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T cell receptors (TCR) play a vital role in the immune system’s ability to recognize
and respond to foreign antigens, relying on the highly polymorphic rearrangement
of TCR genes. The recognition of autologous peptides by adaptive immunity may
lead to the development and progression of autoimmune diseases. Understanding
the specific TCR involved in this process can provide insights into the autoimmune
process. RNA-seq (RNA sequencing) is a valuable tool for studying TCR repertoires
by providing a comprehensive and quantitative analysis of the RNA transcripts.
With the development of RNA technology, transcriptomic data must provide
valuable information to model and predict TCR and antigen interaction and,
more importantly, identify or predict neoantigens. This review provides an
overview of the application and development of bulk RNA-seq and single-cell
(SC) RNA-seq to examine the TCR repertoires. Furthermore, discussed here are
bioinformatic tools that can be applied to study the structural biology of peptide/
TCR/MHC (major histocompatibility complex) and predict antigenic epitopes
using advanced artificial intelligence tools.
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1 Introduction

T cell function is initiated by recognition of a peptide antigen in a specific interaction via
the T cell receptor (TCR) in the context of the major histocompatibility complex (MHC)
expressed on antigen-presenting cells (APC). TCRs are heterodimeric membrane proteins
that are composed of two chains, αβ or γδ. The α chain is made up of the variable (V), joining
(J) and constant (C) segments, and the β chain contains the V, D (diversity), J, and C
segments. The gene segment organization of the TCRγ and TCRδ chains is similar to that of
the αβ TCR. TCR development in the thymus is critical for development of a functional
immune system. The gene rearrangement of a TCR involves the selection of immature T cells
in the thymus maturing to become functional T cells that recognize foreign molecules and
respond to them appropriately. The mature T cells undergo positive and negative selection,
in which they are presented with self-antigens from the thymus for affinity selection to
prevent autoreactive TCR repertoires. This process helps to ensure that only mature T cells
respond to foreign antigens exclusively are allowed to survive and develop (Schatz and Ji,
2011). The rearrangement leads to a vast diversity of TCR repertoires capable of recognizing
almost any peptide presented byMHCmolecules (Mitchell andMichels, 2020). The diversity
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of the αβ TCR from the unique pairing of various gene segments or
loci generates on the order of 1018 or more possible combinations
(Murphy and Weaver, 2022). Once naïve T cells encounter the
peptide-MHC complex (pMHC) presented by an APC, these T cells
will start to undergo clonal expansion while retaining the initial TCR
sequence (Huang et al., 2019).

T cells and their receptors are crucial in autoimmunity. Recognition
of autoantigens by T cells with self-reactive TCRs can result in tissue-
specific damage of systemic autoimmune diseases (Seiringer et al.,
2022). A fitting model for this process is Sjögren’s disease (SjD),
which is a debilitating disease affecting as many as 3.1 million
individuals in the United States(Kassan and Moutsopoulos, 2004;
Helmick et al., 2008; Nguyen and Peck, 2009). In addition to
secretory dysfunction resulting in dry mouth (xerostomia) and dry
eyes (keratoconjunctivitis sicca), symptoms canmanifest systemically to
the skin, gastrointestinal tract, lungs, blood vessels, liver, pancreas,
kidneys, vagina, and peripheral and central nervous system (Cornec
et al., 2014; Voigt et al., 2014; Nocturne and Mariette, 2015; Voigt and
Nguyen, 2015). The TCR usage of individual αβ T cells showed that the
TCR-Vα repertoire of infiltrating T cells is restricted with limited
heterogeneity. Specifically, Vα usage of TCR genes, including
Vα17.1, Vα2, and Vα11.1, were found dominantly in salivary glands
(SG) and not peripheral blood mononuclear cells (PBMCs) (Sumida
et al., 1994a). A study (Joachims et al., 2016) demonstrated that
glandular memory T cells showed a number of TCRs, specifically
TRAV8-2, 12-3, 12-2, 16, and TRBV30, 20-1, 19, 7-6, 14, 20-1, 3-1,
and 24-1. In the non-obese diabetic (NOD) mouse model, it has been
shown that 15% of the TRBV gene is Vβ8.1.2, followed by Vβ6, Vβ10b,
Vβ11, Vβ2, and Vβ7 (Sumida et al., 1994b; Skarstein et al., 1995).
During autoimmune sialadenitis or early stages of the disease, the
predominant expression of the Vβ8 gene increased over time in the
MRL/lpr strain. Although the self-antigen was not identified, the usage
of TCR-Vβ elements being restricted according to the stage of the
disease indicates a clonal selection of antigen-specific TCR in the SG,
suggesting that the diversity of TCR repertoires is disease- and stage-
dependent (Hayashi et al., 1995).

The studies, as mentioned earlier, applied various techniques to
study TCR and cell types based on transcriptomic data. To advance
beyond the transcriptome, one must be able to decipher the antigen
or autoantigens presented to the T cells, which will further our
understanding of the immunological mechanism underpinning the
onset and progression as well as improve clinical diagnostics and
therapeutics. The overall objective of this review is to describe the
latest technological advances that have had a significant impact on
profiling TCR repertoires and concomitantly linking them to the
cellular transcriptomic profiles of the target cells. In addition, we
discuss predictive modeling based on particular antigenic epitopes
and TCR repertoires.

2 Development of RNA sequencing
(RNA-seq) technology to identify TCR
repertoire

2.1 Single-stranded RNA-seq

Molecular cloning and Sanger sequencing were the first methods
to study immune repertoires at the nucleotide sequence level

(Figure 1). Early work by Sant’Angelo et al. (1998) showed that
the complementarity determining region 3 (CDR3) can be obtained
by designing primers for the paired V- and C-region’s primary and
restriction fragment length polymorphism (RFLP) with nested PCR
amplification. They sequenced CDR3 regions, analyzed TCRα
chains from different TCRβ chain-transgenic mice, and
constructed a molecular map of T cell development; they
identified the precise stage of positive selection that occurs early
in thymocyte differentiation. Later, Correia-Neves et al. (2001)
designed a mouse line by combining the TCRβ transgene with
the TCRα minilocus consisting of a single V and two J gene
segments. They also performed nested PCR by paired primers
designed with a similar concept to determine the diversity of
CDR3α. This approach allowed them to follow the fate of T cells
with different TCR sequences, thus enabling them to study the
selection and evolution of the T cell repertoires. A widely used
method is multiplex PCR, wherein multiple primers are designed to
amplify all possible V segments using degenerate primers and
conserved region primers. Primer bias can occur with this
approach which distorts the resulting TCR repertoires, therefore
sequencing the final cDNA must be done to confirm the identify the
targeted receptors (Liu et al., 2016). Unbiased 5′-Rapid
Amplification of cDNA Ends (5′ RACE) is alternative method, as
it amplifies TCR genes using only one primer targeting a constant
region and a universal primer attached to the 5′ end (Mamedov
et al., 2013). Recently, Cook et al. (2020) used 5′ RACE PCR to
amplify TCRβ chain and Sanger sequencing to analyze the TCR
repertoire of the regulatory CD4+ T cell (Treg) population and found
that the TCR repertoire of gluten-specific CD39+ Tregs in celiac
disease patients was oligoclonal compared to healthy controls,
suggesting that the repertoire of gluten-specific CD39+ Tregs may
be driven by the specific antigen and the corresponding human
leukocyte antigen (HLA) restriction. Unlike multiplex PCR, which
can use both genomic DNA and RNA as input, 5′-RACE can only be
applied to RNA samples, and the presence of short DNA fragments
in the 5′-RACE library may result in sequencing results that do not
effectively present regularly recombinant TCR sequences (Lin et al.,
2020).

Even though there are many options and optimizations in the
methods of molecular cloning to generate sequencing materials,
Sanger sequencing is limited due to low throughput and can only
sequence a small number of TCRs in a given batch. In particular,
during bulk analysis, PCR technologies can only amplify and
sequence one strand at a time, thus losing the pairwise
information of intact immune repertoires, making it impossible
to determine the antigenic specificity of pathogenic TCR
information subsequently. Meanwhile, most early TCR profiling
studies were based on analysis of the CDR3 region; however, full-
length sequencing includes other regions, e.g., CDR1 and CDR2,
involves in antigen receptor binding affinity and/or downstream
signaling, and allows direct cloning and expression of identified and
selected receptors for further experiments (Mazzotti et al., 2022).
The widespread use of next-generation sequencing (NGS) based
RNA-seq has shaped our understanding of many aspects of biology.
Unlike genomic DNA-based applications, RNA-seq provides
comprehensive gene expression information from mRNA in
addition to the immune repertoire. Short-read RNA-seq is
cheaper and easier to perform than microarrays and produces
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comprehensive, high-quality, less biased data in a shorter time, thus
allowing easy determination of clonal expansion in TCR replication.
More importantly, in TCR sequencing, the choice of RNA rather
than DNA as starting material avoids small sample size of genomic
DNA (gDNA), as well as reducing background interference and
primer bias from amplification of V and J fragments that are not
involved in recombination but remained in gDNA.

In autoimmune diseases, current commercial services can
identify the most frequent single-strand used TCR from patients,
typically starting with multiplex PCR to amplify all Vα or Vβ regions
followed by short-read RNA-seq to confirm the clonal expansion of
immune cells. Muraro et al. (2014) used high-throughput deep
TCRβ sequencing provided by ImmunoSEQ to assess millions of
individual TCRs in multiple sclerosis (MS) patients with poor
prognosis per hematopoietic stem cell transplantation (HSCT)
treatment and found that the combination of high-dose
immunosuppressive therapy (HDIT) and autologous HSCT had a
unique and independent effect on reconstituting CD4+ and CD8+

repertoires, which supports the view that TCR repertoire diversity is
critical for reestablishing immune tolerance. However, ImmunoSEQ
is a gDNA-based service, which is accomplished by pre-running a
synthetic immune repertoire that represents all combinations of V-J
genes, before selecting and adjusting primer concentrations to
reduce bias during amplification. The most widely used
commercial RNA-based kit is iRepertoire, Chang et al. (2019)
used iRepertoire to sequence the TCRβ CDR3 region to
determine the role of T cell profiles in rheumatoid arthritis
patients receiving different biologic disease-modifying
antirheumatic drugs (bDMARDs). An index of clonality of the
TCRβ repertoires in RA patients was found to be negatively
correlated with age, while a trend toward increased disease
activity was observed with reduced TCRβ repertoire diversity
following bDMARDs treatment. Using the same technique,
Amoriello et al. (2020) tracked peripheral T cell subsets in
15 relapsing-remitting multiple sclerosis (RRMS) patients before
and after 2 years of continuous treatment with Natalizumab (NTZ)
and a single course of therapy with autologous hematopoietic stem
cell transplantation (AHSCT) by high-throughput TCRβ
sequencing, they found that both treatments left treatment-
specific multidimensional traces in patient TCRβ repertoire
dynamics related to clonal amplification, clonal diversity, and

repertoire structure. A comparison of iRepertoire with other
commercially available kits (MiLaboratories, Takara, NEB) is
shown in Table 1. Amplification can also be performed by
adding adaptor sequences into TCR multiplex PCR primers,
Wang et al. (2021) first used scRNA-seq to reveal a novel Graves’
orbitopathy (GO)-specific cell type, CD4+ cytotoxic T lymphocytes
(CTL), and to understand the clonal expansion of this CD4+ CTL
population, they performed TCRβ CDR3 sequencing, revealing the
significant clonal expansion of CD4+ KLRG1+ CTL from GO
patients.

It is possible to sequence large cell populations in this manner,
but the fact that it can only be based on single-strand RNA-seq is
likewise a limiting point. Due to the presence of the D loci, the TCRβ
chain has a higher combinatorial potential than the TCRα chain.
Also, due to allelic exclusion (Khor and Sleckman, 2002) and the
possibility of two α chains being expressed by the same cell (Padovan
et al., 1993), the single β chain expressed per αβ T cell has become
the main target for single-strand sequencing studies, but this
introduces a sample bias.

2.2 Paired-stranded sequencing based on
short-read single-cell RNA-seq (scRNA-seq)

Developments in wet lab technology and computing drive the
adaptation and evolution of RNA-seq. In this context, single-cell-
based experimental techniques can overcome the limitations of
single-strand sequencing in TCRs (Hou et al., 2016). Paired TCR
αβ or γδ sequences can provide additional information on p
(peptide) MHC binding specificity, which is essential for the
study of autoimmune disease etiology and progression. Low-put
through scRNA-seq involves manually sorting and isolating
individual cells by magnetic bead sorting or fluorescence-
activated cell sorting (FACS) into multi-well plates. Switching
Mechanism at the end of the 5′-end of the RNA Transcript
(SMART)-seq (Goetz and Trimarchi, 2012), Smart-seq2 (Picelli
et al., 2013), MATQ-seq (Sheng et al., 2017), CEL-seq
(Hashimshony et al., 2012) and other protocols can rely on
FACS sorting. After first strand cDNA synthesis, unlike non-
linear PCR, platforms, for example, CEL-seq utilize in vitro
transcription (IVT) technology, it requires an additional round of

FIGURE 1
An overviewof library preparationmethods for different cell preparation and RNA sequencing (RNA-seq)methods. The complexity and bias of library
preparation vary depending on the specific method used.
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reverse transcription of the amplified RNA which results in a 3′-
bias.

To process a large number of single cells simultaneously, several
commercial services have introduced either microfluidic (Fluidigm
C1), microdroplet (10X Genomics), microwell (Clontech, BD
Rhapsody), or nanowell (ICELL8)-based platforms that allow for
automated isolation, lysis, and cDNA synthesis for each cell
(Figure 1). These automated platforms rely on in-house
developed instrumentation, which reduces the batch effect of
samples but increases costs. These platforms utilize a variety of
different cell isolation techniques while differing in cell lysis, reverse
transcription, amplification, transcript coverage, strand specificity,
or UMI (Unique Molecular Identifier) availability (Table 2). To
estimate technical differences between cells, correct the errors, and
normalize data, the use of UMIs can offset differences in mRNA
amplification efficiency, which can detect and quantify molecular
labels of unique transcripts. Another option is the use of external
RNA control consortium (ERCC) introduced into the samples to
calibrate measurements and account for technical variation, which
was applied in SMART-seq2 protocol but is not compatible with
droplet-based platforms (Svensson et al., 2017; Baran-Gale et al.,
2018).

Still, automatic single-cell processing reduces intracellular RNA
degradation and library preparation time, and scTCR-seq facilitates
the exploration of the immune repertoire with great diversity. These
factors together allow us to further explore key cell subpopulations
and differentiation states through transcriptome analysis and to
infer cell developmental trajectories at the single-cell level while
providing additional information related to the TCR repertoire. We
recently utilized Chromium Single Cell Immune Profiling (10X
Genomics) to identify the specific immune cell subsets and the

expressed TCR repertoire of single T cells. The technology combines
single-cell sequencing and molecular barcoding to measure the TCR
sequences expressed by individual T cells, allowing us to make
detailed inferences about the composition and diversity of the
immune system. In here we present a mockup figure to illustrate
the whole workflow (Figure 2), we found different populations of
immune cells present in the salivary glands of SjD-susceptible mice
(Figure 2A). When we examined the TCR repertoire expressed by
the effector CD4+ T cells, we were able to identify the dominant
receptors (Figure 2B). We further demonstrated that males and
females of the same SjD background exhibited different TCR
repertoires (Figure 2C).

The use of scRNA-seq for identifying autoimmune disease-
related immune repertoires has only recently emerged, including
type 1 diabetes (T1D) (Linsley et al., 2021; Kasmani et al., 2022),
autoimmune hepatitis (AIH) (Renand et al., 2020), primary SjD
(pSjD) (Hong et al., 2020; Hou et al., 2022), and systemic lupus
erythematosus (SLE) (Smita et al., 2022) (Table 3). Not only is it a
direct study of the disease itself, but scTCR-seq has also been used to
study T cell populations and/or related mechanisms closely
associated with autoimmune disorders, allowing us to visualize
the immune repertoire expressed by several cell subpopulations.
In spondyloarthritis (SpA) patients, arthritogenic peptides are
presented by the risk allele HLA-B*27 to antigen-specific CD8+

T cells to initiate or maintain an autoimmune response, Deschler
et al. (2022) used scTCR-seq to analyze CD8+ T cells in the patient’s
synovial fluid (SF) and revealed a preferential expansion of the TCR
TRAV- and TRBV- families, common motifs in the CDR3 loop and
identical TCR chains across patients. Follicular helper T cells are
central regulators of germinal centers and contribute to the
formation of pathogenic autoantibodies, Akama-Garren et al.

TABLE 1 Major commercially available kits for TCR profiling.

Milaboratories NEBNext® immune sequencing SMARTer TCR a/b profiling iRepertoire

Species Mouse, human, and monkey Mouse and human Mouse and human Mouse and human

Protocol Multiplex PCR 5′ RACE SMART technology arm-PCR

UMI Yes Yes No No

Input material Up to 500 ng 10 ng–1 µg RNA or RNA- contained cells 10 ng–3 µg of RNA or 50–10,000 cells 50 ng–1 µg RNA

Sequencing Illumina Illumina Miseq® Illumina Miseq® Illumina

Analysis MIXCR and MIGEC Presto (Galaxy) Any softwares iRepertoire

SMART, Switching Mechanism at 5′ End of RNA template; arm-PCR, amplicon rescued multiplex PCR.

TABLE 2 Current automate platform for single cell processing.

Platform Compatible protocol Transcript coverage UMI

Fluidigm C1 SMART-Seq Full-length No

10X Genomics Chromium 5′-/3′- Yes

Clontech SMART-Seq Full-length No

ICELL8 SMART-Seq Full-length No

BD Rhapsody Whole transcriptome analysis (WTA) 3′- Yes
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(2021) performed scRNA-seq and scTCR-seq cells of follicular
helper T cells in a mouse model of autoantibody-mediated
disease, they found that a few TCR clonotypes were preferentially
shared among autoimmune follicular helper T cells and the
amplification correlated with differential genetic signatures in
autoimmune disease. These studies have yielded paired TCR
information that complements and confirms previous studies,
combining transcriptome analysis with corresponding single cells
provides a comprehensive definition of the immune cell population
that can provide a more accurate basis for downstream functional
experiments. In the recent COVID-19 outbreak, we also observed
the link of autoimmune phenotypes to SARS-CoV-2 infection in

children using of scTCR-seq. Multisystemic inflammatory
syndrome in children (MIS-C) is a life-threatening post-infection
complication that occurs unpredictably weeks after mild or
asymptomatic SARS-CoV-2 infection. Patients with clinically
severe MIS-C exhibit a skewed memory T cell TCR repertoire
and endothelial-reactive IgG autoantibodies. Using scRNA-seq,
Ramaswamy et al. (2021) analyzed PBMC from patients and
found that CD4+ and CD8+ memory T cells expressing TRBV11-
2 were amplified in severe MIS-C.

The read length of RNA-seq is much shorter than that of first-
generation sequencing (e.g., Sanger sequencing), and scRNA-seq data
often contain many missing values or dropouts due to the failure to
amplify the original RNA input, this frequency dependsmainly on the
protocol. Thus, it is crucial to use appropriate methods to overcome
this problem when analyzing samples. Even so, the current scRNA-
seq technology allows combining RNA-seq of the same cells with
paired TCR-seq, and the great advantage of simultaneously processing
cell numbers is essential for identifying the characteristics of rare T cell
populations. These studies have generated new insights into disease
biology and demonstrated the potential of scTCR-seq for clinical
applications. Furthermore, in autoimmune diseases, identifying auto-
reactive T cells by scTCR-seq may provide an indirect method to
identify autoantigens.

2.3 TCR-pMHC sequencing potential based
on long-read scRNA-seq

Long-read sequencing platforms, namely, long-read cDNA and
long-read RNA sequencing, can capture many full-length transcripts
(1–50 kb), unlike short-read sequencing, which requires
fragmentation and amplification as well as introduced the
previously discussed bias; additionally, assembly with
bioinformatic tools relies on an existing genomic database
(Salzberg and Yorke, 2005) (Figure 1), the computational
approach for de novo transcriptome analysis utilized by long-read
sequencing is easier and more unbiased (Stark et al., 2019)
Processing the whole sample eliminates the amplification bias
and has the ability to detect large insertions/deletions and
duplicate regions. The two most widely used commercial
technologies are Pacific Biosciences’ single molecule real-time
(SMRT) sequencing (average read length of HiFi reads ~20 kb,
accuracy >99.9%) and Oxford Nanopore Technologies’ nanopore
sequencing (average read length of ultra-long reads ~100 kb,
accuracy of R10.4 ~99%) (Method of the Year 2022: long-read
sequencing., 2023). Specifically, no reverse transcription step is
required in long-read RNA-seq, the PCR-free library-building
protocol avoids guanine-cytosine (GC) bias and makes long-read
sequencing platforms well-suited for studies of immune repertoires,
as well as HLAs.

Predictably, scRNA-seq combined with long-read RNA-seq can
provide higher sensitivity and accurate full-length paired TCR
sequences. Singh et al. (2019) combined targeted capture and
long-read TCR and BCR mRNA transcription with short-read
scRNA-seq to track the transcriptomic signature of expanded
clonotypes from primary tumors and draining lymph nodes of
breast cancer patients. Understanding gene regulation and
function requires the ability to capture gene expression levels and

FIGURE 2
Mockup Chromium Single Cell Immune Profiling (10X Genomics)
to identify the specific immune cell subsets and the expressed TCR
repertoire of single T cells. (A) UMAP of the different cell types is
classified based on different colors. (B) TCR repertoires in each
T cell (left) and selected memory T cell (right). Each cell identified with
a TCR clonotype was labeled blue, otherwise was grey (no identified
TCRα/β or TCRγ/δ present). The same clonotype ismarked in the same
dark blue color (right). (C) The different clonotypes expansion
between sexes showed as a percentage of unique clonotypes, and
share clonotypes were presented in Venn diagram.
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isoform diversity at the single-cell level, in which short-read RNA-
seq is limited in its capacity. Using Oxford Nanopore MinION
sequencer to analyze individual murine B1a cells, Byrne et al. (2017)
analyzed and identified different uses of complex isoforms in over a
hundred genes, including surface receptors that determine B cell
identity-determining surface receptors (e.g., CD19, CD20, and
IGH). Multiple studies to date have shown that certain TCR
clonotypes were expanded in the PBMCs or tissues of patients
with autoimmune diseases. Still, the link between these TCRs and
their functional relevance in the disease onset and development has
not been identified, which requires refined studies of the gene
transcriptome and the isoforms of TCR-expressing T cells. Thus,
although there is no current application of long-read RNA-seq in
autoimmune diseases, its future help in identifying complex
etiologies can be foreseen.

Another promising application of long-read RNA-seq is in the
field of HLAs. HLAs are a group of related proteins encoded by the
MHC gene on human chromosome 6 and plays an essential role in
autoimmune diseases. Previous in silico studies in our lab have
shown that peptides with similar amino acid patterns may be
presented to the same HLA due to structural similarities, thus
initiating the autoimmune cascade (Gupta et al., 2022). Even
though several analysis tools were developed to perform HLA
typing from short RNA-seq reads using whole transcriptome data

(Boegel et al., 2012; Kim and Pourmand, 2013; Buchkovich et al.,
2017; Orenbuch et al., 2020; Chelysheva et al., 2021; Johansson et al.,
2021), the large HLA genes (more than 5 kb) and the high degree of
polymorphism within the class I (HLA-A, -B, and -C) and class II
HLA (HLA-DR, -DQ, and -DP) often leads to ambiguous results in
allele assignment. To this end, Cornaby et al. (2022) used long-read
long sequencing of UMI-based high-resolution HLA typing and
transcript quantification with a 99.68% overall HLA typing
accuracy. Determining the profile of autoimmune-associated
T cells requires deciphering the TCR and the HLA linkage. Thus,
the introduction of long-read RNA-seq with the currently available
scRNA-seq technology should allow a more in-depth study of
innate, humoral, and T cell-mediated immunity in the future and
will help provide a roadmap linking the pathogenesis of
autoimmune diseases to the host immune response.

3 Structure study based on RNA
sequencing results in TCR

3.1 Analysis of TCR-seq data

Retrieval of transcriptomic data enables the interrogation of
multiple parameters simultaneously. More importantly, it allows for

TABLE 3 scRNA-seq for identifying autoimmune disease-related TCR.

Disease Finding References

T1D Islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)206–214-reactive CD8
+ T (self-reactive T cells) in T1D

may inherently have a restricted TCR library as well as a substantial TCR motif overlap
Kasmani et al. (2022)

T1D It has identified a class of autoreactive TCRs from human IAR (islet antigen reactive) CD4+ T cells in patients with T1D that share the
feature of germline alpha chains

Linsley et al. (2021)

AIH Identified the central memory CD45RA−CD27+PD-1+CXCR5−CCR6− CD4+ T cell population as the significant self-reactive CD4+

T cell pool in AIH
Renand et al. (2020)

pSjD T cell receptor alpha and beta chain variable genes of TRAV13-2 and TRBV7-9 were significantly expanded in patients with pSjD Hong et al. (2020)

pSjD The degree of TCR clonal expansion did not differ significantly between the pSjD patients and healthy individuals. Still, the
frequencies of T cells with dual TCR β-chain expression were reduced considerably in pSjD patients

Hou et al. (2022)

SLE Found CD8+ kidney-infiltrating T cells (KIT) first existed in a transitional state, then clonally expanded and evolved to depletion in
the kidney

Smita et al. (2022)

T1D, Type 1 diabetes; AIH, Autoimmune hepatitis; pSjD, Primary Sjögren’s disease; SLE, Systemic lupus erythematosus.

TABLE 4 TCR (-pMHC) modeling platforms and capabilities.

Platform TCRα TCRβ CDR3 MHC
present

Output Limitations

TCRModel Yes Yes Yes Yes Unbound TCR, as well as TCR-pMHC complex modeling NA

NetTCR No No Yes HLA-A*02:
01 Only

List of predicted epitope binding Only select from three peptide
sequences

SCALOP-TCR Yes Yes Yes No Predicts the structure of five CDRs (B1-2 and A1-3) Does not include side chains

TCRBuilder Yes Yes Yes No Multiple predicted conformations and an ensemble
conformation would be returned

NA

TCRex No Yes Yes No List of reactive epitopes Only select from 93 viral and
5 cancer epitopes

TCRpMHCmodels Yes Yes Yes Class I only TCR-pMHC complex modeling Class I Only

Frontiers in Genetics frontiersin.org06

Shen et al. 10.3389/fgene.2023.1159109

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1159109


the examination of a targeted objective, e.g., the expression of novel
TCR repertories in specific T cell subsets that are clinically
detrimental in an autoimmune disease. Recent technology and
platforms enable users to follow the analytical pipelines to
generate meaningful results from transcriptomics to predictive
structural modeling. Raw data needs to be pre-processed before it

can be applied to the downstream TCR analysis (Figure 3).
Depending on the platform used [e.g., 10X CellRanger for 10X
Genomics, BD Rhapsody, TraCeR (Stubbington et al., 2016) for
Fluidigm C1], the raw datasets are processed slightly differently but
all generate expression matrix with TCR output files. There are also
tools that specialize in extracting only repertoire information from

FIGURE 3
A summary of the pre-processing software for data from both scRNA-seq and bulk RNA-seq. The preprocessing relates to experimental design and
library construction procedure and therefore can only follow a specific pipeline.

FIGURE 4
TCR-pMHC model containing autoantigens presented by SjD-susceptible HLA to the TCRs of selected patients. Two different peptides were
selected to be presented by a SjD-susceptible HLA (DRA*01/DRB1*0301) to a selected paired TCR from SjD patient (VA 12-2, JA 13, CDR3A:
CAVRIGGYQKVTF; VB 3-1, JB 2-3, CDR3B: CASSQEGREGRNTQYF). In molecular docking, a nine amino acid peptide is predicted to bind. The
intermolecular contacts of this peptide are presented in the corresponding predictive model diagrams (aa1–4, upper, in order to clearly present the
side chain amino acid order from right to left; aa5–9, lower, order from left to right). (A) NPWLILSEDRRQVRL, “WLILSEDRR” is predicted to bind. (B)
FTFIQFKKDLKESMK, “IQFKKDLKE” is predicted to bind. (C) Superposition of the two TCR-pMHCmodels (A,B) showed a divergent presentation pattern. In
(A,B), Pink and green: HLA-DRA*01/DRB1*0301. Turquoise and orange: TCRα and ß chains. Purple: peptide.
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FASTQ files. For example, MiXCR/MiTCR (Bolotin et al., 2015) and
TRUST4 (Song et al., 2021) can process data from bulk RNA-seq
and scRNA-seq data with and without V(D)J enrichment. MiGEC
(Shugay et al., 2014), MigMap (Shugay and Davenport, 2018),
IgBlast (Ye et al., 2013), and Vidjil (Giraud et al., 2014) can only
work on bulk RNA-seq. Dandelion (Suo et al., 2023) is designed to
work with Adaptive Immune Receptor Repertoire (AIRR) (Rubelt
et al., 2017) -formatted input or 10X CellRanger VDJ output.
WAT3R (Ainciburu et al., 2022) can process on 3′ single-cell
RNA-seq data without V(D)J enrichment. Due to the high cost
of library preparation and sequencing, there are also public
databases containing V(D)J sequence information available for
use, such as international ImMunoGeneTics information system
(IMGT) (Lefranc et al., 2015) and AIRR. There is growing number of
bioinformatic tools for TCR analysis. The output formats from pre-
processing are different and the available downstream software
varies, but most TCR analysis tools can recognize multiple formats.

Scirpy (Sturm et al., 2020) is a Python package that is an
extension of Scanpy, which enables the user to visualize single-
cell immune libraries and integrate them with transcriptomic data to
characterize the TCR of single T cells. Scirpy supports multiple data
formats, including 10X CellRanger, BD Rhapsody, TraCeR,
Dandelion, or AIRR-compatible data. Scirpy enables the study of
TCR chain configurations and explores clonotypes’ abundance,
diversity, expansion, and overlap across samples, patients, or cell
clusters. This software also allows analysis of CDR3 sequence length
and the distribution of V(D)J gene usage. Specifically, Scirpy
implements a sequence-alignment-based network that enables the
clustering of cells into clonotypes based on having identical/similar
CDR3 amino acid sequences, which offers the opportunities to
identify cells that might recognize the same antigens.

Immunarch (Samokhina et al., 2022) is an R package which
accepts all standard immuno-sequencing formats. It also
automatically detects and parses uploaded data in formats
including ImmunoSEQ, IMGT, MiXCR/MiTCR, MiGEC,
MigMap, VDJtools, AIRR, and 10X CellRanger. Immunarch can
annotate clonotypes using an external immune receptor database.
The exclusive features include basic statistics such as CDR3 length
distribution and clonotype abundance-more specifically, it can
calculate the distribution of clonotypes per CDR3 length or
clonotype spectratype. It can complete the analysis of repertoires
dynamics, diversity, clonality, and overlap as well as compute V/J
gene usage, and the distributions of kmers and sequence profiles.

The Loupe V(D)J Browser [10x Genomics Loupe V(D)J Browser
3.0.0] is a desktop application for Windows and macOS that allows
users to analyze, search, and visualize V(D)J sequences and
clonotypes. The Loupe V(D)J Browser identifies a sample’s most
common paired αβ TCR chains. It filters clonotypes based on their
antigen specificity or UMI number per antigen andexamines full-
length V, D, and J amino acid and nucleotide sequences to detect
variants in V(D)J transcripts, motifs within CDR3 regions, and
compares clonotype frequencies between samples. It can be
integrated with the Loupe Browser (formerly Loupe Cell
Browser) to analyze data from different 10X genomics solutions.
However, this tool has drawbacks since it is specifically designed to
analyze 10X Genomics Single Cell Immune Profiling dataset.

ImmunoSEQ Analyzer (Adaptive Biotechnologies ImmunoSEQ
Analyzer 3.0) is an online web-based tool for data exploration. Since

the platform was developed only for ImmunoSEQ, it directly
identifies V, D, and J genes and whole nucleotide sequences;
non-productive sequences can be filtered out, and specific data
values for immune sequencings, such as clonality, can be
precomputed and visualized directly on the dashboard. Like
Loupe V(D)J Browser, it provides basic statistics of clonotypes.
In addition, the analyzer has tools for performing additional
statistical tests and metrics on immune sequencing data. These
include tools for clonotype diversity and tracking among
samples. The main advantage of using this analyzer is that it
contains an extensive database of TCR sequences, integrating
millions of public data sequences and control samples.

VDJtools (Shugay et al., 2015) is an open-source software
framework for TCR analysis based on Java. It is mainly used for
post-analysis of clonotypes containing VDJ junction output for the
following platforms: MiXCR/MiTCR, MiGEC, IgBlast, IMGT,
ImmunoSEQ, VDJdb, Vidjil, MiXCR, ImmunoSEQ, and 10X
CellRanger. VDJtools enables visualization of basic and advanced
immune repertoires by applying different methods and strategies,
including basic segment and segment usage, repertoire overlap,
diversity analysis, data joining and clonotype tracking, and
repertoire clustering.

scRepertoire (Borcherding et al., 2020) is an R package
compatible and integrated with the R packages Trex for deep-
learning-based autoencoding of TCR, which supports 10X
CellRanger, AIRR, WAT3R, and TRUST4. scRepertoire is
designed to obtain filter contig output from the pipeline, assign
clonotypes according to the two TCR chains, and analyze the
dynamics of clonotypes. It can be used for clonotype
visualization, analysis of unique clonotypes, or clonal space
quantification. Further features include clonal proportion
analysis, sample similarity measures (scatter comparison between
two samples), and overlap analysis for two or more samples. A
unique feature is that the output data can be integrated with
transcriptomic data [using Seurat (Satija et al., 2015),
SingleCellExperiment (Amezquita et al., 2020), or Monocle 3
(Trapnell et al., 2014)].

There are also interactive databases available with known TCR
sequences and clonotypes that can identify shared clones in
multiple samples and explore the specificity of the immune
response. An example is VDJdb (Shugay et al., 2018), a TCR
sequence database with known antigenic specificity. The main
goal of VDJdb is to facilitate access to information on the antigenic
specificity of existing TCRs, i.e., the ability to identify certain
epitopes in a specific MHC context. This database, which has been
collecting and managing publicly available sequencing data
obtained from TCRs with well-defined antigenic specificity, as
well as data voluntarily shared by researchers, has been extended to
a web interface that allows bulk querying of the AIRR dataset
and identification of TCR sequence motifs associated with
specific epitopes. There is also tcrdist3 (Mayer-Blackwell et al.,
2021), an open-source python package based on distance-based
TCR repertoire analysis capable of performing extensive TCR
sequence analysis, including diversity analysis. The software
utilizes meta-cloning concepts to group TCRs, i.e., a set of
TCRs that are biochemically similar and likely to recognize the
same antigen. The package has extended this to include support for
gamma-delta TCRs.
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Given these innovative tools, the challenges persist. Whether
it is a pre-processing platform or a TCR analysis software, it is
difficult for users to reach a uniform standard due to the many
options, especially since most platforms can perform the same
functions. Generally, the pre-processing relates to experimental
design and library construction procedure following a specific
pipeline (i.e., single-cell or bulk, sequencing platform, UMI
integration). Therefore, it is imperative to develop a standard
or “universal” pipeline that could support and simplify the
process. Furthermore, most of the software is programming-
based, which makes it necessary for users to have basic
programming skills to operate and manipulate. A few
available web or application-based platforms, which can meet
the basic research needs, limit the ability to customize, and are
not open-sourced or strictly product-based. Hence, these
challenges are some of the major impediments that may
discourage researchers interested in applying these tools for
their research.

3.2 3D structural modeling

There is an array of TCR modeling platforms and capabilities
including, but not limited to: Structural T Cell Receptor
Modelling Tool (STCRPred) (Leem et al., 2018; Wong et al.,
2019; Wong et al., 2020), TCRModel (Gowthaman and Pierce,
2018), and NetTCR (Montemurro et al., 2021) (Table 4). The
former is a platform connected to SAbPred (Dunbar et al., 2016),
initially constructed for 3D modeling and optimization of the
B cell receptor (BCR), which also provides many of the same
capabilities through SCALOP-TCR and TCRBuilder. SCALOP
(Sequence-based Prediction of TCR CDR Canonical Form)-TCR
is a sequence-based canonical form predictor for five of the six
complementarity-determining regions (B1, B2, A1, A2, and A3)
on a TCR. This provides an essential framework loop structure
omitting side chains, compared to TCRBuilder, which may be
more practical and include those interactions. TCRModel uses
two modes: TCR-pMHC complex modeling (further discussed
below) and unbound TCR modeling. The latter allows a simple
model of the TCR, complete with any mutations, or by simply
inputting the CDR3 sequences into the germline genes. Rosati
et al. (2022) recently utilized this technology to model Crohn-
associated invariant T (CAIT) cells with the paired TCR chain,
which had been identified as an NKT type II population in
Crohn’s Disease patients. NetTCR is a very limited platform.
However, it may be helpful if the following criteria are met:
known CDR3 sequence, satisfied with the provided three peptide
sequences, and MHC-1 prediction will be exclusively for HLA-
A*02:01 (Reynisson et al., 2020); while not strictly within the
scope of TCR sequencing, MHC modeling can predict peptides to
be presented to the TCR. This may be a useful tool within
autoimmunity if the HLA is well known, as it is in diabetes.
Notably, there also exist customized programs; for example,
Jokinen et al. (2021) created TCRGP with which they were
able to identify an exhausted, low functional T cell cluster that
was enriched with Hepatitis B virus-targeting clonotypes, which
they theorized could be pathogenic in causing hepatocellular
carcinoma. Likewise, pipelines like this may be helpful in

autoimmune disorders, especially those with a proposed viral
or bacterial etiology.

3.3 Epitope prediction

Several programs have been written to predict what TCR will react
against a given antigen. Programs predicting how epitopes dock in a
TCR are limited but growing significantly recently (Table 4). The
aforementioned TCRex is a platform that allows for selection from
93 viral and five cancer epitopes (Gielis et al., 2019). This platform
enables users to train their custommodel with machine learning, which
is dependent on a manually curated catalog of pathology-associated
TCR sequences (McPAS-TCR) (Tickotsky et al., 2017), VDJ database
(VDJdb) (Shugay et al., 2018), and the ImmuneCODE-database (Nolan
et al., 2020). For this platform and those to follow, splitting known
autoantigens into shorter peptides and artificially docking those
peptides may be the most useful. However, if the approach is to
understand the etiology of the pathogenesis of the disease and
potential triggers, viral/bacterial epitope mapping may also be useful.
In this case nucleotide Basic Local Alignment Search Tool (BLASTn)
may be a useful tool (Ladunga, 2002). TCRpMHCmodels is a tool for
3D modeling TCRs bound to peptides presented by a MCH class I
(Jensen et al., 2019). Likewise, TCRmodel’s TCR-pMHC complex
modeling is a very useful tool to either look at the interaction with
a user-supplied peptide docked on a chosen MHC (either Class I or II)
for both humans and mice (Gowthaman and Pierce, 2018). Our group
has used COOT and PHENIX to predict pathogenic autoantigens
presented by SjD-susceptible HLA, which has previously relied on
superimposing chains on the crystal structure of solved peptide/HLA
complexes on a LINUX system (Gupta et al., 2022). Now with
TCRmodel we could further analyze the TCR-pMHC complex of
autoantigens presented by SjD-susceptible HLA to selected patient’s
TCR. With a web-based platform, this allows us to predict
intermolecular contacts between peptide and HLA and cognate
interactions between the TCR and peptide/HLA complex (Figure 4).
While this technology has yet to be widely utilized in autoimmunity,
Kasmani et al. (2023) used this program to show that CD8+ TCR avidity
correlates with an exhausted fate during persistent infection by
lymphocytic choriomeningitis virus in mice, where TCR sequences
were paired with the peptide KAVYNFATC and the mouse class I
MHC H-2Db.

Artificial intelligence (AI) has recently gained traction within the
scientific community, and the epitope mapping field is no exception.
Within the last 2 years, four new programs have been created:
DECODE, TITAN, DeepTCR, and pMTnet. It should be noted
that all of these programs utilize known biochemical reactivities
(e.g., an amino acid present at specific residues as well as their
interactions with the TCR and MHC/HLA). DECODE (DEcoding t
Cell receptOr binDing rulEs) is a machine learning, customizable
program that can allow users to select for specific reactivities (e.g., an
amino acid at a particular residue) to further specify and customize
the dataset for the end user (Papadopoulou et al., 2022). TITAN (Tcr
epITope bimodal Attention Networks) is a bimodal neural network
that explicitly encodes both TCR sequences and epitopes, which,
interestingly, was able to identify previously unseen TCRs (Weber
et al., 2021). The remaining two are more based on deep learning.
DeepTCR analysis provides noise-depleted scRNA-Seq and ex vivo
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T cell assay results, which enables the user to identify rare subsets of
TCRs and novel epitopes (Sidhom et al., 2022). And pMTnet
(pMHC-TCR binding prediction network) was built to predict
TCR-binding to neoantigens in human tumor genomics datasets.
Notably, this program only utilized the CDR3β sequence of the TCR,
epitope sequence, and class I MHC allele (Lu et al., 2021). While
these technologies have been restricted to oncogenic research, AI is
becoming more available both within research environments and
from private companies. Utilization of this technology may lead to
the identification of novel pathogenic T cells with specific TCRs or
novel autoantigens driving autoimmune disease pathology.

4 Discussion

The rapid advances in RNA-seq technology have enabled the
analysis of the transcriptome in various ways, both serving to
further the understanding of genome function and crucially for
studying mRNA splicing and rearrangements. Many alternative
sequencing platforms are currently available, and short-read RNA-
seq combined with single-cell technology is currently the mainstay.
However, the future of autoimmune disease research lies in efficient
long-read RNA-seq. The sequence and rearrangement of TCR are
closely related to the pathogenesis of autoimmune diseases, and HLA
genes are well-documented genetic risk factors for the development of
certain autoimmune diseases. While current studies focus on HLA
typing, the clonal expansion of the immune repertoire, or CDR3motifs
in patients (differentiating from healthy individuals), in the future, by
sequencing individual T cells, we will not only be able to obtain the
sequence of TCRs, but we will also be able to obtain transcriptomic data
of T cells expressing TCRs, from which we can analyze the subtypes of
cells. Combined with accurate HLA typing and artificial intelligence
(AI)-based structural analysis, we can predict autoimmune TCR-
pMHC complexes even before the onset of the disease. Identifying
the autoantigen and TCR repertoire and generating a predictive
autoimmune response will have a significant potential for clinical
applications and also advances our knowledge of autoimmune
diseases. More importantly, the approach will bring tremendous
potential in infectious diseases, from which we can optimize vaccine
development to target individual antigen-specific TCR enhancements.
The main issues currently hindering the adoption of long-read
sequencing are the increased cost per base and the higher error rate
compared to short-read sequencing. Unlike short-read sequencing
where errors are usually clustered at both ends of the read, long-

read sequencing errors are random and can be effectively corrected by
multiple sequencing events. Still, these issues will gradually be overcome
as technology advances. With the vigorous development of the RNA
field, multidisciplinary research can bring breakthroughs in studying
autoimmune diseases.
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