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Drug-induced liver injury (DILI) is an adverse hepatic drug reaction that can
potentially lead to life-threatening liver failure. Previously published work in the
scientific literature on DILI has provided valuable insights for the understanding of
hepatotoxicity as well as drug development. However, the manual search of
scientific literature in PubMed is laborious and time-consuming. Natural
language processing (NLP) techniques along with artificial intelligence/machine
learning approaches may allow for automatic processing in identifying DILI-
related literature, but useful methods are yet to be demonstrated. To address
this issue, we have developed an integrated NLP/machine learning classification
model to identify DILI-related literature using only paper titles and abstracts. For
prediction modeling, we used 14,203 publications provided by the Critical
Assessment of Massive Data Analysis (CAMDA) challenge, employing word
vectorization techniques in NLP in conjunction with machine learning
methods. Classification modeling was performed using 2/3 of the data for
training and the remainder for test in internal validation. The best performance
was achieved using a linear support vectormachine (SVM)model on the combined
vectors derived from term frequency-inverse document frequency (TF-IDF) and
Word2Vec, resulting in an accuracy of 95.0% and an F1-score of 95.0%. The final
SVM model constructed from all 14,203 publications was tested on independent
datasets, resulting in accuracies of 92.5%, 96.3%, and 98.3%, and F1-scores of
93.5%, 86.1%, and 75.6% for three test sets (T1-T3). Furthermore, the SVM model
was tested on four external validation sets (V1-V4), resulting in accuracies of
92.0%, 96.2%, 98.3%, and 93.1%, and F1-scores of 92.4%, 82.9%, 75.0%, and 93.3%.
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1 Introduction

Drug-induced liver injury (DILI) is a liver disease caused by an adverse drug reaction
that can potentially lead to fatal liver failure (David and Hamilton, 2010). Previously
published work in the scientific literature on DILI has provided valuable insights for the
understanding of hepatotoxicity on causative agents and clinical features as well as drug
development (Khoury et al., 2015; Weaver et al., 2020). However, the manual search for
relevant scientific literature in PubMed has been proven to be laborious and time-
consuming, potentially resulting in low recall (the faction of correctly retrieved
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documents among all relevant documents) (Richardet et al., 2015).
Natural language processing (NLP) techniques have been developed
to decipher and understand the meaning of human language by
extracting useful information from unstructured text data (Lopez-
Ubeda et al., 2022; Undru et al., 2022). In particular, NLP in
conjunction with artificial intelligence (AI)/machine learning
techniques can be efficiently used to convert words to a
representation of real numbers and therefore allow for model
building, in an integrated data analysis pipeline (Zhan et al.,
2022a; Rathee et al., 2022).

In NLP, two word vectorization techniques are widely employed
for feature extraction by mapping words to a corresponding vector
of real numbers: word embedding and Bag-of-Words (BoW) with
term frequency-inverse document frequency (TF-IDF) weighting
(Zhan et al., 2022a). In TF-IDF, each value in the vector indicates the
count of words appearing in a document or sentence. Word
embedding is a technique to represent words into a dense, low-
dimensional space, while preserving the inter-word semantics. The
three primary shallow neural network-based word embedding
methods include Word2Vec (Mikolov et al., 2013), GloVe
(Pennington et al., 2014), and fastText (Facebook, 2016). For text
classification, the resulting vectors can be utilized as features in
conventional machine learning methods.

Recently, Bidirectional Encoder Representations from
Transformers (BERT) was introduced, which is a transformer-
based language model designed employing a deep learning
architecture (Devlin et al., 2019; Ambalavanan and Devarakonda,
2020). BERT was pre-trained using the entire EnglishWikipedia and
book corpus datasets with a total of 3,300 million words (Yao et al.,
2019). BERTBASE has 12 stacked encoder layers with 110 million
parameters and 768 hidden units, whereas BERTLARGE has
24 stacked encoder layers with 340 million parameters and
1,024 hidden units (Anggrainingsih et al., 2022). A large number
of domain-specific BERT-based language models have been
developed, leveraging their own semantic information, that
include BioBERT (Lee et al., 2020; Zhu et al., 2020), RadBERT
(Yan et al., 2022), SciBERT (Beltagy et al., 2019), ClinicalBERT
(Huang et al., 2019), and BlueBERT (Peng et al., 2019).

In the present study, we demonstrate that the combined vectors
derived from TF-IDF and Word2Vec in conjunction with machine
learning methods can improve performance in predicting DILI-
related literature via internal and external validation.

2 Materials and methods

2.1 Data

The Critical Assessment of Massive Data Analysis (CAMDA)
2022 in collaboration with the Intelligent Systems for Molecular
Biology (ISMB) hosted the Literature AI for Drug Induced Liver
Injury (DILI) challenge (Zhan et al., 2022b). A curated dataset,
consisting of 277,016 DILI annotated papers, was downloaded from
the CAMDA website. All the papers were labeled as DILI-related
(referred to as “positive samples”) or irrelevant to DILI (referred to
as “negative samples”) by a panel of DILI experts. For the CAMDA
challenge, the labels for 7,177 DILI-related papers and 7,026 DILI-
unrelated papers were released while the labels for the remaining

papers (N = 262,813) were masked for model assessment and were
split into three test sets and four validation sets. In this study,
14,203 papers with positive or negative labels were used for model
building. For each paper, the title and abstract were provided and
concatenated to be used in modeling.

2.2 Word vectorization

To extract and quantify text features from the unstructured
literature, we employed two word vectorization techniques: word
embedding with Word2Vec implemented in the Gensim (v.4.3.1)
Python library (Rehurek and Sojka, 2011) and BoW with TF-IDF
weighting (Zhang et al., 2010). Before vectorization, text data were
preprocessed by lowercasing, removing punctuations, special
characters, white spaces, and standard stop-words followed by
lemmatization, employing the spaCy (v.2.3.8) Python library
(Honnibal and Montani, 2017). The Word2Vec model was trained
using the skip-grammethod with a window size of 5 words and a 200-
dimensional output vector for eachword. The resulting output vectors
for all the words in a given paper were averaged to create a single 200-
dimensional vector to be used in modeling.

2.3 Modeling

Several machine learning methods, including linear support
vector machine (SVM), logistic regression, and random forest
were then tested using the transformed numerical features
obtained from the Word2Vec and TF-IDF models on
7,177 DILI-related and 7,026 DILI-unrelated papers (Figure 1).
For SVM modeling, the slack variable (C) was set to 100. For
random forest modeling, the number of trees was set to 1,000,
the node size was set to 3, and mtry was set to the square root of the
number of predictors. In addition, the Transformer-based
BERTBASE language model and two BlueBERTBASE models pre-
trained on: (1) PubMed abstracts and (2) PubMed abstracts and
clinical notes (MIMIC-III) were tested for benchmark comparison
(Devlin et al., 2018). All BERT models were fine-tuned for five
epochs with a learning rate of 1e-5, employing the Transformers
(v.4.21.2) Python library.

For internal validation in the machine learning modeling, the
data of 14,203 samples were randomly stratified into the training
(66.7%) and test (33.3%) sets. For the BERTBASE modeling, the data
were stratified into the training (56.7%), validation (10%), and test
(33.3%) sets. This modeling process was iterated 30 times, and the
average accuracy, precision, recall, and F1-score assessed on the test
set were reported. For external validation, a final model was built
using all the 14,203 samples and was tested on seven independent
datasets (in total, N = 262,813): three test (T1-T3) and four
validation sets (V1-V4). V1, V2, and V3 datasets have an
increasing level of imbalance in terms of the number of DILI-
related and DILI-unrelated papers, and match with T1, T2, and
T3 datasets. In addition, the V4 dataset was used to assess the
generalizability of prediction models. Note that the test sets differ
from those used in the internal validation. All test and validation sets
used in the external validation are independent external data; the
difference between them is that there was no restriction in the
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number of submissions of predicted outcomes in the CAMDA
system when we assessed the trained model on the test sets.
Figure 2 illustrates the strategy for internal and external
validation. All experiments were conducted in a Google Colab
Pro+ with codes implemented in Python.

2.4 Model explainability

The LIME (v.0.2.0.1) Python library was used for explainable
analysis of predictions made by machine learning models,
identifying key words and their importance scores (Ribeiro et al.,

FIGURE 1
The proposed pipeline of data analysis using natural language processing in conjunction with machine learning methods on 7,177 DILI-related and
7,026 DILI-unrelated papers. The BERTBASE indicates three different BERTBASE models; a general BERTBASE model was pre-trained using the entire English
Wikipedia and book corpus datasets with a total of 3,300million words, and two BlueBERTBASE models were pre-trained on: (1) PubMed abstracts and (2)
PubMed abstracts and clinical notes (MIMIC-III). TF-IDF: term frequency-inverse document frequency; SVM: support vector machine; LR: logistic
regression; RF: random forest.

FIGURE 2
Internal and external validation strategy.
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2016). In addition, cosine similarity in Word2Vec was used to assess
the closeness between words.

3 Results

3.1 Data visualization

Figure 3 illustrates the top 10 most common words in DILI-
related (Figure 3A) and unrelated (Figure 3B) publications, with

“patient” being the most frequent word in both DILI-related and
unrelated publications. Note that “liver” and drug relevant words
including “mg,” “drug,” and “dose” were the frequently occurring
words in DILI-related literature, but were not included in the top
10 most common words in DILI-unrelated literature.

Figure 4 illustrates the t-distributed stochastic neighbor
embedding (t-SNE) visualization of the TF-IDF vectors obtained
using the combined title and abstract (Figure 4A) vs. only the title of
each publication (Figure 4B) (van der Maaten and Hinton, 2008). It
is not surprising that the abstract has much more information than

FIGURE 3
The top 10 most common words in (A) DILI-related and (B) unrelated literature.

FIGURE 4
The t-SNE visualization of the TF-IDF vectors obtained using (A) the title and abstract and (B) only the title of each publication.
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the title to distinguish DILI-related publications from the ones
unrelated to DILI. For comparison, principal component analysis
results are shown in Supplementary Figure S1.

3.2 Internal validation

Figure 5 shows the accuracy of machine learning models on test
data after 30 iterations, employing vectors derived from the

Word2Vec and TF-IDF models on the combined title and
abstract. A linear SVM model using vectors derived from the TF-
IDF model achieved the best accuracy of 94.5%. Interestingly, a
linear SVM using TF-IDF vectors derived from only the title of
publications obtained an accuracy of 88.8%, whereas a linear SVM
using TF-IDF vectors derived from only the abstract of publications
obtained an accuracy of 94.3%, implying that the information
available in the title of publications did not improve performance
in classifying DILI-related literature. For the benchmark test, three

FIGURE 5
The accuracy of machine learning methods (SVM: support vector machine, LR: logistic regression, and RF: random forest) on test data using vectors
derived from two vectorization techniques (W2V: Word2Vec and TF-IDF) in comparison with the BERT models. All tests were conducted on the
combined title and abstract.

TABLE 1 The accuracy, precision, recall, and F1-score of machine learning methods on test data using vectors derived from two vectorization techniques. The
values in parentheses are the standard deviation. SVM, support vector machine; LR, logistic regression; RF, random forest.

Vectorization Methods Accuracy (%) Precision (%) Recall (%) F1-score (%)

Word2Vec SVM 93.6 (1.0) 94.7 (1.9) 92.5 (3.4) 93.6 (1.2)

LR 94.3 (0.3) 94.6 (0.5) 94.1 (0.5) 94.4 (0.3)

RF 94.0 (0.3) 93.9 (0.5) 94.2 (0.5) 94.1 (0.3)

TF-IDF SVM 94.5 (0.4) 94.8 (0.4) 94.3 (0.5) 94.5 (0.4)

LR 94.0 (0.3) 94.9 (0.5) 93.1 (0.5) 94.0 (0.3)

RF 93.1 (0.3) 94.1 (0.5) 92.0 (0.5) 93.0 (0.3)

Word2Vec & TF-IDF SVM 95.0 (0.3) 95.3 (0.4) 94.7 (0.4) 95.0 (0.3)

LR 94.9 (0.3) 95.1 (0.5) 94.8 (0.4) 94.9 (0.3)

RF 94.1 (0.3) 93.8 (0.5) 94.6 (0.5) 94.2 (0.3)

BERT models BERT 91.7 (5.3) 93.9 (5.6) 92.5 (3.0) 92.3 (3.2)

BERT (PubMed) 93.8 (3.0) 92.3 (5.6) 96.3 (2.8) 94.1 (2.5)

BERT (PubMed + MIMIC) 93.9 (1.2) 93.9 (2.9) 94.3 (4.2) 94.0 (1.4)

Bold indicates the best accuracy.
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BERTBASE models were assessed: general BERT, BERT pre-trained
on PubMed, and BERT pre-trained on PubMed and MIMIC III. A
general BERT model had worse performance in all metrics as
compared to other machine learning models, whereas BlueBERT
(PubMed) and BlueBERT (PubMed+MIMIC) models achieved
much improved predictive performance in comparison with the
general BERT model.

In addition, machine learning models were tested on the
combined data of Word2Vec and TF-IDF vectors. A linear SVM
model achieved the best performance with an accuracy of 95.0%, a
precision of 95.3%, a recall of 94.7%, and an F1-score of 95.0%
(Table 1). Overall, this approach improved classification
performance in all machine learning models compared to the
models built on Word2Vec or TF-IDF vectors alone.

TABLE 2 The accuracy, precision, recall, and F1-score of a final model assessed on three test and four validation sets.

Dataset N Accuracy (%) Precision (%) Recall (%) F1-score (%)

Test 1 (T1) 4,763 92.5 93.5 93.5 93.5

Test 2 (T2) 21,724 96.3 83.3 89.1 86.1

Test 3 (T3) 82,753 98.3 73.4 78.0 75.6

Validation 1 (V1) 6,494 92.0 91.9 92.9 92.4

Validation 2 (V2) 32,814 96.2 77.8 88.8 82.9

Validation 3 (V3) 100,265 98.3 72.7 77.5 75.0

Validation 4 (V4) 14,000 93.1 90.3 96.5 93.3

FIGURE 6
Representative examples for explainable analysis using the LIME Python library. (A)DILI-related paper (PMID: 25754159) and (B)DILI-unrelated paper
(PMID: 7354778).

FIGURE 7
Cosine similarity for (A) “drug” and (B) “cancer” in the Word2Vec model.
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3.3 External validation

A final linear SVM model was tested on seven independent
datasets, resulting in accuracies of 92.5%, 96.3%, and 98.3%, and F1-
scores of 93.5%, 86.1%, and 75.6% for three test sets (T1-T3) as
shown in Table 2. The SVM model was further tested on four
validation sets (V1-V4), resulting in accuracies of 92.0%, 96.2%,
98.3%, and 93.1%, and F1-scores of 92.4%, 82.9%, 75.0%, and 93.3%.
Predictive performance on T1-T3 datasets was similar to that on V1-
V3 datasets. Note that F1-scores from T1 to T3 (similarly, from
V1 to V3) decreased likely due to an increasing level of imbalance in
the number of DILI-related and DILI-unrelated papers.

3.4 Model explainability

To explain the predictions made by machine learning models,
the LIME Python library was utilized. Figure 6 illustrates two
representative examples with a DILI-related paper and a DILI-
unrelated paper. The top three words and their importance
scores used for prediction are shown in each paper’s title. This
analysis is very useful for interpretability of the models, which
enables the identification of important words that contribute to
the prediction.

Figures 7A, B illustrate the top 10 closest words to “drug” and
“cancer” in the Word2Vec model based on the cosine similarity,
respectively. It is not surprising that drug names and cancer-related
words were listed. Note that “AERS” in Figure 7A indicates the FDA
Adverse Event Reporting System that contains adverse event
reports.

4 Discussion

To classify DILI-related literature, in this study, we proposed to
use the combined vectors derived from Word2Vec and TF-IDF
models that are trained using paper titles and abstracts. A linear
SVM model using the combined vectors achieved better predictive
performance compared to the models using vectors derived from
either Word2Vec or TF-IDF alone as well as the BERT-based
models. Interestingly, a linear SVM model exploiting only the
title of publications obtained an accuracy of 88.8%, suggesting
that the title of publications includes concise yet comprehensive
information about the content of publications.

For the benchmark test, three BERTBASE models were assessed:
general BERT, BlueBERT (PubMed), and BlueBERT (PubMed and
MIMIC III). The two BlueBERT models achieved similar predictive
performance with accuracies of 93.8% and 93.9% and F1-scores of
94.1% and 94.0%. Not surprisingly, the predictive performance was
much better than that of the general BERT with an accuracy of
91.7% and an F1-score of 92.3%. Overall, the BlueBERT models had
smaller standard deviation in performance metrices compared to the
general BERT, implying the stability of the BlueBERT models. This
indicates that it is important to develop domain-specific BERT
models for NLP analysis.

5 Conclusion

Machine learning methods using vectors derived from NLP text
vectorization techniques were developed to classify literature related
or unrelated to DILI. Machine learning models trained utilizing the
combined data of Word2Vec and TF-IDF vectors improved
classification performance as compared to the models trained
using either Word2Vec or TF-IDF vectors alone. The developed
analysis pipeline allows for easy adaptation to other NLP problems,
facilitating the analysis of free-text documents by employing the
integration of NLP and machine learning techniques.
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