV with traditional BLUP using SLE and MLE are given in
Supplementary Table S3.

3.4 Dispersion (inflation/deflation) of GEBV

The regression coefficients (b1) of GEBV whole on GEBV
reduced when using SLE and MLE with UPG1, UPG2, and MF

FIGURE 1
Principal component analysis of the three terminal lines.
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FIGURE 2
Prediction accuracy of single- and multi-line evaluations with unknown parent groups and metafounders using Chip data for TL1 (A), TL2 (B), and
TL3 (C).
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for five traits of each line using Chip data are given in Figure 4.
Values of b1 greater than 1 indicate deflation of reduced GEBV,
and those smaller than 1 indicate inflation. In general, negligible
deflation (1.01) and slight inflation (0.92) of GEBV were
observed (Figure 4). The results of TL1 indicate relatively
greater inflation with SLE for ADFI (0.95) and ADG (0.92)
than of other MLE models with UPG and MF, although the
differences are minimal. For the other three traits (ADGX, BF,
and BFX), all four models reported very similar b1 values
(0.97–1.00). A similar pattern was identified for ADFI in
TL2, which showed the greatest increase of GEBV with SLE
(0.93). For the other four traits, no considerable differences
were found between the models (0.96–1.01). TL3 reported the
most consistent results in each trait. For ADFI, all four models
showed b1 values equal to 0.96.

To compare the same scenarios with preselected genotype
panels from WGS as was performed for prediction accuracy and
bias, only the results with UPG1 are given in Table 8. Other
results with UPG2 and MF are given in Supplementary Tables S6,
S7, respectively. The dispersion of GEBV in TL1 with Top40k
(0.94–1.00), TopSign (0.95–1.01), and ChipPlusSign (0.94–0.99)
was very close to the result of Chip (0.94–1.00) for all five traits.
However, LDTags and AllComb showed greater increase of
GEBV than other genotype panels. Among these two, LDTags
indicated the greatest increase of GEBV across all the traits
(0.77–0.97). Only Top40k and TopSign reported better b1

values (close to 1) than Chip for some traits (Top40k–ADFI
and ADGX; TopSign–ADFI and ADG). Likewise, Top40k
(0.96–1.00), TopSign (0.99–1.01), and ChipPlusSign
(0.95–1.00) displayed similar results to Chip (0.97–1.00) in
TL2, but a large increase of GEBV with LDTags (0.78–0.90)
and AllComb (0.88–0.96). Similar patterns were observed in TL3.
Remarkably, TopSign showed less increase of GEBV than Chip
for all five traits, although the differences are small (0.02). The
results of dispersion for EBV with traditional BLUP using SLE
and MLE are given in Supplementary Table S3.

3.5 Genomic predictions using WssGBLUP

Top40k and ChipPlusSign were used for WssGBLUP with
BayesR weighting because these two panels showed the best
performance among the preselected genotype panels.
Additionally, BayesR weights were considered in ssGBLUP to
make the results of this study more comparable to those of Ros-
Freixedes et al. (2022), who used the same data under BayesR.
The results of prediction accuracy using weights for all five traits
are given in Table 9. No benefits of using WssGBLUP over
ssGBLUP were observed in Top40k and ChipPlusSign. In fact,
the maximum accuracy gain of WssGBLUP compared to
ssGBLUP was 0.01; however, a loss in accuracy of up to
0.04 was observed in several traits and lines.

TABLE 6 Prediction accuracy with preselected genotype panels when assigning unknown parent group 1 in the pedigree and genomic relationship matrices.

Genotype panels

Lines Traits Chip Top40k TopSign ChipPlusSign LDTags AllComb

TL1 ADFI 0.58 0.55 0.54 0.57 0.47 0.54

ADG 0.62 0.58 0.58 0.61 0.48 0.57

BF 0.71 0.67 0.67 0.70 0.60 0.68

ADGX 0.53 0.53 0.53 0.53 0.45 0.50

BFX 0.83 0.74 0.75 0.81 0.66 0.75

TL2 ADFI 0.63 0.55 0.55 0.57 0.44 0.52

ADG 0.69 0.63 0.64 0.67 0.53 0.61

BF 0.64 0.60 0.60 0.63 0.51 0.60

ADGX 0.53 0.48 0.49 0.51 0.39 0.44

BFX 0.58 0.52 0.53 0.56 0.41 0.49

TL3 ADFI 0.79 0.79 0.79 0.81 0.72 0.78

ADG 0.81 0.77 0.79 0.81 0.69 0.78

BF 0.75 0.71 0.73 0.75 0.61 0.71

ADGX 0.62 0.56 0.58 0.60 0.46 0.53

BFX 0.76 0.71 0.73 0.74 0.57 0.68

aTL1: terminal line 1; TL2: terminal line 2; TL3: terminal line 3.
bADFI: average daily feed intake; ADG: average daily gain; BF: backfat thickness; ADGX: ADG recorded in crossbred; BFX: BF recorded in crossbred.
cChip: imputed chip data; Top40k: preselected SNP panel consisted of the variants with the lowest p-value in each 40k window; TopSign: preselected SNP panel consisting of only significant

variants; ChipPlusSign: preselected SNP panel combining TopSign with Chip; LDTags: preselected SNP panel after LD pruning; AllComb: preselected SNP panel combining Chip, LDTags,

Top40k, and TopSign.
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FIGURE 3
Bias of single- and multi-line evaluations with unknown parent groups and metafounders using Chip data for TL1 (A), TL2 (B), and TL3 (C).
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4 Discussion

In this study, we investigated the impact of using UPG and MF
when combining different pig populations in multi-line evaluations.
Additionally, we explored the potential benefits of using preselected
SNP from WGS in these joint evaluations when SNP received equal
or different weights in ssGBLUP. The novel aspect of this study is the
amount of sequence data used for multi-line genomic predictions,
that is, over 200k pigs. This study provided an insight into how
accounting for different genetic bases in three large pig populations
could affect the performance of joint genomic evaluations. It also
proved that forecasting regarding the usefulness of sequence data for
cross-breed predictions does not hold (Meuwissen et al., 2016), at
least with the current methods. Overall, three major topics are
addressed in this discussion: 1) the impact of fitting UPG or MF
inMLE, 2) the usefulness ofWGS data forMLE, and 3) the impact of
applying different weights to SNP selected from WGS in MLE. In a
nutshell, two UPG and one MFmodels were considered inMLE, and
the performances of genomic predictions (accuracy, bias, and
dispersion) were compared to those of SLE. Although the results
varied depending on the lines and the traits, the maximum changes
in prediction accuracy when moving from SLE to MLE were not that
large (0.04). In line with the smallest number of genotyped
individuals (TL2), all three MLE scenarios performed very
similarly. Most of the differences among the scenarios were in
the largest line (TL3). Regarding the use of WGS data, almost no

benefits were observed when preselected genotype panels were used
for genomic prediction compared to Chip. This was true even when
different weights were assigned to SNP.

4.1 Multi-line genomic evaluation with UPG
and MF

Combining populations with different genetic backgrounds in
genomic evaluations has been actively investigated in cattle (De
Roos et al., 2009; Hayes et al., 2009; Olson et al., 2012; Cesarani et al.,
2022), where the primary purpose is to increase the training size for
small populations to improve the accuracy of genomic predictions.
This is true if there are connections across populations and the
training and validation sets are related (Meuwissen et al., 2001; De
Roos et al., 2009; Hayes et al., 2009; Zhou et al., 2014). However,
combining different pig populations may be challenging even if the
lines belong to the same breeding company because the divergence
may have happened a long time ago and breeding objectives are
different across lines. For these reasons, only a few studies have
investigated combining multiple lines, populations, or breeds for
genomic predictions in pigs (Fangmann et al., 2015; Aliakbari et al.,
2020). The PCA result showed a clear separation among the three
lines (representing three different breeds) in our study. As TL2 is the
line with the least number of genotyped animals and shows a close
distance to TL3 (the largest number), we expected some

TABLE 7 Bias with preselected genotype panels when assigning unknown parent group 1 in the pedigree and genomic relationship matrices.

Genotype panels

Lines Traits Chip Top40k TopSign ChipPlusSign LDTags AllComb

TL1 ADFI −0.03 −0.02 −0.03 −0.04 −0.03 −0.03

ADG −0.08 −0.58 −0.24 −0.08 −0.15 −0.03

BF 0.02 0.31 0.13 0.03 0.15 0.05

ADGX −0.05 −0.46 −0.18 −0.05 −0.13 −0.02

BFX 0.02 0.34 0.14 0.03 0.16 0.00

TL2 ADFI 0.01 −0.04 −0.49 −0.02 −0.02 −0.03

ADG −0.01 0.17 0.09 0.02 0.04 −0.01

BF 0.00 0.10 0.06 −0.03 0.13 0.00

ADGX −0.01 −0.02 −0.04 −0.05 0.04 0.00

BFX 0.00 0.03 0.03 −0.03 0.09 0.01

TL3 ADFI 0.00 0.00 0.00 0.00 0.00 0.00

ADG −0.06 0.21 0.17 0.00 0.12 0.00

BF 0.03 0.07 0.06 0.00 0.10 0.01

ADGX −0.03 0.01 0.01 0.00 −0.03 0.00

BFX 0.02 0.02 0.03 0.01 0.05 0.01

aTL1: terminal line 1; TL2: terminal line 2; TL3: terminal line 3.
bADFI: average daily feed intake; ADG: average daily gain; BF: backfat thickness; ADGX: ADG recorded in crossbred; BFX: BF recorded in crossbred.
cChip: imputed chip data; Top40k: preselected SNP panel consisting of the variants with the lowest p-value in each 40k window; TopSign: preselected SNP panel consisting of only significant

variants; ChipPlusSign: preselected SNP panel combining TopSign with Chip; LDTags: preselected SNP panel after LD pruning; AllComb: preselected SNP panel combining Chip, LDTags,

Top40k, and TopSign.
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FIGURE 4
Dispersion (b1) of single- andmulti-line evaluations with unknown parent groups andmetafounders using Chip data for TL1 (A), TL2 (B), and TL3 (C).
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TABLE 8 Dispersion (b1) with preselected genotype panels when assigning unknown parent group 1 in the pedigree and genomic relationship matrices.

Genotype panels

Lines Traits Chip Top40k TopSign ChipPlusSign LDTags AllComb

TL1 ADFI 0.98 1.00 1.01 0.98 0.84 0.92

ADG 0.94 0.94 0.95 0.94 0.77 0.88

BF 0.99 0.99 0.99 0.99 0.91 0.96

ADGX 0.99 1.00 1.01 0.98 0.91 0.94

BFX 1.00 1.00 1.01 0.99 0.97 0.98

TL2 ADFI 0.97 0.97 1.00 0.95 0.78 0.88

ADG 1.00 0.96 0.99 0.97 0.80 0.89

BF 1.00 1.00 1.01 1.00 0.89 0.96

ADGX 1.00 0.96 0.99 0.99 0.86 0.92

BFX 1.00 1.00 1.01 1.00 0.90 0.96

TL3 ADFI 0.96 0.95 0.97 0.96 0.85 0.91

ADG 0.95 0.94 0.96 0.95 0.81 0.89

BF 0.98 0.97 0.99 0.98 0.85 0.93

ADGX 0.98 0.99 1.00 0.97 0.85 0.92

BFX 0.99 0.98 1.00 0.99 0.90 0.96

aTL1: terminal line 1; TL2: terminal line 2; TL3: terminal line 3.
bADFI: average daily feed intake; ADG: average daily gain; BF: backfat thickness; ADGX: ADG recorded in crossbred; BFX: BF recorded in crossbred.
cChip: imputed chip data; Top40k: preselected SNP panel consisting of the variants with the lowest p-value in each 40k window; TopSign: preselected SNP panel consisting of only significant

variants; ChipPlusSign: preselected SNP panel combining TopSign with Chip; LDTags: preselected SNP panel after LD pruning; AllComb: preselected SNP panel combining Chip, LDTags,

Top40k, and TopSign.

TABLE 9 Prediction accuracy of WssGBLUP using BayesR weighting.

Line Description ADFI ADG BF ADGX BFX

TL1 Top40k 0.55 0.58 0.67 0.53 0.74

Top40k weighted 0.54 0.57 0.67 0.53 0.74

ChipPlusSign 0.57 0.61 0.70 0.53 0.81

ChipPlusSign weighted 0.54 0.60 0.69 0.50 0.79

TL2 Top40k 0.55 0.63 0.60 0.48 0.52

Top40k weighted 0.54 0.62 0.60 0.49 0.52

ChipPlusSign 0.57 0.67 0.63 0.51 0.56

ChipPlusSign-weighted 0.53 0.65 0.61 0.47 0.54

TL3 Top40k 0.79 0.77 0.71 0.56 0.70

Top40k weighted 0.78 0.76 0.71 0.57 0.70

ChipPlusSign 0.81 0.81 0.75 0.60 0.74

ChipPlusSign weighted 0.77 0.78 0.72 0.56 0.71

aTL1: terminal line 1; TL2: terminal line 2; TL3: terminal line 3.
bADFI: average daily feed intake; ADG: average daily gain; BF: backfat thickness; ADGX: ADG recorded in crossbred; BFX: BF recorded in crossbred.
cTop40k: Top40k preselected genotype panel; Top40k weighted: Top40k using BayesR weighting.
dChipPlusSign: ChipPlusSign preselected genotype panel; ChipPlusSign weighted: ChipPlusSign using BayesR weighting.
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improvements for TL2 in a joint evaluation. However, only ADFI in
TL2 benefitted from MLE instead of SLE, and the increase in
accuracy was slight. Additionally, the performance of MF, UPG1,
and UPG2 was similar.

In the MF theory, a matrix of relationships within and across
metafounders (Γ) is used to make pedigree relationships compatible
with genomic relationships. We observed relationships within the
MF lower than 1 for TL3 and CL but greater than 1 for TL1, TL2, and
TL4. Values of Γ smaller than 1 indicate a base population with
broad genetic diversity with a higher frequency of heterozygotes
relative to the population average (Kluska et al., 2021). On the other
hand, a value greater than 1 indicates inbred and related base
populations with a lower frequency of heterozygotes relative to
the population average (Legarra et al., 2015). In addition, positive Γ
values betweenMF imply overlapping among individuals in the base
populations (Kluska et al., 2021). Our results showed only positive Γ
values between MF, meaning that there was an overlap between
ancestors in their base populations. Xiang et al. (2017) reported
similar results using pig data. They calculated Γ values between
two MF, which were defined as Landrace and Yorkshire, showing a
positive value (0.259). Therefore, we could speculate that although
the lines in our study diverged from different breeds, they share
ancestors in the base population. In addition, a Γ value smaller than
1 for MF-assigned CL is explained by the fact that this line is
crossbred, indicating that a large amount of genetic variability
existed in the base population compared to the purebred lines.
However, a study by Xiang et al. (2017) reported 0.756 and 0.730 Γ
values for Landrace and Yorkshire, respectively, although they were
pure breeds. The possible reasons for different Γ values in purebred
lines between the current study and the study conducted by Xiang
et al. (2017) could be the use of terminal breeds and maternal breeds
and different SNP data and lines from different companies.

Fangmann et al. (2015) investigated using multi-subpopulation
reference sets to improve the predictive ability of genomic
predictions in pigs; however, almost no benefit was reported,
even though all the subpopulations diverged from German Large
White pigs. Predictive abilities were reduced when distantly related
subpopulations were added to the training data. Although our
results agree with those of Fangmann et al. (2015), comparing
the two studies might be unfair because of the different data
sizes and genomic evaluation models. For example, Fangmann
et al. (2015) used only 2,053 animals with genotypes and
phenotypes under GBLUP. We used ssGBLUP with over 5 M
animals, of which 206,634 were genotyped, and 140 k−1.6 M
were phenotyped depending on the trait. Most recently, Cesarani
et al. [1] performed large-scale multibreed ssGBLUP in dairy cattle
using five different breeds with almost 4 M genotyped animals and
29.5 M pedigree records. They reported similar predictive abilities
for cows and reliabilities for bulls in single-breed and multibreed
evaluations, even though some breeds had less than 50 k genotyped
animals and some had more than 500 k. This was attributed to the
use of UPG (i.e., UPG2) to model genetic differences across breeds,
the inclusion of breed-specific fixed effects in the model, and a fair
representation of all the breeds in the APY core. In our study, line-
specific fixed effects were modeled to account for nongenetic
differences among lines, the APY core properly represented the
three lines, and UPG or MF were fit to account for the genetic
differences among lines.

A preliminary analysis was performed to compare the
performance of genomic predictions in MLE with and
without UPG. Most of the traits reported better accuracy,
less bias, and less dispersion with UPG1 and UPG2 than the
MLE without UPG (results not shown). The major difference
between UPG1 and UPG2 was that groups were assigned to A,
G, and A22 in UPG1, but only to A and A22 in UPG2.
Theoretically, UPG are not required in G because genomic
relationships are not affected by missing pedigrees. However,
adding UPG to G (UPG1) in multi-line evaluations could help
adjust the genetic base for each line (Tsuruta et al., 2019).
However, UPG1 and UPG2 assume that the base populations
are not related. Therefore, MF were also applied to MLE, which
considered that individuals in the base populations were related
and could be inbred (Legarra et al., 2015). Among the three
methods used for MLE, UPG1 had a slight advantage, although
the differences between the MLE and SLE models were minimal.
Our findings agreed with those obtained by Fangmann et al.
(2015), Song et al. (2017), and Aliakbari et al. (2020), which
showed that combining lines or breeds had almost no benefits in
the performance of genomic predictions compared to the
within-line predictions. However, several studies of cattle
found some benefits of using the multi-breed reference on
genomic prediction (Hayes et al., 2009; Lund et al., 2014).
More benefits are likely in populations with a small number
of genotyped animals, which was not the case in our study.
Although MLE was not advantageous for these pig populations
in terms of increased accuracy, having MLE facilitates
comparing animals across breeds because of a single base for
breeding values. In such a case, having similar accuracy, bias,
and dispersion as in SLE is somehow an advantage. It indicates
that the lines can be successfully combined to identify “super-
boars” to be used across lines if required.

4.2 Impact of preselected markers on MLE

In addition to the size of the reference population and the
relationships between the reference and test animals (Lourenco
et al., 2017; Jang et al., 2022b), another key factor affecting the
prediction accuracy is the existence of causal variants or informative
variants in LD with them (Wientjes et al., 2015; Veerkamp et al.,
2016; Fragomeni et al., 2017). Using multi-line discovery sets could
help with the identification of causal variants (or informative
variants in LD with them) in MLE settings because the LD
between variants may not be consistent across lines, especially for
the distantly related ones. Moreover, causative variants for all the
lines may not be present in the commercial SNP chips. One plausible
approach to help improve genomic predictions in MLE could be
using WGS, which possibly harbors all the causal variants. This
could increase the power of identifying LD structures and causal
variants across lines. However, several studies showed no benefits of
usingWGS data on genomic prediction without variant preselection
(Van Binsbergen et al., 2015; Zhang et al., 2018) because of variant
redundancy in WGS. As WGS has highly dense SNP information
compared to the regular chip data, variants close to each other would
be strongly correlated, providing the same information about nearby
QTL. Several studies investigated the impact of variant preselection
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using WGS data on genomic predictions, showing slight-to-no
improvement compared to SNP chips (Brøndum et al., 2015;
VanRaden et al., 2017; Fragomeni et al., 2019; Jang et al., 2022b).
In addition, several studies in cattle scrutinized the impact of WGS
in multi-breed or across-breed genomic predictions (Van Den Berg
et al., 2017; Raymond et al., 2018; Meuwissen et al., 2021), but not
much is available in pigs (Song et al., 2019; Ros-Freixedes et al.,
2022).

Our study used multi-line GWAS or LD pruning to construct
preselected genotype panels for different pig terminal lines.
Consequently, five genotype sets were designed: ChipPlusSign,
Top40k, TopSign, LDTags, and AllComb. Those sets were used
for MLE to compare the performance of genomic predictions with
Chip. Among all the scenarios, only ChipPlusSign reported greater
accuracy than Chip, and this was for one trait (ADFI) only in TL3.
On average, ChipPlusSign showed the greatest prediction accuracy
among all preselected scenarios but was still smaller than Chip,
although the difference was slight. For the multi-line GWAS, we
used seven lines (TL1, TL2, TL3, TL4, and three maternal lines) as
described in Ros-Freixedes et al. (2022). However, we used only
TL1 to TL3 because of the amount of data, completeness of pedigree,
and different traits being measured in the terminal and maternal
lines. Compared to single-line GWAS, multi-line GWAS could help
identify significant SNP affecting the traits as it reduces the long
range of LD to short range, allowing more accurate identification of
significant SNP across the lines (Moghaddar et al., 2019). This can be
especially helpful for species with small Ne, such as pigs and
chickens with small Me and a strong LD extent, which makes the
identification of causative variants more difficult (Misztal et al.,
2021; Jang et al., 2022b). Several studies in dairy cattle reported up to
a 7% increase in reliability when using variants selected from multi-
breed GWAS for genomic predictions (Brøndum et al., 2015; van
den Berg et al., 2016); however, they use methods other than
ssGBLUP. Using ssGBLUP, Fragomeni et al. (2019) reported no
benefits of using preselected WGS variants but larger reliabilities
than in GBLUP. This is because ssGBLUP allows for more data than
in multi-step methods. With enough data, the effects of existing
variants are well-captured, and chromosome segments are correctly
estimated.

Adding significant SNP to the regular chip data or using only
them could potentially improve prediction accuracies only if those
are real causative variants with known effects, positions, and
variances explained (Fragomeni et al., 2017; Jang et al., 2022b).
To accurately identify the significant ones, there should be a
sufficient sample size, enough data connected to the genotyped
samples, and a robust statistical model, among others. Jang et al.
(2022b) extensively investigated the impact of data quantity on the
variant selection using simulated WGS and its effect on genomic
prediction with populations having different Ne. They showed that
identifying significant quantitative trait nucleotides (QTN) is more
difficult in populations with smaller than larger Ne because of the
strong LD extent across the genome in the former. Accordingly,
improvements in the accuracy of genomic predictions using those
selected QTN combined with a 50-k SNP chip in the population with
smaller Ne were very limited (~1.98%) compared to the population
that had larger Ne (~9.01%). Therefore, although multi-line GWAS
could benefit across lines, the benefits would be still limited when it
comes to genomic prediction.

4.3 Impact of WssGBLUP on MLE

In the current study, we used WssGBLUP with weights
computed from BayesR. We did not use the standard weights
proposed by Wang et al. (2012) because several studies reported
no improvement in the accuracy but increased inflation of
genomic predictions when using these weights (Wang et al.,
2012; Zhang et al., 2016; Gualdrón-Duarte et al., 2020; Jang
et al., 2022b). Additionally, we wanted to make our results
comparable to those of Ros-Freixedes et al. (2022), who
applied BayesR to the same dataset. In BayesR, SNP effects are
sampled from a mixture of four normal distributions with mean
zero and variances equivalent to the four classes. Thus, we
assumed that better prediction performance could be observed
with BayesR weighting if it assigned weights closer to the actual
SNP variances; however, no advantages were observed.

This is the first study in large-scale pig lines using MLE with
WGS selected variants using the WssGBLUP approach. In practice,
the benefits of using WssGBLUP seemed very limited, especially
with large datasets and many genotyped animals (Lourenco et al.,
2017). OurMLE scenario used around 206 k genotyped animals, and
the total number of animals traced back through the combined
pedigree data was more than 5 M. In ssGBLUP, any prior
information about SNP is overwhelmed by the data because this
method allows the use of all sources of information simultaneously,
making SNP weighting ineffective (Lourenco et al., 2020).

5 Conclusion

This study revealed limited benefits of using preselected whole-
genome sequence variants for multi-line genomic predictions, even
when hundreds of thousands of animals had imputed sequence data.
Correctly accounting for line differences with unknown parent
groups or metafounders in multi-line evaluations is essential to
obtain predictions similar to single-line evaluations; however, the
only observed benefit of a multi-line evaluation is to have
comparable predictions across lines. Further investigation into
the amount of data and novel methods to preselect whole-
genome causative variants in combined populations would be of
significant interest.
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