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Background: The precise diagnostic and prognostic biological markers were
needed in immunotherapy for sepsis. Considering the role of necroptosis and
immune cell infiltration in sepsis, differentially expressed necroptosis-related
genes (DE-NRGs) were identified, and the relationship between DE-NRGs and
the immune microenvironment in sepsis was analyzed.

Methods: Machine learning algorithms were applied for screening hub genes
related to necroptosis in the training cohort. CIBERSORT algorithms were
employed for immune infiltration landscape analysis. Then, the diagnostic value
of these hub genes was verified by the receiver operating characteristic (ROC)
curve and nomogram. In addition, consensus clustering was applied to divide the
septic patients into different subgroups, and quantitative real-time PCR was used
to detect the mRNA levels of the hub genes between septic patients (SP) (n = 30)
and healthy controls (HC) (n= 15). Finally, amultivariate predictionmodel based on
heart rate, temperature, white blood count and 4 hub genes was established.

Results: A total of 47 DE-NRGs were identified between SP and HC and 4 hub
genes (BACH2,GATA3, LEF1, and BCL2) relevant to necroptosis were screened out
via multiple machine learning algorithms. The high diagnostic value of these hub
genes was validated by the ROC curve and Nomogram model. Besides, the
immune scores, correlation analysis and immune cell infiltrations suggested an
immunosuppressivemicroenvironment in sepsis. Septic patients were divided into
2 clusters based on the expressions of hub genes using consensus clustering, and
the immune microenvironment landscapes and immune function between the
2 clusters were significantly different. The mRNA levels of the 4 hub genes
significantly decreased in SP as compared with HC. The area under the curve
(AUC) was better in the multivariate prediction model than in other indicators.

Conclusion: This study indicated that these necroptosis hub genes might have
great potential in prognosis prediction and personalized immunotherapy for
sepsis.
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Introduction

Sepsis is defined as a life-threatening multiple-organ
dysfunction caused by the overwhelming response to infection
(Galley et al., 2022). It’s estimated that 31.5 million individuals
suffer from sepsis annually worldwide, and 5.3 million die from it
(Rudd et al., 2020). As a major public health concern, hospitalization
expenses from sepsis have been the most expensive in America for
several years, which accounted for more than $38 billion of total US
hospital costs in 2017 (van den Berg et al., 2022). Despite significant
strides in the diagnosis and treatment of sepsis, its incidence
continues to rise, underscoring the critical need for a deeper
understanding of its pathogenesis. (Li L. et al., 2022). More
sensitive and specific targets for diagnosis and therapy must be
identified through continued research efforts, as the complexities of
sepsis demand a comprehensive approach to ensure effective
management and prevention.

Necrosis, the uncontrolled death of cells, is commonly
characterized by cell and organelle swelling, loss of plasma
membrane integrity, and the release of cell contents, leading to
inflammation and tissue damage (Luo et al., 2022; Preston et al.,
2022). However, recent studies have highlighted receptor-
interacting protein (RIP) kinase-mediated necrosis as a novel
form of regulatory necrosis, known as necroptosis (Peng et al.,

2022). Necroptosis involves the activation of RIP1, along with two
downstream mediators, RIPK3 and mixed lineage kinase domain
like (MLKL), and can be inhibited by the pre-apoptotic caspase-8
(Liu et al., 2021; Al-Botaty et al., 2022). Recently, it has been reported
that necroptosis is related to the pathogenesis of many diseases,
including sepsis (Maremonti et al., 2022). Moreover, increasing
studies suggested that inhibition of necroptosis might be a
promising target in treating sepsis. However, the role of
necroptosis-related genes (NRGs) in sepsis is still unclear.

The dysregulation of the immune system is a pivotal mechanism
underlying sepsis. During the initial phase of sepsis, the exaggerated
inflammatory response triggers the recruitment of a large number of
neutrophils, which play a crucial role in pathogenic bacterial
clearance but also cause tissue damage (Ioannou et al., 2022).
The damaged cells can promote the inflammatory response as
endogenous inflammatory inducers. In addition,
M1 macrophages also release excessive proinflammatory
cytokines, such as IL-1, IL-8, TNF-α, and IFN-γ (Gharamti et al.,
2022). Furthermore, dendritic cells (DCs) can activate toll-like
receptors (TLRs) and generate excessive pro-inflammatory
factors, which augment the immune response. These over-
activated responses ultimately lead to the formation of an
“inflammatory storm,” which significantly impairs normal
immune function (Xiao et al., 2018). With the development of

FIGURE 1
Diagram of the experiment scheme.
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sepsis, the over activation stage gradually transforms into the
immune paralysis or immunosuppression stage (Zhang C. Y.
et al., 2019; Forceville et al., 2021). This stage is characterized by
increased apoptosis of neutrophils and T cells, immature DCs
secreting IL-10 to inhibit immune responses, differentiation of
regulatory T cells that secrete IL-10, IL-35, and TGF-β, and an
evident imbalance in helper T cell subsets. These work together to
make the body lose its normal immune function. Therefore, it is of
great significance to improve the immune microenvironment for the
treatment of septic patients, and immunotherapy has a broad
prospect for clinical application in sepsis. But in sepsis, the
relationship between immune infiltration characterization and
necroptosis remains unknown.

Machine learning is one of the most important branches of
artificial intelligence. By automatically learning the internal
pattern of data by feature extraction, machine learning can
constantly improve its performance (Chen S. et al., 2022;

Monti et al., 2022). The main algorithms include random
forest (RF), decision tree (DT), artificial neural network
(ANN), and support vector machine (SVM) (Mukherjee et al.,
2022; Zaitsev et al., 2022; Zhu et al., 2022; Amiri et al., 2023).
Rather than the traditional diagnosis and treatment mode,
machine learning provides a totally new insight to improve
diagnosis efficiency and more objective and personalized
evaluation for patients (Du et al., 2022; Song and Zhao, 2022).
Although machine learning has become particularly prominent
in the field of diagnosis, it is rarely used in identifying potential
diagnostic and prognostic targets in sepsis.

We aimed to identify novel necroptosis-related hub genes in
sepsis via machine learning algorithms. The role of these NRGs in
immune cell infiltration features was investigated to gain more
information on the underlying molecular immune mechanisms
during the development of sepsis and to discover the possible
intervention treatment for sepsis.

FIGURE 2
Identification and functional enrichment analysis of DE-NRGs from GEO dataset. (A) Volcano plot of DE-NRGs of GSE65682. Blue dots indicated
downregulated DE-NRGs while red dots indicate upregulated DE-NRGs. DE-NRGs were identified as those with student’s t-test p ≤ 0.05. (B) Principal
Components Analysis (PCA) score plot of GSE65682. PC1 and PC2 in the figure represent the scores of the first and second principal components
respectively. Each scatter represents a sample. The red circle represents septic patients, and the blue circle represents the healthy controls. (C) Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DE-NRGs. (D) Gene ontology (GO) results of biological process (BP) cellular
component (CC) and molecular function (MF) of DE-NRGs. Gene set enrichment analysis (GSEA) for DE-NRGs in (E) healthy controls and (F) septic
patients.
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Materials and methods

Dataset collection

In this study, three datasets included GSE65682, GSE95233,
and GSE54514, which were downloaded from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/) were collected for the subsequent analysis. The
GSE65682 which contains 760 septic patients and 42 healthy
controls was used as the training cohort for screening diagnostic
necroptosis-associated genes and subsequent immune
infiltration and correlation analysis. Additionally, GSE95233
(included 51 septic patients and 22 healthy volunteers) and
GSE54514 (included 35 septic patients and 18 healthy
volunteers) were merged as the validation cohort to verify the
mRNA expression and the diagnostic performances of hub genes.
R packages “SVA” was applied to normalize and remove the
batch effects of these gene matrices (Chen Z. et al., 2022).

According to the dataset probe annotation files, all these
dataset probes were transformed into corresponding gene
symbols using Perl scripts.

Population recruitment

The human study was approved by the Ethics Committee of
the Research Institute of Surgery and was registered by the
Chinese Clinical Trial Registry (ChiCTR2200055772). A total
of 30 septic patients, who were diagnosed by the Sepsis-3
criteria reference for sepsis and septic shock, were recruited
from Daping Hospital, Army Medical University (The
inclusion and exclusion criteria of septic patients were shown
in the Supplementary Table S1.) Fifteen age-matched healthy
volunteers were enrolled from the State Key Laboratory of
Trauma, Burns, and Combined Injury. All the participants
were admitted from December 2021 to April 2022 and

FIGURE 3
Four common hub genes were screened out viamachine language algorithm. (A) Support vector machine (SVM) was used for screening DE-NRGs.
(B) Least absolute shrinkage and selection operator (LASSO) logistic regression algorithm to screen DE-NRGs. LASSO logistic regression was performed
with 10-fold cross-validation to screen iteratively reweighted least squares (IRLs) and was performed for 1,000 cycles to select the feature variables based
on minimum criteria or 1-se criteria. (C) Random forest (RF) algorithm was used to screen DE-NRGs. Genes with an importance score greater than
1 were used for subsequent signature establishment. (D) VENN diagram of common hub genes.
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provided written informed consent prior to inclusion in this
study. A 10 mL volume of blood samples from septic patients
were collected within 24 h after admission, and the samples of
healthy controls were collected on the enrollment.

Identification of differentially expressed
necroptosis-related genes (DE-NRGs)

A total of 67 necroptosis-related genes (NRGs) were
obtained from the Molecular Signatures Database (MSigDB
database) (https://www.gsea-msigdb.org/gsea/msigdb/
genesets.jsp?collection=H) using the keyword “necroptosis”
for further investigation (Supplementary Table S2). Next, the
expression matrix of the training cohort (GSE65682) was
extracted using the R package “GEOquery”. Then, the
“limma” package in the R statistical package was conducted
for the analysis of DE-NRGs between septic patients and healthy
controls with a threshold set at p ≤ 0.05. Finally, these
significant DE-NRGs were divided into upregulated genes
and downregulated genes by the volcano plot via “ggplot2” R
packages.

Functional enrichment analysis of DE-NRGs

The “clusterProfiler” R package was applied to enrich the DE-
NRGs into pathways via GO and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis and to verify these enrichment analyses
with p-value ≤0.05. Then, the biological functions of DE-NRGs were
validated by the gene set enrichment analysis using GSEA
4.1.0 software. Significant gene sets were cut off by
FDR <0.25 and p ≤ 0.05.

Identification of hub genes via LASSO, RF
and SVM algorithm

In this study, multiple machine-learning algorithms were
applied to search the hub genes. LASSO logistic regression was
performed with ten-fold cross-validation to screen iteratively
reweighted least squares (IRLs) and was performed for
1,000 cycles to select the feature variables based on minimum
criteria or 1-se criteria. To avoid over-fitting and achieve reliable
accuracy, the random forest (RF) algorithm was performed to select
the optimal genes from the training cohort. Genes with an

FIGURE 4
Validation of hub genes in the training cohort. (A–D) Validation of the expression of hub genes in patients with sepsis and healthy controls in the
training cohort. (E–H) ROC curve of hub genes in the training cohort. (I) Prediction nomogram model was constructed based on the hub genes in the
training cohort. (J) ROC curve of the nomogram in the training cohort. ****p < 0.0001.
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importance score greater than 1 were used for subsequent signature
establishment. Through the deletion of support vector machine
(SVM) -generated eigenvectors, the optimal variables were
screened out for identifying the diagnostic hub genes in sepsis
based on the “e1071” package. At last, a Venn diagram was
performed to identify the common hub genes.

Validation of hub genes

The expressions of these hub genes were compared in the
training and validation dataset, respectively. Next, the receiver
operating characteristic (ROC) curve was employed to further
assess the classification performance of hub genes by calculating
the area under the ROC curve. A prediction nomogram model was
constructed based on these hub genes via the R package “rms”, and
the prediction capability of the model was validated using ROC
analysis. The nomogram score of each sample was calculated
according to the following formula in the train data: = (−4.16×
the expression of GATA3) + (−0.393× the expression of LEF1) +
(−1.313× the expression of BACH2) + (−1.675× the expression of
BCL2) and (−2.537× the expression of GATA3) + (0.006× the

expression of LEF1) + (−0.396× the expression of BACH2) +
(0.712× the expression of BCL2) in the test data.

Immune infiltration analysis

To investigate the immune infiltration of healthy controls and
sepsis samples, CIBERSORT algorithms were applied based on
“CIBERSORT R script v1.03 to determine the proportion of
immune cells. The correlation analysis between immune cells and
NRGs was performed via “ggplot2” R packages. The immune scores
were estimated using the R package “estimate”, and the immune
function scores were analyzed by the R package “GSVA”.

Consensus clustering

According to the 4 hub genes, consensus clustering was
performed by the R package “ConsensusClusterPlus”. The
clustering was established on the grounds of partitioning around
medoids with “Euclidean” distances, and the septic patients were
clustered into two subtypes according to the optimal classification.

FIGURE 5
Validation of hub genes in the test cohort. (A–D) Validation of the expression of the 4 hub genes in septic patients and healthy controls in the test
cohort. (E–H) ROC curve of the hub genes in the test cohort. (I) Prediction nomogrammodel was constructed based on the hub genes in the test cohort.
(J) ROC curve of nomogram in the test cohort. **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Quantitative real-time RT-PCR (qRT-PCR)

RNA was extracted from human blood samples by the
PureLink™ blood total RNA extraction kit (Invitrogen). The
purity and concentration of the extracted RNA were detected
using a NanoDrop 2000 ultraviolet-visible spectrophotometer
(Thermo). The extracted RNA was then reverse transcribed into
cDNA libraries using the Bestar™ qPCR RT Kit (DBI
Bioscience), and fluorescent quantitative PCR reactions were
performed using the Bestar® SYBRGreen qPCR master mix (DBI
Bioscience). The relative RNA expression was calculated with
the efficiency corrected 2−ΔΔCT method using β-actin as an
internal control. Gene-specific primers used in this study
were listed in Supplementary Table S3.

Statistical analysis

All statistical analyses were performed using R software (version
4.1.2). p < 0.05 was considered a statistically significant difference.
The correlation analysis was adjusted by Pearson’s correlation and
their strength was determined by the following absolute value
criteria: r = 0.00–0.19 “very weak,” r = 0.20–0.39 “weak,” r =
0.40–0.59 “moderate,” r = 0.60–0.79 “strong,” r = 0.80–1.0 “very
strong.”

Results

Identification and functional enrichment
analysis of DE-NRGs

The diagram of the experiment scheme was shown in
Figure 1. Compared with non-sepsis samples, 67 necroptosis-
related genes (NRGs) were involved in GSE65682, of which
20 NRGs were upregulated and 28 were downregulated (p ≤
0.05) (Figure 2A; Supplementary Table S4). Principal component
analysis (PCA) illustrated a remarkable separation between the
healthy control and sepsis group based on the NRGs (Figure 2B).
The results of KEGG pathway analysis showed that the DE-NRGs
were mainly enriched in Necroptosis, Salmonella infection,
Apoptosis, and TNF signaling pathway (Figure 2C). As for
GO analysis (Figure 2D), cellular component (CC) showed
that DE-NRGs were mainly distributed in membrane
microdomain, membrane raft, organelle outer membrane, site
of polarized growth and so on. The top 10 molecular function
(MF) included DNA−binding transcription factor binding and
ubiquitin−like protein ligase binding, and tumor necrosis factor
receptor superfamily binding, etc. The top 10 biological
processes (BP) of DE-NRGs were shown in Figure 2D,
including extrinsic apoptotic signaling pathway, necrotic cell
death, I−kappa B kinase/NF−kappa B signaling, and
programmed necrotic cell death events (Figures 2E, F).
Additionally, GSEA analysis of DE-NRGs of the healthy
controls and septic patients were exhibited in Figures 2E, F,
respectively. Patients with sepsis showed over-representation of
sub-networks linked to aminoacyl tRNA biosynthesis, and ECM
receptor interaction.

Four common hub genes were screened out
via machine language algorithm

A total of 6 hub genes were identified by the best support vector via
the SVM algorithm The best support vector was screened according to
the RMSE (rootmean square error). The smaller the RMSE, the better the
fitting (Figure 3A). LASSO logistic regression was established to shrink
the regression coefficients toward zero and select out hub genes. As
shown in Figures 3A, B total of 21 hub genes were screened. Likewise, RF
was also built for hub genes screening (Figure 3C), and 11 hub genes were
screened out. Finally, the intersection of the results of these 3 methods
contained the 4 common hub genes (BACH2, GATA3, LEF1, and BCL2)
shown below the Venn diagram (Figure 3D).

Validation of hub genes in the training and
test cohort

The expressions of the 4 hub genes were validated in the training
cohort (GSE65682) (Figures 4A–D). ROC curves showed that these hub
genes had an excellent prediction ability for sepsis with the area under
the curve (AUC) ratio>90% (Figures 4E–H). Subsequently, a model of
the nomogram was established to evaluate the diagnostic capability of
the hub genes (Figure 4I). The ROC of the nomogramwas 0.994, which
exhibited a satisfactory diagnostic capability of sepsis (Figure 4J). Then,
the expressions of these 4 hub genes were validated in the merged test
cohort (GSE95233 and GSE54514) (Figures 5A–D). The prediction
ability of BACH2, GATA3, LEF1, and BCL2 were validated, with an
AUC of 0.662, 0.752, 0.662, and 0.647, respectively (Figures 5E–H).
Then, a nomogram model was also established to assess the diagnostic
capability of the hub genes (Figure 5I). The ROC of the nomogram was
0.754 (Figure 5J).

Relationships between the hub genes and
infiltrating immune cells

First, a person’s correlation coefficient analysis of the
22 types of immune cells was shown in the Figure 6A. Then,
immune-cell proportion comparisons between septic patients
and healthy controls were analyzed in the dataset GSE65682
(Figure 6B). The fractions of memory B cells, CD8 T cells,
activated memory CD4 T cells, resting memory CD4 T cells, and
Tregs were found to be lower in the septic patients, whereas the
fraction of gamma delta T cells, monocytes, activated NK cells,
macrophages, resting Mast cells, Eosinophils, and Neutrophils
were higher in the healthy controls (Figure 6B). Next, the
correlation between immune cells and the 4 hub genes was
shown in the correlation thermogram. GATA3 was found to be
positively correlated with the infiltrating Tregs, CD8 T cells,
memory activated CD4 T cells, resting NK cells, and resting
DCs, while BCL2 was positively correlated with the memory
B cells and activated NK cells. In addition, both LEF1 and
BACH2 were positively correlated with M1 macrophages,
M2 macrophages, monocytes, and Neutrophils
(Figure 6C).The immune scores showed that the immune
state of immune cells in the SP group was lower than the HC
group (Figure 6D). The results of immune scores and
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correlation between the 4 hub genes and immune-cell
infiltrations suggested an immunosuppressive
microenvironment in septic patients, and the 4 hub genes
were associated with immune infiltration in sepsis.

Searching for individualized immunotherapy
subgroups by consensus clustering

Consensus clusteringwas performed to cluster the septic patients into
2 subgroups (Figures 7A–C), and there were 470 patients in Custer A,
and 290 patients in Cluster B. The expressions of the 4 hub genes were
significantly higher in patients in Cluster B than that in Custer A (Figures
7D–G). As shown in Figure 7H, the PCA plot illustrated a remarkable
separation between Cluster A and Cluster B. The CIBERSORT results
showed that the proportion of Monocytes, Macrophages, Eosinophils,
and Neutrophils was higher in patients in Cluster A, whereas the fraction
of memory B cells, CD8 T cells, resting memory CD4 T cells, naïve
CD4 T cells, gamma delta T cells, resting NK cells, and resting mast cells

were higher in patients in Cluster B (Figure 7I). The results of Figure 7J
showed that immune functions, APC co-inhibition and Type II IFN
response, were lower in the Cluster B than in the Cluster A, while the
immune functions such as APC co-stimulation, Cytolytic activity, and
T cell co-stimulation were higher in the Cluster B than in the Cluster A
(Figure 7J). Based on the difference of immune function between two
Clusters, the personalized immunotherapy for septic patients in different
subgroups may be provided in the future.

Integration of hub genes and routine
indicators in diagnosis of sepsis

To explore the diagnostic value of these hub genes in sepsis, 30 septic
patients and 15 healthy controls were recruited (clinical information of
septic patients and healthy volunteers was shown in Supplementary Table
S5). The 28 days mortality of septic patients was 36.7% (11/30), the ICU
mortality was 13.3% (4/30), and another type of mortality was 6.7% (2/
30). The heart rate, temperature, and white blood count, which are

FIGURE 6
The landscape of Immune cell infiltration and the correlation analysis in training cohort. (A) Person’s correlation analysis of 22 types of immune cells.
(B) Analysis of immune-cell proportion comparisons between septic patients and healthy controls by CIBERSORT. (C) Person’s correlation analysis
between infiltrating immune cells and the 4 hub genes. Red nodes indicated positive correlation while blue nodes indicated negative correlation. (D)
Immune scores analyzed by the R package “estimate” between healthy control (HC) and septic patients (SP). *p ≤ 0.05, **p < 0.01, ***p < 0.001.
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routine diagnostic indicators of sepsis, were higher in the SP group
(Figures 8A–C). The blood routine data between septic patients and
healthy controls were collected, and the proportions of lymphocytes and
basophils were lower in the SP group than the HC group, while the
percent of neutrophils was higher in the SP group (Supplementary Table
S6). The results of quantitative real-time PCR showed that the mRNA
expression of the four genes was significantly lower in septic patients than
those in healthy controls (Figure 8D). The results of Figure 8E showed
that the hub genes, BCL2 and LEF1, were positively correlated with
neutrophils, and negatively correlated with lymphocytes and basophils.
Subsequently, a multivariate prediction nomogram model based on
routine diagnostic indicators and 4 hub genes was established
(Figure 8F). ROC analysis showed that the AUC of the multivariate
prediction nomogram model was highest than other indicators
(Figure 8G).

Discussion

In the present study, we identified 47 DE-NRGs between sepsis and
healthy control in the dataset GSE65682 and screened out 4 hub genes
(BACH2, GATA3, LEF1, and BCL2) via various machine learning
algorithms. By using CIBERSORT and Pearson’s correlation analysis,
we found an exhausted microenvironment in sepsis. In addition, septic
patients were divided into 2 clusters using consensus analysis, and the
difference in immunemicroenvironment between the 2 clusters provided
a theoretical basis for personalized immunotherapy of sepsis. Finally, a
multivariate prediction nomogram model based on routine diagnostic
indicators and 4 hub genes was established.

As a strictly controlled cell death, necroptosis is mainly regulated by
the RIPK1/RIPK3/MLKL Pathway, which eventually induces cell death
(Afonso et al., 2021). Recent research indicated that the role of necroptosis

FIGURE 7
Consensus clustering of septic patients and immune microenvironment landscape analysis. (A) Consensus clustering heatmap showed the optimal
classification of septic samples with K = 2. (B)Consensus CDF. (C)Delta area. (D–G)Gene expression of the 4 hub genes between Cluster A and Cluster B.
(H) PCA analysis showed a different distribution pattern in Cluster A and Cluster B. (I) The fraction of the 22 types of immune cells in Cluster A and Cluster
B. (J) The immune function scores between Cluster A and Cluster B. *p ≤ 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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was closely related to the progress of sepsis, and the prevention of
necroptosis could improve the prognosis of sepsis. RIPK3 could enhance
sepsis-induced kidney injury by promoting mitochondrial dysfunction.
It’s reported that the inhibition ofRIPK3 or RIPK1 could reduce systemic
inflammation and organ damage in newborn mice with sepsis. A clinical
study showed that the plasma level ofHMGB1was associatedwithRIPK3
and MLKL, and elevated HMGB1 ultimately led to poor prognosis in
septic patients (Chen et al., 2020; Yoo et al., 2021). Fan et al. found that in
the cecal ligation and puncture (CLP) septic mice model, down-
regulating the expression of myeloid differentiation factor 2 (MD-2),
whichwas themediator of crosstalk between apoptosis and necroptosis in
neurons, could reduce depressive-like behavior in sepsis-associated
encephalopathy (Fan et al., 2022). In the study, we found that
4 necroptosis-related hub genes (BACH2, GATA3, LEF1, and BCL2)
were closely related to sepsis, providing a potential new target for the
diagnosis and therapy of sepsis.

BACH2 is a well-known transcriptional repressor involved
in the development and function of innate and adaptive
immune cells. For example, BACH2 is essential during every
stage of B cells development, and it could delay class-switch
recombination and inhibit the differentiation of plasma cells.

BACH2 could also inhibit the transformation of CD4 T cells into
Th2 cells and promote the production of regulatory T (Treg)
cells to balance the immune response. It’s reported that BACH2
controlled the GC program by directly inhibiting the pro-
apoptotic protein BIM, revealing the precise role of BACH2
in GC biology (Marroqui et al., 2014; Hu et al., 2022). BACH2
has been found to be associated with sepsis recently. Elisa et al.
found that heme training promoted resistance to sepsis partly
by dissociation of BACH2 (Jentho et al., 2021). In this study,
BACH2 was also identified as a hub gene involved in sepsis and
associated with immune infiltration.

GATA3 is the master transcription factor of Th2 lymphocyte
differentiation. It can be used as a new target for human obesity
immune regulation by reducing macrophage recruitment and
inflammation in muscle and liver. Xu et al. found that T-bet and
GATA3 (the specific transcription factor of Th1 and Th2 cells) were
significantly downregulated in septic patients and the non-survivors than
that in healthy controls and the survivors, respectively, and the sustained
low levels of Th1 and Th2 cell subsets suggested the suppression of
adaptive immunity, which might be the leading cause of death in septic
patients (Xu et al., 2020).

FIGURE 8
Multivariate prediction nomogram model of sepsis. (A) Heart Rate. (B) Temperature. (C)White blood count. (D) Normalized gene expression of the
4 hub genes between HC and SP by qPCR. (E) Person’s correlation analysis between immune cells proportion of blood routine and the 4 hub genes. (F)
Prediction nomogram model was constructed based on multivariate indicators. (G) ROC curve of multivariate indicators. *p ≤ 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001.
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As amember of the T-cell Factor (TCF)/lymphoid enhancer-binding
factor 1 (LEF1) family of high-mobility group transcription factors, LEF1
is a mediator of the Wnt/β-catenin signaling pathway but can also
regulate gene transcription independently. Zhang et al. found that LEF1
might involve in the progress of sepsis and sepsis-induced ARDS by
analyzing the blood gene expression profiles of septic patients. Therefore,
LEF1, as a hub gene,may play a crucial role during sepsis andmay predict
the outcome of septic patients (Zhang J. et al., 2019).

BCL2 protein contains four highly conserved domains BH 1–4,
and functions as an antiapoptotic protein by regulating
mitochondrial membrane permeability and cytochrome C release.
BCL2 prevents apoptosis and promotes cellular survival by
neutralizing BH3 domain-containing proteins, which can directly
activate the pore-forming proteins BAX and BAK. Besides, BCL2 can
limit the induction of necroptosis by downregulating the RIP3-
induced phosphorylation ofMLKL to reduceMLKL oligomerization
(Campos et al., 2021; Li X. et al., 2022).

Although immunotherapy has made remarkable achievements in
tumor therapy over the last decade, the lack of specific therapeutic targets
leads to slow progress in immunotherapy for sepsis. Recently, the
significant correlation between necroptosis and immune cell
infiltration has been proven. In 2016, Aaes et al. confirmed for the
first time that necroptosis could be immunogenic (Aaes et al., 2016). They
found that the vaccination with necroptotic cancer cells could inhibit
tumor growth, and indicated that necroptotic cancer cells could efficiently
induce thematuration of dendritic cells, the cross start of cytotoxic T cells,
and IFN- γ generation, leading to adaptive immune response. Park et al.
identifiedTRIM28 as a co-repressor that regulated transcriptional activity
during necroptosis (Park et al., 2021). Activated RIPK3 phosphorylated
TRIM28, inhibited the chromatin binding activity of TRIM28, thus
promoting the activation of NF-κB. Finally, it led to the increase of
cytokine expression to enhance the immune response, such as the
maturation of dendritic cells. In the present study, consensus
clustering was used to divide the septic patients into two clusters. It
was found that the expressions of the hub genes were higher in Cluster B,
in which the proportion of B cells, CD8 T cells, CD4 T cells, resting NK
cells, and resting mast cells were higher. By contrast, the fractions of
Monocytes,Macrophages, andNeutrophils were higher in Cluster A. The
difference in immune microenvironment between subgroups of septic
patients provides an innovative insight into personalized immunotherapy
for sepsis.

Conclusion

In conclusion, using machine learning analysis we identified
4 necroptosis-related hub genes (BACH2, GATA3, LEF1, and BCL2),
which could be used as the potential di-agnostic and prognostic
biological marker in sepsis. Immune infiltration analysis revealed
that NRGs might play pivotal roles in immune response during
sepsis. Consensus analysis provided a theoretical basis for
personalized immunotherapy for sepsis.
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