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Multiple types of COVID-19 vaccines have been shown to be highly effective in
preventing SARS-CoV-2 infection and in reducing post-infection symptoms.
Almost all of these vaccines induce systemic immune responses, but
differences in immune responses induced by different vaccination regimens
are evident. This study aimed to reveal the differences in immune gene
expression levels of different target cells under different vaccine strategies after
SARS-CoV-2 infection in hamsters. A machine learning based process was
designed to analyze single-cell transcriptomic data of different cell types from
the blood, lung, and nasal mucosa of hamsters infected with SARS-CoV-2,
including B and T cells from the blood and nasal cavity, macrophages from the
lung and nasal cavity, alveolar epithelial and lung endothelial cells. The cohort was
divided into five groups: non-vaccinated (control), 2*adenovirus (two doses of
adenovirus vaccine), 2*attenuated (two doses of attenuated virus vaccine),
2*mRNA (two doses of mRNA vaccine), and mRNA/attenuated (primed by
mRNA vaccine, boosted by attenuated vaccine). All genes were ranked using
five signature ranking methods (LASSO, LightGBM, Monte Carlo feature selection,
mRMR, and permutation feature importance). Some key genes that contributed to
the analysis of immune changes, such as RPS23, DDX5, PFN1 in immune cells, and
IRF9 andMX1 in tissue cells, were screened. Afterward, the five feature sorting lists
were fed into the feature incremental selection framework, which contained two
classification algorithms (decision tree [DT] and random forest [RF]), to construct
optimal classifiers and generate quantitative rules. Results showed that random
forest classifiers could provide relative higher performance than decision tree
classifiers, whereas the DT classifiers provided quantitative rules that indicated
special gene expression levels under different vaccine strategies. These findings
may help us to develop better protective vaccination programs and new vaccines.
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1 Introduction

Since the outbreak of a novel coronavirus, known as Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), in late
2019, there has been an unprecedented global impact. In particular,
as of 28 September 2022, more than 616 million cases have been
diagnosed, and more than 6.5 million deaths have been reported
worldwide (Fabbri et al., 2014). The World Health Organization
named the disease caused by SARS-CoV-2 as coronavirus disease
2019 (COVID-19). Fever, sore throat, dry cough, and symptoms of
pneumonia are common clinical manifestations of COVID-19, and
severe COVID-19 can even lead to death (Guan et al., 2020;
Parasher, 2021). Licensed vaccines have proven highly effective in
preventing symptomatic and asymptomatic SARS-CoV-2 infections
and reducing COVID-19-related hospitalizations and deaths (Haas
et al., 2021; Castro Dopico et al., 2022), and they have given the
world hope to defeat SARS-CoV-2.

A variety of COVID-19 vaccines have beenmarketed in response to
the massive spread of SARS-CoV-2, such as mRNA vaccines,
inactivated/attenuated whole virus vaccines, adenovirus vector
vaccines, and recombinant protein vaccines. mRNA vaccines such as
the widely used BNT16b2, which contains mRNA that can encode the
SARS-CoV-2 spike protein (Mabrouk et al., 2022), have been reported
effective against infection, with effectivity accounting for 89.5%–99.2%
against alpha variants, 75%–96.4% against beta, and 42%–84.4% against
delta (Fiolet et al., 2022). Attenuated vaccines have been used against
measles virus, rubella virus, and influenza virus (Okamura and Ebina,
2021). Viruses with slow rates of proliferation in the human body were
mostly attenuated through adaptation to cold culture conditions.
(Makino et al., 1974; Parks et al., 2001). Live-attenuated vaccines
can induce immune responses against multiple antigens and activate
higher mucosal immune responses compared with other current
COVID-19 vaccines (Han et al., 2021; Okamura and Ebina, 2021),
which have a better and long-lasting immune effect. In general,
adenoviral vector vaccines modify replication-deficient adenoviruses
to express SARS-CoV-2 S protein or its epitopes (Feng et al., 2020).
Viral vector vaccines can combine the safety benefits of inactivated
vaccines with the immunological benefits of attenuated vaccines (Baron
et al., 2018). For example, ChAdOx1 has been reported to have 74.5%
protection against alpha and 67.0% protection against delta (Lopez
Bernal et al., 2021).

Almost all approved COVID-19 vaccines are effective in inducing
protective systemic immunity, including the induction of T-cell
responses (cellular immunity) (Oberhardt et al., 2021; Wherry and
Barouch, 2022) and B-cell responses (antibody immunity) (Turner
et al., 2021), along with the production of long-lived memory T cells
and memory B cells (Sette and Crotty, 2022). Vaccine composition
and dose can potentially affect the development of different immune
responses. “Homologous prime-boost” vaccination is when subjects
are given the same type of vaccine in a second dose as the first
(Mahase, 2021), whereas “heterologous prime-boost” vaccination is
when different vaccine strategies are combined in the primary and
booster phases (He et al., 2021). The majority of studies have
concluded that “heterologous prime-boost” vaccination has a

protective immunological advantage over “homologous prime-
boost” vaccination (Benning et al., 2021; Fabricius et al., 2021; Gao
et al., 2022), whereas “heterologous prime-boost” immunization may
induce severe side effects (Liu X. et al., 2021; Hillus et al., 2021).
However, few writers have been able to draw on any systematic
comparison of “homologous prime-boost” vaccination and
“heterologous prime-boost” vaccination.

This study was designed to compare the protective capacity of
different vaccination strategies, including mRNA vaccine,
adenoviral vector vaccine, and modified live-attenuated vaccine.
The mRNA vaccine BNT16b2 and the adenovirus vaccine
ChAdOx1 have received the majority of attention in recent
studies, whereas comparison studies on attenuated vaccine are
limited. Cell samples in eight cell types from the blood, lungs,
and nasal mucosa of Syrian hamsters were divided into five
groups: non-vaccinated (control), 2*adenovirus (two doses of
adenovirus vaccine), 2*attenuated (two doses of attenuated virus
vaccine), 2*mRNA (two doses of mRNA vaccine), and mRNA/
attenuated (primed by mRNA vaccine, boosted by attenuated
vaccine). Based on single-cell data on gene expression in Syrian
hamsters infected with SARS-CoV-2 by nasal drip 21 days after two
doses of vaccine, machine learning based analysis was designed to
explore differences in immune memory protection induced by
different prime-boost vaccination strategies and target cell
immune status after SARS-CoV-2 infection. Five feature ranking
algorithms: least absolute shrinkage and selection operator (LASSO)
(Ranstam and Cook, 2018), light gradient boosting machine
(LightGBM) (Ke et al., 2017), Monte Carlo feature selection
(MCFS) (Dramiński and Koronacki, 2018), max-relevance and
min-redundancy (mRMR) (Peng et al., 2005), and permutation
feature importance (PFI) (Fisher et al., 2019) were applied to the
single-cell data on each cell type, yielding five feature lists. These lists
were fed into incremental feature selection (IFS) (Liu and Setiono,
1998), which incorporated decision tree (DT) (Safavian and
Landgrebe, 1991) and random forest (RF) (Breiman, 2001), to
extract important features, build effective classifiers and
classification rules. The classifier and rules can be used to
monitor the level of immunity and disease risk in SARS-CoV-2-
infected patients following different vaccine combination. The
features (e.g., RPS23, DDX5, PFN1 in immune cells, and IRF9
and MX1 in tissue cells) and rules identified in this study could
be helpful in the research for prime-boost vaccination methods,
providing improved protection and duration.

2 Materials and methods

The entire workflow used in this study is shown in Figure 1.
After grouping the obtained expression profile data on each cell type,
the genes were ranked using several feature ranking algorithms, and
a number of ranked lists were generated. Then, each list was fed into
the IFS method with DT or RF. Two optimal classifiers were
constructed. The methods involved are described in detail in this
section.
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2.1 Data

Expression profiling data for different cell types from Syrian
hamsters were obtained from the GEO database under accession
number GSE200596 (Nouailles et al., 2022). These data describe the
cellular response to SARS-CoV-2 infection in hamsters vaccinated
with mRNA vaccine, adenovirus vaccine, and attenuated virus
vaccine for 21 days. Data were obtained from immune cells and
tissue cells, including blood T cells, blood B cells, nasal T cells, nasal
B cells, lung macrophages, nasal macrophages, alveolar epithelial
and lung endothelial cells. Cell samples in each cell type were divided
into five groups based on vaccination status: non-vaccine group
(control group), 2*adenovirus group (two doses of adenovirus
vaccine), 2*attenuated group (two doses of attenuated virus
vaccine sCPD9), 2*mRNA group (two doses of mRNA vaccine),
and mRNA/attenuated group (primed by mRNA vaccine and
boosted by attenuated vaccine sCPD9). Table 1 demonstrates the
number of cells in each group for eight cell types. Each sample from
the blood, nasal cavity, and lungs contained 14661, 18927, and
19024 genes, respectively. Using genes as features and five groups as
sample labels, they were entered into a machine learning framework
for the analysis of the classification problem.

2.2 Feature ranking algorithms

Each sample was represented by a large number of features. It is
necessary to understand which of these genes are associated with
COVID-19 vaccination and SARS-CoV-2 infection. The genes
involved in each cell type were analyzed using five ranking
algorithms and sorted by their importance. These algorithms
included LASSO (Ranstam and Cook, 2018), LightGBM (Ke
et al., 2017), MCFS (Dramiński and Koronacki, 2018), mRMR
(Peng et al., 2005), and PFI (Fisher et al., 2019). These methods
have been widely practiced in solving life science problems (Zhao
et al., 2018; Li et al., 2022a; Li et al., 2022b; Li Z. et al., 2022; Lu et al.,
2022; Huang et al., 2023a; Huang et al., 2023b).

2.2.1 Least absolute shrinkage and selection
operator

LASSO is a regression analysis method that can accomplish
feature selection. It inputs the feature matrix into a first-order
penalty function that treats the features as independent variables.
This penalty function contains L1-type regularization terms. After
optimization, features that tend to contribute more greatly affect the
outcome of the function, a process is executed to adjust the
coefficients of the independent variable. Consequently, the
coefficients of some features decrease to zero, which are
considered as redundant features by the algorithm and
eliminated. The magnitude of the absolute value of the
coefficients of the independent variables is picked up to
determine the importance of the corresponding features.
Accordingly, features can be ranked in a list. To execute LASSO,
the package collected in Scikit-learn (Pedregosa et al., 2011) was
used in this study. Default parameters were adopted.

FIGURE 1
Flow chart of the entire computational analysis. Gene expression
profiling data of SARS-CoV-2 infection in hamster were analyzed
using a machine learning based approach with samples from blood
T cells, blood B cells, nasal T cells, nasal B cells, lung
macrophages, nasal macrophages, alveolar epithelial cells, and lung
endothelial cells. Each cell has five vaccination states, that is,
unvaccinated, two doses of adenovirus vaccine, two doses of
attenuated virus vaccine, two doses ofmRNA vaccine, and one dose of
mRNA followed by one dose of attenuated vaccine. Gene features
were analyzed by five feature selection methods, namely, LASSO,
LightGBM, MCFS, mRMR, and PFI. The resulting feature lists were fed
into the incremental feature selection (IFS) method to extract the
underlying genes, construct effective classifiers and classification
rules.
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TABLE 1 Sample size of five vaccination strategies from eight cell types.

Cell type COVID-19 vaccination strategy Sample size

Blood B cells Non-vaccinated 316

Adenovirus vaccine + Adenovirus vaccine 524

Attenuated vaccine + Attenuated vaccine 1,018

mRNA vaccine + mRNA vaccine 547

mRNA vaccine + Attenuated vaccine 722

Blood T cells Non-vaccinated 90

Adenovirus vaccine + Adenovirus vaccine 242

Attenuated vaccine + Attenuated vaccine 523

mRNA vaccine + mRNA vaccine 272

mRNA vaccine + Attenuated vaccine 306

Nasal B cells Non-vaccinated 88

Adenovirus vaccine + Adenovirus vaccine 38

Attenuated vaccine + Attenuated vaccine 20

mRNA vaccine + mRNA vaccine 61

mRNA vaccine + Attenuated vaccine 96

Nasal T cells Non-vaccinated 54

Adenovirus vaccine + Adenovirus vaccine 43

Attenuated vaccine + Attenuated vaccine 12

mRNA vaccine + mRNA vaccine 45

mRNA vaccine + Attenuated vaccine 61

Nasal macrophages Non-vaccinated 417

Adenovirus vaccine + Adenovirus vaccine 303

Attenuated vaccine + Attenuated vaccine 45

mRNA vaccine + mRNA vaccine 180

mRNA vaccine + Attenuated vaccine 205

Lung macrophages Non-vaccinated 1,437

Adenovirus vaccine + Adenovirus vaccine 804

Attenuated vaccine + Attenuated vaccine 753

mRNA vaccine + mRNA vaccine 1,030

mRNA vaccine + Attenuated vaccine 645

Alveolar epithelial cells Non-vaccinated 614

Adenovirus vaccine + Adenovirus vaccine 481

Attenuated vaccine + Attenuated vaccine 481

mRNA vaccine + mRNA vaccine 356

mRNA vaccine + Attenuated vaccine 286

Lung endothelial cells Non-vaccinated 869

Adenovirus vaccine + Adenovirus vaccine 527

Attenuated vaccine + Attenuated vaccine 724

mRNA vaccine + mRNA vaccine 362

mRNA vaccine + Attenuated vaccine 322
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2.2.2 Light gradient boosting machine
The LightGBM method is derived from the gradient boosting DT,

which is a tree structure. It is suitable for handling high-dimensional
data because it can bundle mutually exclusive features during
computation. A leaf-wise growth strategy was used to determine the
attributes of the instances, and only the branches with high efficiency
were extended. Therefore, the higher the degree of participation in the
construction of the tree, the higher the degree of feature contribution it
represents. Thus, features can be ranked in accordance with the degree
of involvement. The present study adopted the LightGBM program
obtained from https://lightgbm.readthedocs.io/en/latest/. For
convenience, it was executed with default parameters.

2.2.3 Monte Carlo feature selection
The MCFS method is executed by constructing a number of

independent DTs. The features and training samples used to build
these trees are randomly selected. The random selection yields p
subsets of features, and for each feature subset, t datasets are built by
randomly splitting training and test samples. A DT is built on each
dataset. Thus, p × t classification trees can be constructed. The
importance of each feature is expressed using the relative
importance (RI) score, which can be computed by

RIg � ∑p×t

τ�1 ωACC( )u ∑
ng τ( ) IG ng τ( )( ) no.in ng τ( )

no.in τ
( )v

, (1)

In the formula, ωACC is the weighted accuracy of the tree τ;
ng(τ) is a node in the tree τ whose information gain is denoted as
IG(ng(τ)), and no.in ng(τ) denotes the sample size of ng(τ), no.in τ
denotes the sample size in the root of τ. In addition, u and v are two
positive numbers weighting ωACC and no.in ng(τ)/no.in τ,
respectively. The higher the RI score of a feature, the more
important it is. Features can be sorted in a list with the
decreasing order of their RI values. The MCFS program was
retrieved from http://www.ipipan.eu/staff/m.draminski/mcfs.html,
which was performed with default parameters.

2.2.4 Max-relevance and min-redundancy
mRMR aims to select features that are least correlated with other

features but have maximum correlation with the target variable. The
correlation between the features and target variable and the
redundancy between features are all measured by mutual
information (MI). It first creates an empty list of features and
selects one feature in each round. Generally, the feature with the
highest correlation to target variable and lowest redundancy to
features already in the list is selected and appended to the list.
The process is repeated until all features are in the list. The mRMR
package adopted in this study was obtained from http://home.
penglab.com/proj/mRMR/. It was run using default parameters.

2.2.5 Permutation feature importance
RF is a powerful classification algorithm. It can also be used to

evaluate the importance of features. Its logic is simple. If the values of
a feature are permutated randomly in such a way that it causes a
larger prediction error, then the feature is more important.
Conversely, if it does not cause a change in the prediction result,
then the feature is considered unimportant. Features are ranked in a
list in terms of the change of prediction error. Here, the PFI program

was downloaded from scikit-learn (Pedregosa et al., 2011). It was
performed with default parameters.

Above feature ranking algorithms were applied to the expression
profiling data on each cell type. For easy descriptions, the lists
generated by these five algorithms were called LASSO, LightGBM,
MCFS, mRMR and PFI feature lists.

2.3 Incremental feature selection

Above five algorithms only sorted features in five lists, which did not
tell us which features can be picked up for setting up classifiers.
However, these lists had a common trait, that is, features with high
ranks were more important than others. This indicated that some top
features in the list can be used to build a classifier with good
performance. In view of this, the IFS method (Liu and Setiono,
1998) was employed in this study, which can determine the features
that achieve the best classification performance for one classification
algorithm. It transforms the feature list into a series of feature subsets,
where the features in each subset are taken from the top ones of the list,
but each subset contains a different number of features. The number of
features in each subset is incremented by a step compared with the
previous subset. For example, if the step is 10, the first subset contains
the first 10 features of the list, the second subset contains the first
20 features of the list, and so on. Then, these subsets are fed into one
classification algorithm to construct classifiers, and their performance is
evaluated using 10-fold cross-validation (Kohavi, 1995). The
performance of these classifiers is observed, and the optimal classifier
is selected, at which point the feature subset is the optimal feature subset.

2.4 Synthetic minority oversampling
technique

The sample sizes were not consistent across inoculation strategies,
for example, in the nasal macrophage dataset, the sample size of the
non-vaccine group was 9.3 times larger than that of the two*
attenuated group. These unbalanced data sets lead to preferences
in the results of the classifier. The synthetic minority oversampling
technique (SMOTE) method (Chawla et al., 2002) was used to tackle
such problem in this study. It adds new samples tominority classes for
enlarging its size. In detail, SMOTE randomly selects a sample from a
minority class and then determines the k nearest samples of the
selected sample in the same class using the Euclidean distance as a
metric. On the line segment between one randomly selected nearest
neighbor and the current sample, a random point is selected and
treated as a newly generated sample. This process is repeated until the
data set is balanced. Here, we used the program downloaded from
https://github.com/scikit-learn-contrib/imbalanced-learn to
implement SMOTE. The default parameters were adopted.

2.5 Classification algorithm

As previously described, IFS must be coupled with a
classification algorithm. In this study, DT (Safavian and
Landgrebe, 1991; Zhang et al., 2021a; Zhang et al., 2021b) and
RF (Breiman, 2001; Chen et al., 2021; Ran et al., 2022; Yang and
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Chen, 2022; Wang and Chen 2023) were used to construct the
classifiers. Their brief introduction is as below.

2.5.1 Random forest
RF is one of the most classic classification algorithms in machine

learning. In fact, it is an ensemble algorithm, which contains several
DTs. Each tree is constructed by randomly selecting samples and
features and the selected samples are as many as the training samples
but can be same for some samples. For a test sample, each tree
provides its decision. The result of RF is determined in accordance
with the majority rule on all decisions. To implement RF, the
corresponding package in scikit-learn (Pedregosa et al., 2011) was
employed. For convenience, it was performedwith default parameters.

2.5.2 Decision tree
Although RF is a powerful classification algorithm, the underlying

classification principle is difficult to capture as it is a black-box
algorithm. In this case, few medical insights can be obtained. DT
is a classic white-box algorithm as the classification procedures are
completely open, which provides more opportunities to understand
the classification principle. It can be represented by a tree, where each
internal node represents a feature with a threshold and each leaf node
indicates the predicted result (class label). In addition to the tree
representation, DT can also be represented by a group of rules. Each
rule is generated by a path from the root to one leaf node. These rules
imply the essential clues hidden in the investigated dataset. Similar to
RF, the DT package in scikit-learn (Pedregosa et al., 2011) was
employed to construct DT classifiers in IFS method.

2.6 Performance evaluation

The F1-measure is often used in machine learning to evaluate
the performance of classifiers (Powers, 2011; Liang et al., 2020; Tang
and Chen, 2022; Wu and Chen, 2022; Li et al., 2023; Wu and Chen,
2023). For multi-classification problems, F1-measure is defined for
each class, which can be computed by

Precisioni � TPi

TPi + FPi
(2)

Recalli � TPi

TPi + FNi
(3)

F1 −measurei � 2 × Precisioni × Recalli
Precisioni + Recalli

(4)

where TPi, FPi and FNi represent true positive, false positive, and
false negative for the ith class, i is the index of one class. To evaluate
the overall performance of the classifiers, the F1-measure values on all
classes can be integrated, inducing two measurements: macro F1 and
weighted F1. Macro F1 is the direct average of all F1-measure values,
whereas weighted F1 further considered the weights of F1-measure
values on different classes. The weighted F1 can be expressed by

Weighted F1 � ∑L

i
wi × F1 −measurei (5)

where L represents the number of classes and wi represents the
proportion of samples in the ith class to overall sample.

In addition, prediction accuracy (ACC) and Matthews
correlation coefficients (Matthews, 1975; Gorodkin, 2004; Wang

and Chen, 2022) were also used for evaluation. ACC is one of the
most widely used measurements, which is defined as the proportion
of correctly predicted samples. However, such measurement is not
very accurate when the dataset is imbalanced. For such dataset,
MCC is a more objective measurement. It can be computed by

MCC � cov X,Y( )����������������
cov X,X( )cov Y,Y( )√ (6)

where X and Y are two matrices, indicating the true and predicted
classes of all samples, cov(X,Y) stands for the correlation coefficient
of two matrices.

3 Results

3.1 Feature ranking results

The expression profiling data on each cell type was analyzed by
five feature ranking algorithms. Each algorithm yielded one feature
list. Totally, five feature lists (LASSO, LightGBM, MCFS, mRMR
and PFI feature lists) were obtained for each cell type. All these lists
on eight cell types are provided in Supplementary Table S1.

3.2 Results of incremental feature selection

For each cell type, five feature lists were obtained, as listed in
Supplementary Table S1. Each list was fed into IFS workflow one
by one. Although huge number of features were included in each
list, only a few features may be highly related to indicate the
differences on immune responses of different vaccination status.
Thus, it was not necessary to consider all features in the list. Here,
we focused on the top 2000 features in each list and adopted step
10 to construct feature subsets in IFS method. Accordingly,
200 feature subsets were constructed, on each of which one
DT classifier and one RF classifier were set up. SMOTE was
employed to tackle imbalanced problem when building each
classifier. All classifiers were evaluated by 10-fold cross-
validation. Detailed evaluation results are shown in the
Supplementary Table S2. Weighted F1 was selected as the
major measurement. Several IFS curves were plotted to show
the performance of DT and RF under different numbers of top
features in each list, as shown in Figures 2–9.

3.2.1 IFS results of immune cells
For blood B cells, the IFS curves of DT and RF are illustrated in

Figures 2A, B, respectively. It can be observed from Figure 2A that
DT classifier with the top 70 features in the MCFS feature list can
generate the highest weighted F1 of 0.712. As for RF, the best RF
classifier adopted the top 200 features in the LightGBM feature list
(Figure 2B). The detailed performance of above two classifiers is
listed in Table 2. Clearly, the best RF classifier was superior to the
best DT classifier. Furthermore, IFS results with RF were generally
better than those with DT.

For blood T cells, Figures 3A, B show the IFS curves of DT
and RF on five feature lists. From Figure 3A, DT classifier with
top 1,060 features in the mRMR feature list can generate perfect
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performance with weighted F1 = 1. For RF, the best performance
with weighted F1 = 0.971 was obtained using top 1,220 features
in the mRMR feature list (Figure 3B). The detailed performance

of these two classifiers is provided in Table 2. It is amazing that
this DT classifier provided better performance than the RF
classifier.

FIGURE 2
IFS curves of two classification algorithms on five feature lists for blood B cells. (A) IFS curves of the decision tree (DT). (B) IFS curves of the random
forest (RF). The best DT/RF classifier used top 70/200 features in the MCFS/LightGBM feature list.

FIGURE 3
IFS curves of two classification algorithms on five feature lists for blood T cells. (A) IFS curves of the decision tree (DT). (B) IFS curves of the random
forest (RF). The best DT/RF classifier used top 1,060/1,220 features in the mRMR/mRMR feature list.

FIGURE 4
IFS curves of two classification algorithms on five feature lists for nasal B cells. (A) IFS curves of the decision tree (DT). (B) IFS curves of the random
forest (RF). The best DT/RF classifier used top 1900/1,520 features in the MCFS/MCFS feature list.
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For Nasal B cells, the IFS curves of DT and RF on five feature lists
are shown in Figures 4A, B, respectively. When using DT as the
classification algorithm, its best performance was obtained by using

top 1900 features in the MCFS feature list (Figure 4A). In this case,
DT yielded the weighted F1 of 0.610. As for the other classification
algorithm, RF, it can be observed from Figure 4B that the top

FIGURE 5
IFS curves of two classification algorithms on five feature lists for nasal T cells. (A) IFS curves of the decision tree (DT). (B) IFS curves of the random
forest (RF). The best DT/RF classifier used top 80/1,040 features in the LightGBM/MCFS feature list.

FIGURE 6
IFS curves of two classification algorithms on five feature lists for nasal macrophages. (A) IFS curves of the decision tree (DT). (B) IFS curves of the
random forest (RF). The best DT/RF classifier used top 70/1760 features in the LightGBM/LightGBM feature list.

FIGURE 7
IFS curves of two classification algorithms on five feature lists for lung macrophages. (A) IFS curves of the decision tree (DT). (B) IFS curves of the
random forest (RF). The best DT/RF classifier used top 100/110 features in the LightGBM/LightGBM feature list.
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1,520 features in the MCFS features can support it in producing the
best weighted F1 of 0.779. The detailed performance of above DT
and RF classifiers is listed in Table 2. Generally, RF classifiers in this
cell type on different feature lists were better than DT classifiers.

For Nasal T cells, the IFS curves of DT and RF on five feature
lists are provided in Figures 5A, B, respectively. By observing
Figure 5A, DT yielded the highest weighted F1 of 0.607 when
top 80 features in the LightGBM feature list were adopted. For
RF, its highest performance with weighted F1 of 0.773 was accessed
when top 1,040 features in the MCFS feature list were used
(Figure 5B). Table 2 also shows the detailed performance of
above DT and RF classifiers. Evidently, RF classifiers on different
lists were superior to DT classifiers according to the IFS results on
this cell type.

For Nasal macrophages, the IFS curves of DT and RF on five
feature lists are shown in Figures 6A, B. By observing the five IFS
curves of DT, as shown in Figure 6A, the highest weighted F1 was
0.731, which was obtained by using top 70 features in the LightGBM
feature list. With the same operation, the highest weighted F1 of RF
was 0.870 when top 1760 features in the LightGBM feature list were
employed. The detailed performance of above DT and RF classifiers

is also listed in Table 2. Again, the RF classifiers on different lists
provided the better performance than DT classifiers.

For Lung macrophages, IFS curves of DT and RF are
illustrated in Figures 7A, B, respectively. With the same
arguments, DT and RF yielded the highest performance when
top 100 and 110, respectively, features in the LightGBM feature
list were used. They yielded the weighted F1 of 0.733 and 0.838,
respectively. Detailed performance of such two classifiers is listed
in Table 2. RF classifiers on different lists also generated better
performance than DT classifiers.

3.2.2 IFS results of tissue cells
For alveolar epithelial cells, the IFS curves of DT and RF on

five feature lists are provided in Figures 8A, B, respectively. For
DT, it can yield the highest weighted F1 of 1.000 (i.e., the perfect
performance) when top 1,470 features in the mRMR feature list
were used, which can be observed from Figure 8A. As for RF, its
best performance was obtained by using top 1,660 features in the
mRMR feature list, which produced the weighted F1 of 0.873
(Figure 8B). The detailed performance of above two classifiers is
listed in Table 2. Although above DT classifier was better than

FIGURE 8
IFS curves of two classification algorithms on five feature lists for lung alveolar epithelial cells. (A) IFS curves of the decision tree (DT). (B) IFS curves of
the random forest (RF). The best DT/RF classifier used top 1,470/1,660 features in the mRMR/mRMR feature list.

FIGURE 9
IFS curves of two classification algorithms on five feature lists for lung endothelial cells. (A) IFS curves of the decision tree (DT). (B) IFS curves of the
random forest (RF). The best DT/RF classifier used top 60/170 features in the LightGBM/LightGBM feature list.
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above RF classifier, the optimal DT classifiers on other four
feature lists were generally weaker than the optimal RF
classifiers on the same feature list.

For lung endothelial cells, Figure 9A shows the IFS curves of DT on
five feature lists. It can be observed that DT yielded the best
performance with weighted F1 of 0.753 when top 60 features in the
LightGBM feature list were adopted. As for RF, its IFS curve is provided
in Figure 9B, from which we can see that the highest weighted F1 was
0.924. Such performance was obtained by using top 170 features in the
LightGBM feature list. The detailed performance of above DT and RF
classifiers is listed in Table 2. Clearly, the RF classifier was superior to
DT classifier. Furthermore, from Figure 9, DT classifiers were evidently
weaker than RF classifiers on the same feature list.

3.2.3 Intersection of different feature lists
According to Figures 2–9, several optimal classifiers employed lots of

top features in the corresponding lists. In this case, their efficiencies were
not very high. For each of such classifiers, we want to find out another
classifier which adoptedmuch less features, whereas its performance was
a little lower than the optimal classifier. These classifiers were called
feasible classifiers for convenience. The difference on the performance of
feasible and optimal classifiers on different feature lists for eight cell types
is provided in Table 3 (if exist). It can be observed that the weighted F1 of
one feasible classifier was very close to that of the optimal classifier. The
proportions were higher than 90%.However, the features used in feasible
classifiers were much less than those used in the optimal classifiers. Most
proportions were lower than 40%. Such results further indicated that
features used in feasible classifiers were most important, which can
capture the essential differences on immune responses between different
vaccination strategies.

For each cell type, different features were used in the feasible
classifiers on different feature lists. Some features may be adopted in
multiple feasible classifiers, which can be deemed as more important
than others. To show the relationship between five feature subsets
used in five feasible classifiers (if feasible classifier was not available,
optimal classifier was used), a Venn diagram was plotted for each
cell type, as shown in Figure 10. The intersection results for eight cell
types are presented in Supplementary Table S3. Some gene features
occurred in multiple feature subsets would be analyzed in
Section 4.1.

3.3 Classification rules

Based on the IFS curves shown in Figures 2–9, the
performance of DT classifiers is generally lower than that of
RF classifiers. However, as mentioned in the introduction of DT
(Section 2.5.2), the interpretability of DT classifiers for prediction
can help us analyze their biological significance, which cannot be
obtained from RF classifiers. Based on the optimal DT classifiers
on different feature lists for each cell type, we extracted the
number of optimal features for these DT classifiers. These
features were used to represent each sample and a large tree
was learned from such representation of all samples. A group of
quantitative classification rules can be extracted from such tree.
Supplementary Tables S4–11 provide the rule groups yielded by
DT on different feature lists for eight cell types. Each rule
contained several conditions and one result, describing the
expression levels of genes under the corresponding vaccination
strategies.

TABLE 2 Performance of the best classifiers for eight cell types based on two classification algorithms.

Cell type Classification algorithm (Feature list) Number of features Weight F1 MCC ACC

Blood B cells DT (MCFS feature list) 70 0.712 0.627 0.71

RF (LightGBM feature list) 200 0.894 0.863 0.894

Blood T cells DT (mRMR feature list) 1,060 1.000 1.000 1.000

RF (mRMR feature list) 1,220 0.971 0.961 0.971

Nasal B cells DT (MCFS feature list) 1900 0.610 0.483 0.611

RF (MCFS feature list) 1,520 0.779 0.706 0.779

Nasal T cells DT (LightGBM feature list) 80 0.607 0.489 0.605

RF (MCFS feature list) 1,040 0.773 0.715 0.777

Nasal macrophages DT (LightGBM feature list) 70 0.731 0.64 0.727

RF (LightGBM featue list) 1760 0.870 0.825 0.870

Lung macrophages DT (LightGBM feature list) 100 0.733 0.660 0.733

RF (LightGBM feature list) 110 0.838 0.795 0.839

Alveolar epithelial cells DT (mRMR feature list) 1,470 1.000 1.000 1.000

RF (mRMR feature list) 1,660 0.873 0.838 0.873

Lung endothelial cells DT (LightGBM feature list) 60 0.753 0.678 0.750

RF (LightGBM feature list) 170 0.924 0.901 0.924
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TABLE 3 Difference between feasible and optimal classifiers on five feature lists for eight cell types.

Cell Type Feature list Classification algorithm Proportion to the optimal classifier

Number of features Weighted F1

Blood B cells LASSO feature list RF 13.33% 98.52%

LightGBM feature list RF 25.00% 98.66%

MCFS feature list RF 21.62% 98.20%

mRMR feature list RF 50.00% 98.06%

PFI feature list RF 19.35% 98.53%

Blood T cells LASSO feature list RF 31.25% 97.32%

LightGBM feature list RF 11.48% 98.17%

MCFS feature list RF 6.25% 96.63%

mRMR feature lista - - -

PFI feature list RF 42.86% 98.80%

Nasal B cells LASSO feature list RF 10.20% 95.12%

LightGBM feature list RF 37.50% 97.87%

MCFS feature list RF 19.08% 90.12%

mRMR feature list RF 26.67% 94.38%

PFI feature list RF 43.75% 96.24%

Nasal T cells LASSO feature list RF 27.27% 95.29%

LightGBM feature lista - - -

MCFS feature list RF 42.31% 97.54%

mRMR feature list RF 27.78% 95.94%

PFI feature list RF 29.41% 98.20%

Nasal macrophages LASSO feature list RF 65.07% 95.94%

LightGBM feature list RF 2.84% 99.08%

MCFS feature list RF 7.00% 96.52%

mRMR feature list RF 26.67% 98.61%

PFI feature list RF 5.00% 97.56%

Lung macrophages LASSO feature list RF 4.09% 94.77%

LightGBM feature list RF 54.55% 99.16%

MCFS feature list RF 13.43% 99.14%

mRMR feature list RF 26.47% 97.29%

PFI feature list RF 14.71% 96.98%

Alveolar epithelial cells LASSO feature list RF 6.08% 93.81%

LightGBM feature list RF 23.81% 99.15%

MCFS feature list RF 36.00% 96.70%

mRMR feature lista - - -

PFI feature list RF 61.54% 98.87%

Lung endothelial cells LASSO feature list RF 5.82% 90.84%

LightGBM feature list RF 23.53% 98.92%

(Continued on following page)

Frontiers in Genetics frontiersin.org11

Li et al. 10.3389/fgene.2023.1157305

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1157305


4 Discussion

In this study, we integrated multiple machine learning
approaches to perform in-depth analysis of single-cell
transcriptome data under different COVID-19 vaccine strategies

using hamsters as experimental subjects. The effectiveness of various
COVID-19 vaccination techniques to provide protection is closely
correlated with the gene expression patterns of certain immune and
tissue cells. Several optimal classifiers were constructed, which can
be used to predict vaccination strategies for two doses of adenovirus
vaccine, two doses of attenuated virus vaccine, two doses of mRNA
vaccine, one dose of mRNA and one dose of attenuated vaccine. The
tissue cells included alveolar epithelial and endothelial cells from the
lungs, whereas the immune cells included B cells, T cells, and
macrophages from the blood, nasal, and lungs, respectively. Some
essential gene features identified by the computational analysis
might be crucial and the classification rules can imply the
expression levels of key genes in different vaccine strategies after
SARS-CoV-2 infection. Thus, the features and rules identified in this
study may provide evidence for the immune memory capacity of
different vaccination strategies and help advance more effective
vaccination methods to combat SAR-CoV-2 infection. Based on
the newly released publications, some essential gene features and
quantitative rules can be confirmed to play crucial roles in anti-viral
responses.

4.1 Analysis of top features in SARS-CoV-2-
infected hamsters for distinguishing
different vaccination strategies

Based on our computational analysis, we identified a set of
essential genes differentially expressed in immune cells and lung
tissue cells to identify vaccine recipients with different prime-boost
vaccination after SARS-CoV-2 infection. Recent studies have
demonstrated the mechanism of some genes in the antiviral
process. One or two genes were selected for detailed analysis for
each cell type, which are listed in Table 4.

4.1.1 Top features in immune cells
In blood B cells, RPS23 (ENSG00000186468) is a 40S ribosomal

protein (Barrado-Gil et al., 2020) that plays a role in ribosome
assembly and protein translation, which may be related to antibody
production by B cells. Moreover, RPS23 plays an important role in
physiological and pathological processes such as tumorigenesis,
immune signaling, and development (Zhou et al., 2015). RPS23
has also been reported to be a new antimicrobial peptide that can
recognize and kill potential pathogens (Ma et al., 2020).
Furthermore, the expression level of RPS23 may be related to the
immune response induced after vaccination. Two recent studies
have found that RPS23 expression was changed after inactivated

TABLE 3 (Continued) Difference between feasible and optimal classifiers on five feature lists for eight cell types.

Cell Type Feature list Classification algorithm Proportion to the optimal classifier

Number of features Weighted F1

MCFS feature list RF 13.11% 95.50%

mRMR feature list RF 21.21% 97.38%

PFI feature list RF 32.14% 99.12%

aFeasible classifier on the corresponding feature list was not identified.

FIGURE 10
Venn diagram of the features used in feasible classifiers on five
feature lists that were generated by LASSO, LightGBM, MCFS, mRMR,
and PFI for eight cell types. The overlapping circles indicated genes
that were identified to be important by multiple ranking
algorithms.
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vaccination (Pisano et al., 2021), indicating its potential role in
immune response. TPT1 (ENSG00000133112) is involved in the
regulation of apoptosis (Bruneel et al., 2005), and it is also related to
the regulation of protein synthesis in immune cells (Arowolo et al.,
2021). Moreover, TPT1 is involved in the viral response (Leong and
Chow, 2006). Based on recent publications, TPT1 plays an
important role in the development of COVID-19 (Hasankhani
et al., 2021), and it can be used to predict COVID-19 (Akbulut
et al., 2022). Therefore, TPT1 may be involved in the antiviral
response induced by SARS-CoV-2 infection, thereby promoting the
exploration of the immune memory capacity induced by different
vaccines.

In nasal B cells, IFIT3 (ENSG00000119917) belongs to the
interferon-stimulated gene (ISG) family, and it is involved in
immune processes, including innate immunity, inflammatory
response, and antiviral immunity (de Veer et al., 1998; Fleith
et al., 2018). In addition, IFIT3 is differentially expressed in
B cells and monocytes in patients with autoimmune diseases
(Fang et al., 2021), indicating that the IFIT3 gene may be
involved in B cell-mediated humoral immunity. With regard to
the relationship between IFIT3 and viral infection, IFIT3 was found
to be differentially expressed in response to infection with RNA
viruses (Zhou et al., 2013; Feng et al., 2018) and was considered to
have predictive potential for COVID-19 because the expression level
can be affected by SARS-CoV-2 infection (Shaath et al., 2020; Gao
et al., 2021).

In blood T cells, EEF1A1 (ENSG00000156508) encodes the same
type of alpha subunit of a complex, namely, elongation factor-1,
which is responsible for aminoacyl tRNAase delivery to the
ribosome; promotes cell growth and proliferation; and inhibits
apoptosis (Mills and Gago, 2021). Huang et al. found that the
expression of EEF1A1 was positively correlated with the number
of initial CD4+ T cells (Huang and Zhou, 2022), indicating that
EEF1A1 may be associated with cellular immunity. In addition,
EEF1A1 could inhibit viral growth (Zhang et al., 2015), and it is

associated with inflammatory responses (Maruyama et al., 2007).
The EEF1A1 protein has been reported to play a key role in several
viral infections by interacting with viral proteins (Sikora et al., 2009;
Zhang et al., 2015). Based on a recent study, SARS-CoV-2 infection
affects EEF1A1 expression, and it may be associated with the
suppression of viral RNA replication. Ubiquitin A-52 residue
ribosomal protein fusion product 1, UBA52 (ENSG00000221983),
is a ubiquitin-encoding gene encoding ubiquitin fusion proteins
(Kobayashi et al., 2016). UBA52 participates in H5N1 viral
replication (Wang et al., 2018), which is linked to viral infection.
UBA52 deficiency may cause cell cycle arrest and inhibit protein
synthesis (Mao et al., 2018), revealing its potential role in T cells
performing antiviral functions. In addition, UBA52, as a ubiquitin-
encoding gene, might be associated with antigen processing and
MHC II antigen presentation, which is consistent with the role of
UBA52 in the proteasomal degradation of CD4+ T cells after SARS-
CoV-2 infection identified by Tiwari et al. (Tiwari et al., 2022).

In nasal T cells, DDX5 (ENSG00000108654), also known as p68,
is a typical member of the dead box ATP-dependent RNA
unwinding enzyme family (Lane and Hoeffler, 1980). DDX5 gene
encodes a protein that plays an important role in RNA metabolism
(Zonta et al., 2013; Dardenne et al., 2014). A recent study has focused
on the function of DDX5 in regulating cellular life cycles, cancer and
development, and spermatogenesis (Hashemi et al., 2019; Legrand
et al., 2019; Hu et al., 2022). Notably,DDX5 has been associated with
multiple viral infections. For example, DDX5 could inhibit RNA
transcription of hepatitis B virus (Zhang et al., 2016) and enhance
RNA transcription of hepatitis C virus (Goh et al., 2004), and DDX5
may promote SARS-CoV replication (Chen J. Y. et al., 2009). In
addition, a recent study has found that DDX5 is involved in the
regulation of SARS-CoV-2 replication (Ariumi, 2022), thereby
identifying the ability of the immune memory of COVID-19
vaccine. DEF6 (ENSG00000023892), also known as IRF4-binding
protein or SWAP-70-like bridging protein (SLAT) of T cells, is a
specific guanine nucleotide exchange factor for Rho GTPase

TABLE 4 Top features identified by the computational analysis in immune and lung cells.

Classification Cell type Gene symbol Description

Immune cells Blood B cells RPS23 ribosomal protein S23

TPT1 tumor protein, translationally-controlled 1

Nasal B cells IFIT3 interferon induced protein with tetratricopeptide repeats 3

Blood T cells EEF1A1 eukaryotic translation elongation factor 1 alpha 1

UBA52 ubiquitin A-52 residue ribosomal protein fusion product 1

Nasal T cells DDX5 DEAD-box helicase 5

DEF6 DEF6 guanine nucleotide exchange factor

Lung macrophages PFN1 profilin 1

RPSA ribosomal protein SA

Nasal macrophages ISG15 ISG15 ubiquitin like modifier

Lung cells Alveolar epithelial cells IRF9 interferon regulatory factor 9

Lung endothelial Cells MX1 MX dynamin like GTPase 1

MX2 MX dynamin like GTPase 2
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Cdc42 and Rac1 (Deng et al., 2020). DEF6 is expressed in myeloid
cells, and it controls innate immunity (Chen Q. et al., 2009). Thus, it
is strongly related to immunity. Moreover, mutations or deletions of
DEF6 can lead to immune dysregulation diseases (Fournier et al.,
2021). DEF6, as a feature gene, is highly expressed in T cells, and it
plays an important role in T cell proliferation, Th1/Th2 lineage
differentiation, and function. It is also involved in T cell receptor
signaling regulation (Izawa et al., 2017; Deng et al., 2020). Some
researchers have also found that DEF6 deficiency adversely affects
the function of memory T cells (Rossi et al., 2011).

In lung macrophages, PFN1 (ENSG00000108518) is a key actin
regulatory protein that is involved in the regulation of actin filament
assembly (Mouneimne et al., 2012), which may be related to the
migration of macrophages to the site of infection. PFN1may also be
crucial for viral transcriptional activation and airway
hyperresponsiveness (Leng et al., 2021). As PFN1 expression is
altered by SARS-CoV-2 infection (Shen et al., 2020), it can be
identified as a biomarker to detect COVID-19. RPSA
(ENSG00000168028) is an important component of the small
ribosomal subunit with a wide range of physiological functions,
including RNA processing, cell migration, and angiogenesis
(Bernard et al., 2009; O’Donohue et al., 2010; Rea et al., 2012).
RPSA also plays a role in regulating the mitogen-activated protein
kinase (MAPK) signaling pathway (Givant-Horwitz et al., 2004),
and many viral infections have been associated with deviations from
well-balanced control of the MAPK signaling cascade, such as Ebola
virus (Strong et al., 2008) and influenza A virus (Mizumura et al.,
2003). RPSA has been found to be expressed in a variety of immune
cells, including neutrophils, monocytes, and T cells (Sun et al., 2020),
to participate in the immune process. In macrophages, RPSA
expression levels were altered after infection with Mycoplasma
pleuropneumoniae and porcine circovirus type 2 (Liu M. et al.,
2021) or after BCG vaccination (Liu et al., 2022).

In nasal macrophages, an abundantly induced ISG, ISG15
(ENSG00000187608), is crucial for viral infection (Morales and
Lenschow, 2013). In the beginning of the innate response to viral
infection, ISG15 has been shown to be substantially increased as an
effector and signaling molecule (Freitas et al., 2020). In addition,
ISG15 can prevent viral replication by interfering with the exocytosis
and endogenous translation machinery that viruses rely on to grow
(Okumura et al., 2007). Following SARS-CoV-2 infection, a study
found that the secretion of ISG15 exacerbated the inflammatory
response (Cao, 2021), indicating the immunological role of ISG15 in
COVID-19. In macrophages, the expression of ISG15 can promote
macrophage polarization toward a pro-inflammatory and antiviral
M1 phenotype to produce more antiviral factors (Freitas et al.,
2020). Furthermore, macrophages can display increased autophagy
and mitophagy of infected cells under ISG15 stimulation (Swaim
et al., 2017).

4.1.2 Top features in lung tissue cells
In lung alveolar epithelial cells, IRF9 (ENSG00000213928) is a key

component of the type I and type III interferon signaling pathways,
which controls the antiviral response of cells to type I and type III
interferons (Stark and Darnell, 2012; Lazear et al., 2019). The antiviral
ability of IRF9 against common viruses such as respiratory viruses has
beenwell demonstrated (Hernandez et al., 2018; BravoGarcía-Morato
et al., 2019). A recent study revealed that the high expression level of

IRF9 in SARS-CoV-2-infected cells controls the ISGF-3-dependent
response to type I and type III interferons, thereby accelerating the
initiation of the immune response (Ahmed, 2020). Therefore, the
expression level of the IRF9 gene is related to the degree of SARS-
CoV-2 infection of alveolar epithelial cells.

In lung endothelial cells, MX1 (ENSG00000157601) and MX2
(ENSG00000183486) encode two different guanosine triphosphate
(GTP)-metabolizing proteins that differ remarkably in viral
specificity and mechanism of action. MX1 has a wide antiviral
activity against RNA and DNA viruses, whereas MX2 is only
effective against certain viruses, such as HIV (Jung et al., 2019).
MX1 is involved in the antiviral innate response, and it regulates
neutrophil activity and brings neutrophils into the tissues for
immune functions (Henarejos-Castillo et al., 2020). MX1 can be
induced by SARS-CoV-2 infection (Senapati et al., 2020; Halfmann
et al., 2022). Based on a study conducted in 2020, SARS-CoV-2 can
induce strong expression of MX1 in the lungs of infected hamsters
(Halfmann et al., 2022). Thus, the expression of MX1 and MX2
could be used to determine the degree of lung infection.

4.2. Analysis of Classification Rules in SARS-
CoV-2-infected Hamsters for Distinguishing
Different Vaccination Strategies

Besides essential genes, quantitative rules were another main
output of the computational analysis, which are provided in
Supplementary Tables S4–11. Each rule contained several gene
features and thresholds. It is quite difficult to confirm the
underlying expression patterns of each rule. Here, we
extracted some important conditions for detailed analysis.
For each cell type, we focused on one important gene such
that different results (class labels) can be outputted with
different thresholds and tendencies. The conditions for each
cell type are listed in Table 5.

4.2.1 Classification rules in immune cells
In blood B cells, PAX5 (ENSG00000196092) is upregulated in

samples with two doses of attenuated vaccination and mRNA/
attenuated vaccination but downregulated in unvaccinated
samples. PAX5 is a crucial gene, which is known as a key factor
for B cell proliferation and differentiation (Mullighan et al., 2007).
Harris et al. found that PAX5 binds to Fbxo7 transcription in pre-B
cells (Harris et al., 2021). FBX O 7 is known for its important role in
lymphocyte development and differentiation (Ballesteros Reviriego
et al., 2019). Thus, PAX5might be involved in the positive regulation
of B cell proliferation and differentiation. The expression of PAX5 is
essential for memory B cell development after antigen encounter
(Johnson et al., 2005; Nutt and Tarlinton, 2011). In addition, PAX5
expression declines as plasma cells differentiate (Urbánek et al.,
1994; Cobaleda et al., 2007), which may partially reflect
immunological memory activation. Based on our classification
rules, the expression of PAX5 in B cells may indicate that specific
vaccine combinations induce better B cell memory.

In nasal B cells, IFIT3 (ENSG00000119917) was identified by
our computational method, which was shown to be upregulated
in unvaccinated and heterologous vaccinated samples. However,
the upregulation of IFIT3 expression was remarkable in mRNA/
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attenuated vaccination samples. IFIT3 was found to be involved
in viral responses (Metz et al., 2013). IFIT3 is an IFN-inducible
protein whose expression is increased by viral infection and IFN
treatment (Pidugu et al., 2019). Although no direct evidence is
found for the role of IFIT3 expression in B cells, altered IFIT3
expression induced by SARS-CoV-2 infection has been widely
demonstrated. IFIT3 could be related to immune response to
SARS-CoV-2 infection based on the findings of several studies,
demonstrating that IFIT3 is strongly expressed in the pulmonary
inflammatory cells of patients with COVID-19 (Shaath et al.,
2020; Vishnubalaji et al., 2020). Moreover, IFIT3 was found to
play an important role in limiting the replication of RNA
viruses, including SARS-CoV-2 (Metz et al., 2013; Pfaender
et al., 2020; Martin-Sancho et al., 2021). Collectively, the
expression level of IFIT3 may indicate the immune response
to viral infection in B cells, which can be used to compare the

immunological memory induced by various vaccination
strategies.

In blood T cells, UBA52 (ENSG00000221983) was identified
as a rule gene. UBA52 expression in T cells was shown to be
upregulated in recipients with two doses of adenovirus
vaccination, two doses of attenuated vaccination, and mRNA/
attenuated vaccination. As previously discussed, UBA52 was
considered as a signature gene in blood T cells. As a
ubiquitin-encoding gene (Kobayashi et al., 2016), UBA52 was
found to be closely associated with proteasomal degradation in
CD4+ T cells(V’Kovski et al., 2019). Picciotto et al. indicated that
UBA52 is rapidly upregulated after T-cell activation (de Picciotto
et al., 2022), and it may be involved in effector T-cell activation.
In addition, UBA52 was found to be highly expressed in patients
with COVID-19 (Jiang et al., 2022), which may be related to
COVID-19 pathogenesis. Thus, the differential expression of

TABLE 5 Representative conditions for different cell types.

Cell Type Rules Parameters Predicted class

Blood B cells Condition 0 ENSG0000019609(PAX5) ≤ 2.1383 Non-vaccinated

Condition 1 ENSG0000019609(PAX5) > 0.3466 2*Attenuated

Condition 2 ENSG0000019609(PAX5) > 0.8959 mRNA/Attenuated

Nasal B cells Condition 3 ENSG00000119917(IFIT3) > 0.3466 Non-vaccinated

Condition 4 ENSG00000119917(IFIT3) > 0.8959 mRNA/Attenuated

Blood T cells Condition 5 ENSG00000221983(UBA52) ≤ 2.4414 Non-vaccinated

Condition 6 ENSG00000221983(UBA52) >2.4414 2*Adenovirus

Condition 7 ENSG00000221983(UBA52) > 2.1910 2*Attenuated

Condition 8 ENSG00000221983(UBA52) > 2.7403 mRNA/Attenuated

Nasal T cells Condition 9 ENSG00000233927(RPS28) ≤ 4.0687 Non-vaccinated

Condition 10 ENSG00000233927(RPS28) > 4.0687 2*Adenovirus

Condition 11 ENSG00000233927(RPS28) > 4.0687 2*Attenuated

Lung macrophages Condition 12 ENSG00000163563(MNDA) > 3.5972 Non-vaccinated

Condition 13 ENSG00000163563(MNDA) ≤ 3.2385 2*Adenovirus

Condition 14 ENSG00000163563(MNDA) ≤ 3.5972 2*mRNA

Condition 15 ENSG00000163563(MNDA) ≤ 2.8029 mRNA/Attenuated

Nasal macrophages Condition 16 ENSG00000160932(LY6E) > 2.5249 Non-vaccinated

Condition 17 ENSG00000160932(LY6E) ≤ 2.5249 2*Adenovirus

Condition 18 ENSG00000160932(LY6E) ≤ 2.5249 2*Attenuated

Condition 19 ENSG00000160932(LY6E) ≤ 2.5249 2*mRNA

Condition 20 ENSG00000160932(LY6E) ≤ 2.5249 mRNA/Attenuated

Lung alveolar epitheial cells Condition 21 ENSG00000187608(ISG15) > 0.8959 Non-vaccinated

Condition 22 ENSG00000187608(ISG15) ≤ 0.8959 2*Adenovirus

Condition 23 ENSG00000187608(ISG15) ≤ 0.8959 2*Attenuated

Lung endothelial cells Condition 24 ENSG00000204264(PSMB8) > 0.3466 Non-vaccinated

Condition 25 ENSG00000204264(PSMB8) ≤ 1.9945 2*Attenuated
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UBA52 in blood T cells helps to distinguish different prime-boost
vaccination strategies.

In nasal T cells, ribosomal gene RPS28 (ENSG00000233927) was
identified, whose basic function is to participate in protein synthesis,
folding, and assembly (Kim et al., 2019). Based on our rules, RPS28
was upregulated in samples with two doses of adenovirus vaccine
and two doses of attenuated vaccine. RPS28 has been reported to
control the generation of MHC class I peptides by regulating non-
canonical translation (Wei et al., 2019), leading to differential
antigen presentation in cells. A study on melanoma found that
mutations in ribosomal proteins resulting in the deletion of RPS28
caused greater killing of melanoma cells by CD8+ T cells (Dersh
et al., 2021), indicating the association of RPS28 with CD8+ T cells.
Therefore, the expression of RPS28 in nasal T cells may help to
distinguish different vaccine combinations and predict immune
memory activation.

In lung macrophages, MNDA (ENSG00000163563) was
identified, whose function is thought to be related to immune
cells (Metcalf et al., 2014).MNDA was downregulated in samples
receiving COVID-19 vaccines, with the greatest downregulation
in mRNA/attenuated vaccine recipients.MNDA is an interferon-
inducible gene, whose protein contains a pyridine structural
domain that plays a role in programmed cell death and
inflammation-related signaling (Bottardi et al., 2020). MNDA
was strongly expressed in activated macrophages linked to
inflammation but not in normal tissue cells (Miranda et al.,
1999), indicating the relationship between MNDA expression
and tissue inflammation. In monocytes, MNDA was found to be
remarkably upregulated after IFNα exposure (Briggs et al., 1994),
and it could be a major regulator of monocyte and granulocyte
lineage (Milot et al., 2012). Thus, the downregulation of the
immune-related geneMNDA in lung macrophages may be due to
the good protective capacity of the vaccine to keep the lungs free
from viral infection.

In nasal macrophages, LY6E (ENSG00000160932) was
identified as a rule gene, whose expression was shown to be
downregulated in all vaccination strategies except for controls.
LY6E encodes an interferon-inducible protein, which has been
shown to regulate viral infection in a cell type-dependent manner
(Godfrey et al., 1992). LY6E is involved in the regulation of
infection by a variety of viruses, and it was found to promote
HIV-1 (Yu et al., 2017), yellow fever virus (Schoggins et al., 2011),
and influenza A virus (Mar et al., 2018) infection. Therefore, the
reduced expression of the LY6E gene in nasal macrophages of
samples with COVID-19 vaccination may be due to the fact that
COVID-19 vaccination helped to avoid SARS-CoV-2 attack on
the nasal cavity.

4.2.2 Classification rules in lung tissue cells
In lung alveolar epithelial cells, ISG15 (ENSG00000187608)

was identified as a rule gene in lung alveolar epithelial cells,
which is an IFNα-stimulated gene that plays an important role
in the antiviral response (Swaim et al., 2020). ISG15 was
downregulated in samples with two doses of adenovirus or
attenuated vaccination and upregulated in controls, reflecting
the protective ability of COVID-19 vaccination on target cells. It
is hypothesized that ISG15 can prevent viral assembly by tagging
newly translated viral proteins (Shin et al., 2020). ISG15 has also

been found to drive antiviral immune functions by modifying
viral proteins, inhibiting viral replication, and regulating host
signaling pathways associated with viral infection (Perng and
Lenschow, 2018). In addition, ISG15 expression exacerbates the
inflammatory response of COVID-19 (Cao, 2021), partially
indicating the tissue damage caused by SARS-CoV-
2 infection. Thus, the expression of ISG15 on alveolar
epithelial cells may reflect virus-induced damage, helping to
compare the protective capacity of COVID-19 vaccines.

In lung endothelial cells, the PSMB8 (ENSG00000204264)
gene was found to be upregulated in controls and
downregulated in samples receiving two doses of attenuated
COVID-19 vaccines based on our rule. PSMB8 encodes the
proteasome 20S subunit Beta 8, and it is involved in the positive
regulation of apoptosis (Yang et al., 2009; Jean-Baptiste et al.,
2017). More et al. found that PSPM8 is involved in mediating
viral infection and synthesis in target cells, indicating the
potential role of PSPM8 in viral infection (More et al., 2019).
In addition, PSMB8 is involved in regulating cytokine secretion
during viral infection (Servaas et al., 2021). Furthermore, in
patients with mild COVID-19, the high expression of PSMB8
could promote M1 macrophage polarization (Desterke et al.,
2021). The extensive involvement of PSPM8 in viral infection
may help us to identify lung damage caused by SARS-CoV-
2 infection.

5 Conclusion

In investigating the differences in immune changes
induced by SARS-CoV-2 infection under different
vaccination strategies, this study designed a machine
learning based framework to analyze expression profile
datasets from lung tissue cells (endothelial cells and
alveolar epithelial cells) and immune cells from different
sites (B cells, T cells, and macrophages). Five feature
ranking methods and two classification algorithms were
used to obtain key genes and easily understand quantitative
classification rules associated with COVID-19 vaccination and
SARS-CoV-2 infection. These results revealed the pathways of
action of different vaccination regimens in COVID-19, which
could lead to the development of safe and long-lasting
vaccination regimens.
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