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Background: Osteoporosis (OS) and fractures are common in patients with end-
stage renal disease (ESRD) and maintenance dialysis patients. However,
diagnosing osteoporosis in this population is challenging. The aim of this
research is to explore the common genetic profile and potential molecular
mechanisms of ESRD and OS.

Methods and results: Download microarray data for ESRD and OS from the Gene
Expression Omnibus (GEO) database. Weighted correlation network analysis
(WGCNA) was used to identify co-expression modules associated with ESRD
and OS. Random Forest (RF) and Lasso Regression were performed to identify
candidate genes, and consensus clustering for hierarchical analysis. In addition,
miRNAs shared in ESRD and OS were identified by differential analysis and their
target genes were predicted by Tragetscan. Finally, we constructed a common
miRNAs-mRNAs network with candidate genes and shared miRNAs. By WGCNA,
two important modules of ESRD and one important module of OS were identified,
and the functions of three major clusters were identified, including ribosome, RAS
pathway, and MAPK pathway. Eight gene signatures obtained by using RF and
Lasso machine learning methods with area under curve (AUC) values greater than
0.7 in ESRD and in OS confirmed their diagnostic performance. Consensus
clustering successfully stratified ESRD patients, and C1 patients with more
severe ESRD phenotype and OS phenotype were defined as “OS-prone group”.

Conclusion:Our work identifies biological processes and underlying mechanisms
shared by ESRD and OS, and identifies new candidate genes that can be used as
biomarkers or potential therapeutic targets, revealing molecular alterations in
susceptibility to OS in ESRD patients.
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Introduction

Chronic kidney disease (CKD) is commonly associated with
mineral and bone disorders, osteoporosis, and an increased risk of
fractures (Wu et al., 2022). Eighty-five percent of women with
osteoporosis have mild to moderate renal impairment, and
because of the strong correlation between osteoporosis and CKD
(Klawansky et al., 2003), it is important to treat osteoporotic patients
effectively and safely with renal insufficiency without any adverse
effects on intrinsic renal function (Broadwell et al., 2021).

Bone disease in ESRD is a mixture of decreased bone density
and impaired bone quality due to microtrauma as well as
microarchitectural and collagen disturbances. It is associated
not only with an increased risk of fracture, but also with poor
nutritional status with decreased muscle strength and low lean
body mass, and increased vascular calcification (Hobson et al.,
2019), yet many basic research questions remain unanswered.
Less bone mineralization is associated with an increased risk of
vascular heterotopic calcification and its clinical sequelae,
known as the “calcification paradox” (Persy and Haese, 2009).
Vascular calcification with vascular “ossification” may be the
result of impaired bone remodeling and osteogenesis driven by
osteogenic transcription factors, such as runt-related
transcription factor 2 (RUNX2) and Msh homeobox 2 (Bucay
et al., 1998; Shao et al., 2005; Sun et al., 2012). Similarly, in vitro
studies have shown that vascular smooth muscle cells (VSMC)
and perivascular cells can undergo osteogenic differentiation
and produce osteogenic transcription factors and proteins in
response to high concentrations of phosphate, calcium, glucose,
oxidized lipids, Inflammatory cytokines and various toxins
(Shanahan, 2013). Therefore, a comprehensive review of
potential targets based on the common pathogenesis between
ESRD and OS may benefit the development of future treatments.

With the rapid development of gene chip technology,
researchers can quickly measure the expression of thousands of
gene data in various diseases, which will help people gain a deeper
understanding of the pathogenesis of diseases from the genetic level.
Common transcriptional signatures may provide new insights into
the common pathogenesis of ESRD and OS. The purpose of this
study was to identify the central genes associated with the
pathogenesis of ESRD complicated with OS, and to try to
determine their diagnostic ability for OS in ESRD patients.

Methods and materials

Data collection and processing

End-stage renal disease as well as osteoporosis datasets were
obtained through the Gene Expression Omnibus (GEO) database.
Screening was performed by the following criteria: i) the gene
expression profiles must include cases and controls; ii) the tissues
used for sequencing were all derived from the same tissue; iii) the
number of samples per group should not be less than 20 to ensure
the accuracy of WGCNA. Finally, GSE97709, GSE37171 were
included in the study as ESRD dataset and GSE56814,
GSE56815 as OS dataset. Details of the dataset are provided in
Supplementary Table S1.

Weighted gene co-expression network
analysis

Weighted gene co-expression network analysis (WGCNA)
(Langfelder and Horvath, 2008) is an algorithm that can discover
co-expressed gene modules with high biological significance and
explore the relationship between gene networks and diseases. More
than 20,000 genes were sequenced in the GEO dataset, and most of
these genes had no expression differences between samples, so we
selected the top 25% of genes with large variance based on variance
forWGCNA analysis to obtain ESRD andOS-related modules. First,
all samples are clustered based on gene co-expression similarity and
outliers are removed. Second, the best soft threshold is selected using
the power function pickSoftThreshold. In addition, modules with a
cut height of 0.25 are merged with a minimum module size of
100 genes. The expression profile of each module was summarized
by module signature genes (ME) and correlations between ME and
clinical features were calculated.

Machine learning to screen candidate genes

We performed RF analysis and LASSO regression using the R
packages “random forest” and “glmnet”. Two machine learning
algorithms, RF (Newman et al., 2019) and LASSO (Liberzon et al.,
2015), were used to further filter candidate genes for ESRD and OS
diagnosis. LASSO is a regression method that has shown superiority
in evaluating high-dimensional data. We used the RF algorithm to
initially screen diagnostic genes with importance scores greater than
0. Among the obtained genes, the LASSO algorithm was used to
further reduce the dimensionality to obtain the final diagnostic
genes.

Patient sample collection and molecular
validation

To validate our identification of the diagnostic role of the 8hub
gene in ESRD and OS. We analyzed human serum samples collected
from patients with ESRD (n = 17) or OS (n = 21) and patients with
ESRD with OS (n = 15) from the Sixth People’s Hospital of
Shanghai. The protocol for human samples was approved by the
Clinical Ethics Committee of the Sixth People’s Hospital of Shanghai
Jiao Tong University. Serum samples were obtained from patients
with ESRD with OS and from patients with ESRD without OS. In
addition, serum CPNE7 andMFGE8 levels were measured using the
indicated ELISA kits (mlbio, Shanghai, China) according to the
manufacturer’s protocol.

Immuno-infiltration analysis

Wemeasured the relative abundance of each cellular infiltrate in
the tumor microenvironment (TME) using the single sample
genomic enrichment analysis (ssGSEA) technique (Barbie et al.,
2009). The genomes identifying the 23 immune cells infiltrating the
TME were collected from an earlier study (Zhang et al., 2020). The
“corrplot” package in the R language mapped the correlation heat
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map revealing the correlation between core genes and infiltrating
immune cells.

Common miRNAs-target gene network
construction

TargetScan predicts miRNA biological targets by searching for
the presence of conserved 8mer, 7mer and 6mer loci matching each
miRNA seed region (McGeary et al., 2019). The intersection of

shared miRNAs in ESRD and OS with miRNAs corresponding to
core genes was used to construct miRNA-mRNA regulatory
networks. cytoscape (Shannon et al., 2003) software was used to
visualize the networks.

Statistical analysis

All statistical tests were performed using R software version
4.1.2. Wilcoxon was used to analyze the differences between the two

FIGURE 1
WeightedGeneCo-expressionNetwork Analysis (WGCNA). (A)Cluster dendrogramof ESRD co-expressed genes. (B)Cluster dendrogramofOS co-
expressed genes. (C)Module-feature relationships in ESRD. (D)Module-trait relationships in OS, with each cell containing the corresponding correlation
and p-value. Characteristic plots of (E) blue module vs (F) red module GS vs MM values in ESRD. (G) Characteristic plot of GS vs MM values of the brown
module in OS. (H) Overlapping shared genes between the blue and red modules of ESRD and the brown module of OS.
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groups. Correlations between variables were determined using
Pearson or Spearman correlation tests. Statistical significance was
set at two-tailed p < 0.05.

Results

Identifying shared transcriptomic signatures
between ESRD and OS

According to the previously set criteria, the discovery cohorts
numbered GSE37171, GSE56815 were selected as shared genes. A
total of 11 modules were identified in GSE37171 by WGCNA, and
each color represents a different module (Figure 1A). Then, draw a
heat map on the module-trait relationship according to the
Spearman correlation coefficient to evaluate the association
between each module and the disease. The “blue” and “red”
modules are highly positively associated with ESRD, including
898 and 290 genes, were selected as ESRD-related modules (blue
modules: R = 0.79, P = 5e-26; red modules: R = 0.76, P = 3e-23)
(Figure 1C). Likewise, a total of 6 modules were identified in
GSE56815 (Figure 1B), and the module “brown” was the only
one positively correlated with OS (R = 0.32, p = 0.004), including
534 genes (Figure 1D). Further, the above three modules were used
as key modules for gene significance (GS) and module membership
(MM) analysis, and the correlation coefficients between GS andMM
of the blue, red and brown modules were all significantly positively
correlated (R > 0.2; p < 0.001) (Figures 1E–G). The positive
correlation module for ESRD and OS had 108 overlapping genes,
defined as “shared genes” (Figure 1H) and highly relevant to the
pathogenesis of ESRD and OS.

Analysis of functional features associated
with common pathogenesis

To explore the potential functions of the shared genes, we
further constructed a protein-level PPI network (Figure 2). Three
main clusters were extracted using MCODE analysis. For each gene
cluster, three keywords were selected to summarize its main
biological functions. Functional enrichment analysis showed that
genes in cluster 1 were mainly related to Ribosome, Cortisol
synthesis and secretion, and genes in cluster 2 were closely
related to Neuroactive ligand-receptor interaction. Cluster
3 mainly involves Ras signaling pathway, MAPK signaling
pathway, PI3K-Akt signaling pathway. Impairment of Ras/
MAPK/ERK signaling has been shown to promote ESRD and OS
(Sharma et al., 2013; Donate-Correa et al., 2021). Thus, these results
strongly suggest a common biological process in the development of
these two diseases.

Identifying candidate hub genes in ESRD and
OS using machine learning

To further screen the core genes, we used the random forest
method to initially screen 30 candidate genes from 108 genes
(Figures 3A,B), and then further dimensionality reduction by
LASSO to obtain the final 8 core shared genes (Figures 3C,D),
namely, ZNF205, CPNE7, SLC27A5, MFGE8, CLDN9, EBI3,
SPAG8, CCL24. Based on the coefficients of these genes, we
calculated an 8-gene signature score for each patient (Figure 3E).
The area under the ROC curve of the gene features in the ESRD
training set was 0.996, and also in the validation set (GSE97709), the

FIGURE 2
PPI networks and biological functions of shared genes. (A) PPI networks of shared genes. (B–D) Functional enrichment analysis of three major
clusters identified by MCODE analysis.
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area under the ROC curve was 0.997, confirming the diagnostic
value in ESRD diseases (Figures 3F,G). We also verified the
diagnostic effect of the 8-gene signature in the OS cohort. The
ROC of the training set and the verification set were 0.712 and 667
(Figures 3H,I), respectively, indicating that the model is also
applicable to OS.

Immune infiltration analysis in patients with
ESRD and OS

As persistent inflammation and immune dysfunction are very
common features of chronic kidney disease (CKD) leading to ESRD
(Liu et al., 2022), while osteoporosis, although a bone metabolic
disease, may be mediated by chronic inflammation (Suzuki, 2019).
Therefore, we sought to analyze the correlation of 8 hub genes in
immune cells in ESRD versus OS. ssGSEA calculated the relative
content of immune cells in ESRD versus OS. patients with ESRD
exhibited a lower proportion of CD4+ T cells as well as CD8+ T cells,
and a higher proportion of Th17 cells (Figure 4A). Patients with OS
exhibited a higher proportion of dendritic cells, and a lower

proportion of CD56dim NK cells (Figure 4C). The results of the
correlation analysis showed that the 8 core genes may have opposite
or nonsignificant effects on some immune cells in ESRD and OS. For
example, in ESRD, the 8 genes had a broad negative correlation with
CD4+ T cells as well as Th2 cells, and a broad positive correlation
with Th17 cells (Figure 4B). In contrast, some hub genes in OS were
negatively correlated with both Th17 and Th2 cells, while broadly
positively correlated with monocytes (Figure 4D). Although we did
not find immune features common to ESRD and OS, these 8 core
genes have similar or opposite immune functions in ESRD and OS.

Gene signatures can stratify ESRD
patients

Due to the strong diagnostic power and similar biological
processes and immune signatures of the 8-gene signature in
ESRD and OS diseases. We therefore sought to determine
whether an 8-gene signature could identify ESRD patients
predisposed to OS. Using a consensus clustering algorithm, we
divided ESRD patients into clusters C1 and C2 (Figure 5A). PCA

FIGURE 3
Machine Learning Screening Genes andModeling. (A) Random forest error rate plot for candidate genes screened primarily. (B) Variable importance
score plot. (C) Cross-validation for selecting the best tuning parameter log(Lambda) in LASSO regression analysis. (D) LASSO coefficient profiles of
candidate genes. (E) The coefficient of each core gene in the model. ROC curve analysis of ESRD training set (F) and test set (G). (H, I) ROC curve analysis
in the OS cohort.

Frontiers in Genetics frontiersin.org05

Lou et al. 10.3389/fgene.2023.1159868

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1159868


analysis confirmed that the C1 and C2 clusters had distinct two-
dimensional distribution patterns (Figure 5B). Eight genes had
significantly high expression in the C2 cluster compared with the
C1 cluster (Figure 5C), which may indicate that the C1,
C2 clusters have completely different biological phenotypes. In
addition, MFGE8 and CPEN7 were detected in serum by ELISA
and were significantly lower in patients with ESRD with OS
compared to those with ESRD alone (p < 0.05) (Figures 5D,E).
The GSVA algorithm shows the most significantly altered KEGG
terms for the C1, C2 cluster, with the C2 cluster having higher
Amino Sugar And Nucleotide Sugar Metabolism, Rna
Degradation, Aminoacyl Trna Biosynthesis and lower Focal
Adhesion, Drug Metabolism (Figure 5D). We performed
GSEA analysis (DEGs is provided in Supplementary Table S2)
in ESRD patients and found that a large number of KEGG terms
were enriched in ESRD, such as Rna Degradation, Aminoacyl
Trna Biosynthesis were inhibited in ESRD (Figure 5E), suggesting
that the C1 cluster had a more severe ESRD phenotype, while the
C2 group had a lesser degree of ESRD. We performed KEGG
analysis of differential OS downregulated genes (Supplementary
Table S3) and found significant enrichment of Ubiquitin
mediated proteolysis, Notch signaling pathway and RNA
degradation (Figure 5F). These results suggest that the
C1 cluster has a more pronounced OS profile and is

considered as an “OS-prone group”, while the C2 cluster is
considered as a “not-prone OS group".

Identification and network construction of
shared miRNAs in ESRD and OS

We identified 66 and 11 miRNA precursors (Figures 6A,B) in
GSE37171 (ESRD cohort) and GSE56815 (OS cohort),
respectively, based on the screening criteria. Eight of the
miRNA precursors were considered as “shared miRNAs”
(Figure 6C). The miEAA database was used for maturation
body conversion and enrichment analysis of these eight
miRNA precursors, which were found to be mainly associated
with various metabolic pathways, including complexine
metabolism, drug metabolism-cytochrome P450 and other
metabolic pathways, consistent with the C1 cluster profile
(Figure 6D). These results further strengthen the common
disease features of ESRD and OS.

Since these 8 hub genes are involved in common biological
processes with differential miRNAs for ESRD and OS (8 miRNA
precursors), we sought to construct miRNA-mRNA regulatory
networks to elucidate the disease processes common to ESRD
and OS. The 1,049 potential miRNA targets of 8 hub genes were

FIGURE 4
Analysis of Immune Cell Infiltration in ESRD andOS Patients. (A)Differences in immune infiltrating cells in patients with ESRD. (B) Immune infiltration
analysis of 8 candidate genes in ESRD. (C) Differences in immune infiltrating cells in OS patients. (D) Immune infiltration analysis of 8 candidate genes
in OS.
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predicted by TargetScan. Among them, 12 matrices with
8 miRNA precursors (hsa-miR-194-3p, hsa-miR-6805-5p, hsa-
miR-6883-5p, hsa-miR-6872-3p, hsa-miR-943, hsa-miR-1236-
3p, hsa-miR-1304-3p hsa-miR-1304-5p, hsa-miR-6836-5p, hsa-
miR-4755-3p, hsa-miR-4723-3p, hsa-miR-4697-5p) existed
intersections. Finally, the miRNAs-mRNAs network was
constructed, including 19 nodes (12 miRNAs, 7 mRNAs) and
25 edges (Figure 6E).

Discussion

The kidney plays an important role in the systemic
regulation of mineral metabolism, and the occurrence of
secondary OS in patients with CKD or ESRD has been

clinically documented for a long time (Kooman et al., 2014).
According to a meta-analysis of prospective cohort studies, low
bone mineral density (BMD) levels in ESRD patients are
associated with increased cardiovascular disease-related
mortality and all-cause mortality (Qu et al., 2013). In patients
with ESRD, this is due to alterations in the osteo-vascular axis
and metabolic and hormonal abnormalities associated with
CKD-MBD, such as disorders of mineral metabolism, vitamin
D deficiency, secondary hyperparathyroidism and excess or
molecular defects affecting bone formation (Vervloet et al.,
2014; Evenepoel et al., 2015). However, few studies seem to
have explored susceptibility aspects of OS in ESRD at the genetic
level. We explored for the first time the common mechanisms of
ESRD and OS using WGCNA and identified ESRD patients
susceptible to OS based on consensus clustering.

FIGURE 5
Stratified analysis of OS susceptibility in patients with ESRD. (A) Consensus clustering divides ESRD patients into C1 and C2 clusters. (B) PCA analysis
of C1 and C2 clusters. (C) Expression of 8 hub genes in clusters C1 and C2 clusters. ELISA analysis showed elevated serum (D)MFGE8 and (E)CPEN7 levels
in ESRD patients without OS versus ESRD patients with OS. (F) GSVA analysis of C1 and C2 clusters. (G) GSEA analysis of ESRD patients, pathways are
divided into activation and inhibition for display. (H) KEGG enrichment of downregulated genes in OS patients.
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Common transcriptomic features and
functional characteristics associated with
ESRD and OS pathogenesis

In order to explore the common effector genes of both
diseases, we obtained the intersection of co-expression
modules using WGCNA and identified three major signals,
RAS, MAPK, and PI3K/AKT, by PPI network and gene
cluster identification, and found that gene cluster 3 is
involved in three major signals, RAS, MAPK, and PI3K/AKT.
pathway, Ganoderic acid prevents renal fibrosis by inhibiting the
MAPK signaling pathway. Meanwhile, several studies have
confirmed that silencing the MAPK/NF-κB signaling pathway
leads to reduced osteoclastogenesis, thereby attenuating OS
(Xiao et al., 2020; Yang et al., 2022). These studies are
consistent with our findings. It also seems unsurprising that
ribosomes are highly enriched in gene cluster 1, and that bitter
ginseng derivatives can inhibit osteoclastogenesis through
ribosomal protein s5 (RPS5) and by regulating PI3K/Akt, NF-
κB and MAPK pathways in osteoclastogenesis (Chen et al., 2017;
Xin et al., 2018). In addition, targeting the RPL31-mediated
RAS/MEK/ERK signaling pathway inhibited osteogenic
differentiation of human bone marrow mesenchymal stem
cells (Peng et al., 2022). Although, the relationship between
renal fibrosis and ribosomal proteins has not yet been elucidated,
our results provide theoretical support for the involvement of
ribosomal proteins in regulating CKD progression.

Hub 8 gene as a diagnostic signature for OS
susceptibility in ESRD patients

The management of osteoporosis in patients with advanced
CKD or dialysis fundamentally revolves around diagnosing and
targeting mineralization and renewal abnormalities with the goal of
improving bone density, volume and quality. However, for the
detection of OS occurrence, only limited tools are available, such
as BMD tests, bone turnover markers (BTM) (Ginsberg and Ix,
2022). Both high and low bone turnover lead to low bone mass and
fracture risk, but the treatment strategies are diametrically opposed
(Iimori et al., 2012). The most commonly used BTM in the clinical
setting is intact parathyroid hormone (iPTH). Although a target
level of iPTH of 150 pg/mL or 2-9 times the local laboratory
reference range has been suggested, the most recent KDIGO
guidelines do not recommend a specific iPTH because iPTH
concentrations do not consistently reflect bone structure and
bone turnover histology (Isakova et al., 2017). Our work
identifies a potential approach that can be used as a potential
indicator of OS susceptibility in ESRD patients. First, we
obtained 8 shared genes (ZNF205, CPNE7, SLC27A5, MFGE8,
CLDN9, EBI3, SPAG8, CCL24) by a machine learning approach.
ROC analysis showed that they have good predictive effect in ESRD
and OS. Crucially, consensus clustering based on 8hub genes
successfully classified ESRD patients into C1 (OS-prone group)
and C2 (not-prone OS group). Abc transporters as well as
various drug metabolic processes were inhibited in C2. ATP-

FIGURE 6
Construction of shared miRNA-mRNA network in patients with ESRD and OS. Heatmap of differential miRNA profiling in (A) ESRD and (B) OS
patients. (C)miRNAs shared between ESRD and OS patients. (D) Enrichment analysis of shared miRNAs. (E) Shared miRNA-mRNA network construction.
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binding cassette (ABC) transport proteins play a critical role in drug
absorption, distribution, and metabolism, and thus these transport
proteins are of considerable pharmacological significance. The
pathways by which ESRD affects non-renal drug clearance have
been reported to include cytochrome P450 metabolizing enzymes
and P-glycoproteins, organic anion-transporting polypeptides, and
multidrug resistance-associated protein transport proteins in the
liver and gastrointestinal tract (Nolin, 2008). In addition, hepatic
and intestinal efflux transport proteins have also been shown to be
associated with the pharmacokinetics and pharmacodynamics of
drugs during the treatment of osteoporosis (Trdan Lusin et al.,
2012). Thus, it has been proposed that these transporter proteins
may be part of a larger system of remote communication (“telemetry
and signaling”) between cells, organs, body fluid compartments, and
possibly even individual organisms. This broader view may help
elucidate the link with diabetes, chronic kidney disease, and
metabolic syndrome (Nigam, 2015). Our work reinforces this
link, and further understanding of the endogenous function of
transporter proteins and their involvement in systemic
physiology is critical.

Potential therapeutic target

Currently, bisphosphonates are FDA-approved drugs for the
treatment of osteoporosis with antiresorptive properties and are
particularly beneficial in individuals with high bone turnover
disease, as they both reduce bone turnover. Subgroup analyses of
phase three trials have shown therapeutic benefit of bisphosphonates
in patients with CKD 1–3b and in patients who have undergone renal
transplantation (Jamal et al., 2007; Wilson et al., 2017). However,
data in CKD 4-5D are very limited. In addition, anabolic agents may
be effective in patients with low bone turnover. Specifically,
teriparatide stimulates bone conversion and is approved for the
treatment of osteoporosis in the general population (Krege and
Wan, 2012), but studies in patients with advanced CDK or ESRD
are limited. Our study identified 8 shared genes and 8 shared
miRNAs and constructed a common regulatory network based on
this for 7 mRNAs and 12 miRNAs in ESRD and OS patients.
Lactolipid globule-epidermal growth factor-factor 8 (MFG-E8),
also known as lactadherin, is a multifunctional secreted
glycoprotein that exhibits multiple functions in cellular physiology
affecting health and disease. It plays a role in the clearance of
apoptotic cells, anti-inflammation, wound healing, arterial
remodeling, and angiogenesis (Li et al., 2013). MFG-E8 deficiency
leads to decreased bone mass and accelerates osteoclast-associated
bone loss through increased osteoclast production (Sinningen et al.,
2015), whereas teriparatide rescues inflammatory bone loss
associated with MFG-E8 deficiency (Michalski et al., 2018). In
addition, MFG-E8 was significantly upregulated in the diabetic
kidney. Silencing MFG-E8 ameliorates renal histological damage
by inhibiting phosphorylation of extracellular signal-regulated
kinase 1/2 (ERK1⁄ 2), Akt and glycogen synthase kinase 3beta
(GSK-3β) in db/db kidneys (Zhang et al., 2013). Our work shows
that hub genes can be used as indicators of OS sensitivity in ESRD
patients and therefore MFG-E8 may be an important target for OS
management in ESRD patients. miR-194-3p has been shown to be
downregulated in osteoporotic samples (Zhou et al., 2022), and in

vascular endothelial cells (Li et al., 2021), and vascular endothelial
dysfunction is one of the disease features in patients with end-stage
renal disease (Kruger et al., 2006), so delivery of miR-194-3p into
ESRD patients via bio-nanomaterials may be an effective therapeutic
tool for ESRD patients.

Limitation

Challenges in sample collection have made it difficult to obtain
data sets for ESRD with or without OS. We took an alternative
approach to characterize the susceptibility of ESRD patients to OS by
analyzing samples of CDK development for ESRD and OS samples
independently or in combination. In addition, we were unable to
experimentally validate the pathogenic role of the identified
characteristic key genes and miRNAs in a short period of time,
which will be further developed in subsequent studies.

Conclusion

In conclusion, our study provides key common diagnostic effect
genes for ESRD and OS patients, while revealing mechanisms and
biological processes that are jointly involved in the disease. In
addition, consensus clustering of ESRD based on eight genes
successfully distinguished OS-susceptible and non-susceptible
populations of ESRD. This study provides new insights to further
investigate the molecular mechanisms of ESRD complicated by OS.
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