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As one of the keys to healthy performance, robustness of farm animals is gaining
importance, and with this comes increasing interest in genetic dissection of
genotype-by-environment interactions (G×E). Changes in gene expression are
among the most sensitive responses conveying adaptation to environmental
stimuli. Environmentally responsive regulatory variation thus likely plays a
central role in G×E. In the present study, we set out to detect action of
environmentally responsive cis-regulatory variation by the analysis of
condition-dependent allele specific expression (cd-ASE) in porcine immune
cells. For this, we harnessed mRNA-sequencing data of peripheral blood
mononuclear cells (PBMCs) stimulated in vitro with lipopolysaccharide,
dexamethasone, or their combination. These treatments mimic common
challenges such as bacterial infection or stress, and induce vast transcriptome
changes. About two thirds of the examined loci showed significant ASE in at least
one treatment, and out of those about ten percent exhibited cd-ASE. Most of the
ASE variants were not yet reported in the PigGTEx Atlas. Genes showing cd-ASE
were enriched in cytokine signaling in immune system and include several key
candidates for animal health. In contrast, genes showing no ASE featured cell-
cycle related functions. We confirmed LPS-dependent ASE for one of the top
candidates, SOD2, which ranks among the major response genes in LPS-
stimulated monocytes. The results of the present study demonstrate the
potential of in vitro cell models coupled with cd-ASE analysis for the
investigation of G×E in farm animals. The identified loci may benefit efforts to
unravel the genetic basis of robustness and improvement of health and welfare
in pigs.
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1 Introduction

Characterization of the genetic variation in human (Lappalainen et al., 2019) and
livestock populations (Hayes and Daetwyler, 2019) showed that each individual carries
several thousand functional variants, majority of them non-coding (Auton et al., 2015; GTEx
Consortium, 2020). These do not act in isolation, but in the context of the genetic
background and environment of the carrier. To unravel mechanisms behind the
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genotype-phenotype connection we thus have to tackle the next
challenge and explore interactions between genetic variants with the
genetic background and environment as well. Disease risk, drug
response, and stress resilience are some prominent examples of traits
in humans and farm animals where genotype-by-environment
interactions (G×E) play a considerable role (Rauw and Gomez-
Raya, 2015; Elbau et al., 2019). Severe environmental consequences
of the climate change, particularly extreme temperatures and the
resulting physiological challenges to cope with them (Koch et al.,
2019), sparked increased interest in recent years in research on G×E
in farm animals to increase their resilience (Passamonti et al., 2021).
Currently, investigation of G×E in farm animals relies largely on
quantitative genetic and QTL mapping approaches to measure G×E
and to identify the underlying loci (e.g., Freitas et al., 2021). Such
studies generally require large cohorts with phenotypes recorded in
different environments.

Functional genomics offers complementary, yet in farm animals
so far rarely applied, approaches to explore G×E and the underlying
biological and genetic mechanisms (Ritchie et al., 2017). Gene
expression can be regulated in three dimensions—transcript
abundance, time (e.g., ontogeny, or dynamics) and space (cell
type)—and thus allows rapid, fine-tuned response and adaptation
to environmental stimuli (López-Maury et al., 2008). Accordingly,
genomic loci influencing gene expression (expression QTL—eQTL)
were evidenced as important drivers of adaptation (Quiver and
Lachance, 2022). Current omics technologies allow genome-wide,
holistic analysis of gene expression which thus represents a
molecular endophenotype well suited to study G×E. Many
studies exploring G×E in gene expression leveraged in vitro
cellular systems that enable testing of a wide variety of stimuli
and better control of the environmental conditions (Moyerbrailean
et al., 2016; Findley et al., 2021; Lea et al., 2022). For the
identification of environmentally responsive eQTL (also referred
as reQTL), and thus G×E, two approaches were devised. The first
approach employs QTL-mapping such as genome-wide association
study (GWAS) (Fairfax et al., 2014; Kim et al., 2014), and requires
relatively large sample sizes. Alternatively, reQTL can be detected by
analyzing allele-specific expression (ASE) (Edsgärd et al., 2016;
Moyerbrailean et al., 2016; Knowles et al., 2017). Mapping of
ASE loci is a powerful approach to detect genes affected by cis-
eQTL, i.e., by genetic variation influencing function of the cognate
regulatory elements (Castel et al., 2015). We previously applied this
method for the dissection of the complex genetic background of
tissue-specific cis-regulatory variation of a single locus (Murani
et al., 2013). Because ASE is measured using allelic ratios of
transcribed SNPs within a sample, and thus matched
background, this reduces noise and consequently the required
sample size. On the other hand, the transcribed SNPs (here
termed cSNPs) can be called directly from RNA-seq data,
essentially obviating the need for genotyping to detect ASE. To
investigate G×E, the ASE approach has been extended by comparing
ASE between different conditions (designated condition-dependent
ASE, cd-ASE) using a variety of statistical models (Mayba et al.,
2014; Edsgärd et al., 2016; Moyerbrailean et al., 2016; Knowles et al.,
2017; Fan et al., 2020). Importantly, loci evidenced to be influenced
by G×E using ASE analysis were enriched in GWAS signals
(Moyerbrailean et al., 2016), indicating that they contribute not
only to expression divergence, but to phenotypic variation as well.

In the present study, we set out to identify genes influenced by
environmentally responsive cis-regulatory variation in porcine
immune cells using ASE analysis. To this end, we harnessed
mRNA-Seq data from porcine peripheral blood mononuclear
cells (PBMC) stimulated in vitro with either endotoxin (LPS),
dexamethasone (DEX), or their combination (Li et al., 2021).
These treatments model inflammation, neuroendocrine stress
response, and neuroimmunomodulation, respectively. We
performed SNP- as well as gene-wise analyses and identified a
number of genes showing evidence of G×E in their response to
treatment. These genes represent candidates for the improvement of
health and welfare in pigs.

2 Materials and methods

2.1 In vitro stimulation of PBMC, RNA
extraction, and cDNA synthesis

The initial cell experiment has been described in detail by Li et al.
(2021). Briefly, PBMC isolated from blood collected during
exsanguination at slaughter of 24 individuals (balanced for sex) were
stimulated for 2 h with either vehicle (C), 5 nM of DEX (D), 10 μg/mL
of LPS (L), or LPS (10 μg/mL) +DEX (5 nM) (LD), respectively. For the
independent verification of cd-ASE of SOD2, informative PBMC
samples were selected based on genotype of the marker
MARC0005058 (rs80857128) obtained from 60 K Illumina SNP
array data published previously (Reyer et al., 2019). As before, the
PBMCs were obtained from slaughter blood and cryopreserved until
use. The genotype was validated using Sanger Sequencing as described
below. The cell experiment using the new set of PBMCs was repeated
essentially as described previously (Li et al., 2021), but only vehicle and
10 μg/mL of LPS were applied in the validation experiment. After 2 h
stimulation, cells were harvested for RNA extraction. The cell pellet was
lysed in TRI-Reagent (Sigma-Aldrich, Taufkirchen, Germany). After
phase separation, total RNA was isolated using the Direct-zol RNA
Miniprep (Zymo Research, Freiburg, Germany), including on column
DNase-digestion. cDNA was synthesized using SuperScript III MMLV
reverse transcriptase (Invitrogen, Karlsruhe, Germany) in a reaction
containing a mixture of 500 ng random hexamers (Promega,
Mannheim, Germany), 500 ng of oligo (dT)11 VN primer, 40 U of
RNAsin Plus (Promega, Mannheim, Germany) and 500 ng total RNA.

2.2 cSNP calling, read counting, and
haplotype analysis of candidate genes

The mRNA-Sequencing experiment has been performed
previously at the Institute of Genome Biology (FBN) on an
Illumina HiSeq 2500 sequencing platform. In total
96 transcriptome profiles were generated via 2 × 101 bp paired-
end sequencing. The resulting average sequencing depth was >20 M
read pairs with an alignment rate of ~98% (Li et al., 2021). The
sequencing data were deposited at the ArrayExpress repository
under the accession number E-MTAB-9808.

SNP calling and counting of reads per allele was essentially based
on the pipeline described by Tomlinson et al. (2021). In more detail,
the mRNA-Seq reads were aligned to Sus.Scrofa 11.1 reference
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genome (release 103) using STAR (v.2.7.8a) (Dobin et al., 2013) in
the 2-pass mode, and filtered to remove duplicates and reads with
ambiguous mapping using samtools (version 1.12) (Danecek et al.,
2021). After that, aligned reads were processed via the Genome
Analysis Toolkit (GATK) pipeline (version 4.2.0.0) (DePristo et al.,
2011) including splitting reads by cigar string to detect splicing
events, base recalibration, and variant calling using HaplotypeCaller.
For variant calling the phred-scaled confidence threshold was set to
20, and soft-clipped bases were avoided. The gVCF files thus
obtained from the individual mRNA-seq profiles were then
aggregated using bcftools (1.10.2) (Danecek et al., 2021), and the
resulting collection of discovered variants was used to N-mask the
reference genome using bedtools (version v2.27.1) (Quinlan and
Hall, 2010). The process of read mapping and variant calling was
subsequently repeated using the N-masked genome in order to
remove potential allelic mapping bias (Castel et al., 2015), but in
the second run, the pipeline included also removal of biased reads
using WASP (van de Geijn et al., 2015).

To analyze haplotype structure of SOD2, the genotypes of cSNPs
residing within the transcriptional unit were retrieved from the
compiled global VCF file. Haplotype structure was first explored in
Haploview 3.2 (Barrett et al., 2005). Afterwards the individual
diplotypes were determined using the EM method implemented
in JMP Genomics v10.1 (SAS Institute, Cary, NC, United States).

2.3 ASE analysis using mRNA-Seq data

In addition to quality control measures during the previous
steps, SNPs entering the ASE analysis were filtered based on their
read coverage as suggested by Castel et al. (2015). Thus only biallelic
sites covered in heterozygous state by at least 30 reads in total,
having at least three reads per either allele, and a contribution per
allele of at least 1% to the total number of reads, were retained for
further analyses. SNPs located on sex chromosomes and unmapped
SNPs were omitted.

For SNP-wise ASE analysis within condition, the VCF ASE
Detection Tool (VADT) software (Tomlinson et al., 2021) was
employed. To test ASE for informative variants passing the
filtering steps, the VADT software performs a binomial test. The
p-values of individual samples were subsequently combined per SNP
across the tested heterozygous samples using Fisher’s method, and
finally adjusted across all tested informative SNPs using the
Benjamini–Hochberg procedure to control the false discovery
rate (FDR). In order to perform SNP-wise cd-ASE analysis we
applied Fisher’s exact test as suggested by Edsgärd et al. (2016).
For this, sample-wise 2 × 2 contingency tables of read counts were
calculated for SNPs passing above-mentioned filtering criteria in
each of the analyzed pair of conditions in at least one heterozygous
individual. The individual p-values were combined and FDR-
adjusted as described for the static ASE analysis above.

For gene-wise ASE analysis the GeneiASE software (Edsgärd
et al., 2016) was applied. Similar to the SNP-wise cd-ASE analysis,
GeneiASE calculates contingency tables for allele counts of
informative SNPs (either 2 × 1 or 2 × 2 table for the analysis
within or between conditions, respectively). Based on this, a test
statistic is calculated for genes covered by at least two SNPs,
combining the SNP-wise effects via meta-analysis. A p-value was

computed on the basis of a null distribution derived by resampling
(n = 10,000), and then combined and adjusted as described for the
SNP-wise analysis.

Haplotype-level allelic ratios of SOD2 were calculated based on
allele counts of the 21 SNPs included in the ASE analysis, and the
phase information obtained from haplotype analysis. Haplotype-
level allelic ratios were compared using one-way ANOVA with
Dunnett test implemented in GraphPad Prism 9.4.1 (GraphPad
Software, San Diego, United States). Fold changes of SOD2
expression due to treatment were calculated based on normalized
count data from our previous study and log2 transformed (Li et al.,
2021). The effect of diplotype on the individual fold-changes was
examined using one-way ANOVA with Šidák test implemented in
GraphPad Prism 9.4.1.

2.4 Locus-specific ASE analysis

A 600bp-long PCR-fragment of 3′ UTR of SOD2 was designed
(forward primer: CGTCAGACCTGATTACCTGAAAGC; reverse
primer: CTAAAGACCACTGGGTGGTACCTG) using the web-
based tool Primer3. The PCR fragment covered three SOD2 cSNPs
exhibiting cd-ASE: rs80848798, rs80857128, and rs80857128. The PCR
fragment was amplified in a 20 µL reaction mixture containing 2 µL
cDNA, 0.2 µM of each primer, 50 µM of each dNTP and 0.5 U
SupraTherm Taq Polymerase (Ares Biosciences, Cologne, Germany)
in ×1 supplied PCR-buffer containing 1.5 mMMgCl2. The temperature
profile was as follows: denaturation at 95°C for 15 s, annealing at 60°C
for 60 s and extension at 72°C for 60 s for 40 cycles. The PCR products
were checked on 2% agarose gels and cleaned-up using magnetic beads
(Illumina, San Diego, United States). Sanger sequencing was performed
by the commercial provider Genewiz (Azenta, Leipzig, Germany) using
the forward primer. The resulting sequence chromatograms were
analyzed using the PeakPicker V0.5 software (Ge et al., 2005)
essentially as described previously (Murani et al., 2013). The
normalized peak ratios were compared between the C and L
treatments using a paired t-test in GraphPad Prism 9.4.1.

2.5 Analysis of functional enrichment and
upstream regulators of ASE genes

To reveal which functional pathways are enriched among genes
exhibiting different ASE properties (see below in the results section)
a list comprising all five groups of genes (cd-ASE in three different
conditions, static ASE, and no ASE) was analyzed using the pick
selective GO clusters option of the web-based gene annotation tool
Metascape (Zhou et al., 2019). Potential upstream regulators were
predicted from individual gene lists using Ingenuity Pathway
Analysis (QIAGEN, Hilden, Germany).

3 Results

3.1 SNP identification

Utilising all 96 mRNA-Seq profiles for variant calling, we
identified in total 4,482,290 SNPs. For a subset of 20 individuals,
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SNP data obtained using the Illumina porcine 60 K SNP array were
available from other projects (Reyer et al., 2019). We analyzed
correlation between genotype data collected by the two different
methods for 2,468 shared SNPs. The individual correlations ranged
between 0.936 and 0.955 demonstrating high reliability of genotypes
called from the mRNA-Seq data. After removing outlier samples (as
suggested by exploratory data analysis of gene expression/response
to treatment described previously (Li et al., 2021)) and filtering, we
retained mRNA-Seq profiles from 20 individuals (each included in
all four conditions) comprising a set of 93,598 autosomal SNPs with
adequate read depth of both alleles in at least one sample
(Supplementary Table S1). These SNPs covered 7,321 non-
overlapping genes, about a half of the genes detected by the
mRNA-Seq experiment. Most of the SNPs in the final set (~88%)
are known variants listed in public databases.

It has to be noted that using our filtering criteria we essentially
removed SNPs showing monoallelic expression. However,
monoallelic expression is more relevant for the study of genomic
imprinting rather than for the detection of cis-regulatory effects as
aimed in this study. Yet, omission of this aspect enhanced reliability
of the data due to the more stringent criteria, reducing the risk of
miscalling homozygous SNPs.

Besides miscalled genotypes, allelic mapping bias is another
major caveat in the ASE analysis (Castel et al., 2015). Therefore, we
plotted distribution of the allelic ratios for the final SNP set to verify
if the allelic mapping bias has been effectively removed (see the
methods section). The allelic ratios (ref/ref + alt) showed
approximately normal distribution (Supplementary Figure S1)
and no apparent bias towards the reference allele (mean ratio
0.494), thus confirming successful correction.

3.2 Analysis of allele specific expression
within condition

To identify informative loci for the G×E study, we first examined
ASE separately within each condition. We performed analysis based
on individual SNPs using the VADT tool (Tomlinson et al., 2021)
and gene-wise analysis of ASE employing the GeneiASE software
(Edsgärd et al., 2016), respectively.

The SNP-wise analysis revealed 16,015 significant ASE variants
(FDR ≤0.05) representing 3,323 unique genes in the untreated samples
(C), 15,958 SNPs (3,225 unique genes) in dexamethasone treated
samples (D), 13,772 SNPs (2,949 unique genes) in LPS treated
samples (L), and 13,845 SNPs (covering 2,888 unique genes) in the
combined treatment (LD). Overall, 32,730 variants (covering
4,924 unique genes) showed significant ASE in at least one
condition and at least one sample (Supplementary Table S2). Out of
these, 4,429 SNPs (covering 981 unique genes) exhibited ASE in all
treatments (Supplementary Figure S2). To assess to which extent the
ASE variants correspond with known eQTLs, we compared a list of the
identified ASE variants with blood (including macrophage) cis-eQTLs
in the PigGTEx database (Teng et al., 2022). Out of the 32,730 identified
ASE SNPs, 38.9% are associated with blood cis-eQTL in the PigGTEx
database.

Before running GeneiASE, we removed SNPs that could not be
assigned to a unique gene leaving 75,620 SNPs available for the analysis.
A further restriction was that by default GeneiASE performs analysis for

genes coveredwith at least two SNPs. Overall, GeneiASE examinedASE
of 4,219 genes represented in at least one condition, whereby 1,184,
1,199, 1,068, and 1,072 genes exhibited significant ASE (FDR ≤0.05) in
C, D, L, and LD, respectively (Supplementary Table S3). Out of these,
509 genes displayed significant ASE in all conditions (Supplementary
Figure S3).When examining overlap between the two approaches,more
than 95% genes detected by GeneiASE were also identified based on the
analysis of individual SNPs using VADT (Supplementary Figure S4).

Taken together, the ASE analysis provided a novel list of genes
influenced by cis-regulatory variation and the input for the
subsequent examination of G×E.

3.3 Analysis of condition-dependent allele
specific expression

To identify genes influenced by environmentally responsive cis-
regulatory variation, we analyzed cd-ASE between the untreated
control and each of the three treatments, respectively.

We examined individual SNPs using Fisher´s exact test, and
restricted the analysis to those variants showing significant ASE in at
least one sample and treatment (32,730 SNPs as described above). In
addition, we included only variants passing the filtering criteria in
both, the control as well as in the treatment condition for at least one
sample. We identified significant cd-ASE (FDR ≤0.05) for
1,336 SNPs (covering 713 unique genes) in C vs. L comparison,
for 904 SNPs (covering 574 unique genes) in C vs. D, and for
1,353 SNPs (covering 713 unique genes) in C vs. LD, respectively
(Supplementary Table S4). An overview of the results is given in the
manhattan plot in Figure 1. Only small fraction of the SNPs
exhibiting cd-ASE came up in all three comparisons
(Supplementary Figure S5). This could be expected, because the
different treatments activate distinct trans-acting factors and thus
distinct cistromes. When looking at SNPs that displayed significant
cd-ASE in at least three samples, 558 SNPs came up in C vs. L,
374 SNPs in C vs. D, and 560 SNPs in C vs. LD, respectively.

Similar to the analysis of ASE within treatment, we
complemented the investigation of individual cd-ASE with gene-
wise analysis using GeneiASE. In keeping with the SNP-wise
procedure, genes entering the gene-wise analysis were preselected,
and only those showing static ASE in at least one sample and
treatment were examined (2,604 genes in total). The gene-wise
analysis yielded 15, 12, and 22 genes displaying significant cd-
ASE (FDR ≤0.05) associated with L, D, and LD treatment,
respectively (Supplementary Table S5). Most of the genes were
detected also based on the analysis of cd-ASE of individual SNPs
(Supplementary Figure S6).

Overall, the analysis of individual SNPs revealed more genes
affected by cd-ASE compared to gene-wise analysis. Based on the
SNP-wise analysis we found evidence for G×E for about ten percent of
the ASE SNPs.

3.4 Investigation of LPS-dependent cis-
regulatory effects on SOD2 expression

One of the top candidates showing LPS-dependent ASE based
on SNP-wise analysis is SOD2. This gene features one of the
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strongest transcriptional responses to LPS in monocytes (Li et al.,
2021; Lara et al., 2022). SOD2 encodes a mitochondrial
antioxidant enzyme protecting cells from oxidative stress
resulting i.a. from the inflammatory response induced by LPS,
and thus supporting its resolution (Virág et al., 2019). Out of the
21 informative cSNPs interrogating SOD2, 15 SNPs showed
significant cd-ASE associated with the LPS treatment. In spite
of this, SOD2 was not detected by GeneiASE as a gene influenced
by cd-ASE. To verify cd-ASE of SOD2, we first analyzed haplotype
structure and haplotype-level cdASE of SOD2. We found two
haplotypes (designated H1 and H2, respectively) segregating in
the 20 examined individuals (i.e., those used to produce the
mRNA-seq data)—six being homozygous for the wild-type
haplotype H1 and fourteen heterozygous (Supplementary
Figure S7). We calculated haplotype-level allelic ratio for the
14 informative heterozygous samples and compared the ratios
between treatments. As displayed in Figure 2A, the haplotype
ratios measured in C (mean 0.493) and D (mean 0.506) were not
significantly different and were close to balanced expression. In
contrast, in L and LD treatments the haplotype ratios shifted
significantly compared to C (mean 0.435 and 0.445, respectively),
indicating higher responsiveness of the alternative SOD2
haplotype H2 following exposure of the PBMC to LPS.

To further examine the influence of SOD2 haplotypes on its
transcriptional response to treatment, we analyzed association of the
diplotype with the fold-change between treatment and control
conditions based on normalized total count data retrieved from
the previous study (Li et al., 2021). As depicted in Figure 2B, the
heterozygous carriers showed stronger response to LPS, and LPS in
the presence of DEX, respectively, compared to homozygous
carriers. The direction and magnitude of the effect of the

H2 haplotype corresponds with the haplotype ratio calculated in
the above analysis, but the H2 effect was not significant here.

In order to independently verify the LPS-dependent ASE of
SOD2, we performed LPS-stimulation for a different set of
informative PBMC samples, and analyzed cd-ASE for three of
the significant cSNPs in eight heterozygous samples via a
targeted assay bases on Sanger sequencing. As outlined in
Figure 2C, for all three cSNPs the LPS treatment significantly
(p < 0.05) shifted the allelic ratio towards the alternative allele
(assigned to haplotype H2).

Collectively, these results provide strong evidence for LPS-
dependent cis-regulatory effects on SOD2 expression.

3.5 Functional enrichment of genes
exhibiting cd-ASE

In order to identify potential regulatory mechanisms driving cd-
ASE, we functionally annotated genes with at least three significant
cd-ASE samples in the SNP-wise analysis (299 genes in C vs. L,
259 genes in C vs. D, 302 genes in C vs. LD) compared to genes
exhibiting exclusively static ASE across treatments (i.e., ASE but no
cd-ASE) in at least three samples (489 genes), and genes showing no
evidence of ASE (2,397 genes). Pathway analysis revealed
enrichment of genes showing no or static ASE in functional
categories related to cell cycle, cellular response to DNA damage,
and chromatin organization (Supplementary Table S6; Figure 3).
Correspondingly, transcription factors involved in cell cycle
regulation (e.g., CCND1 for no ASE genes) and proliferation
(e.g., MYC) emerged when upstream regulators were examined
for the genes that showed no evidence of cd-ASE (Supplementary

FIGURE 1
Manhattan plot depicting results of the analysis of conditional allele-specific expression. Significant cd-ASE loci (−log10 of Benjamini-Hochberg
FDR >1.3) are shown in red for LPS compared to Control (C vs. L), in blue for Dexamethasone compared to Control (C vs. D), and purple for LPS +
Dexamethasone compared to Control (C vs. LD), respectively. Non-significant loci are shown in grey tones. Please note that the −log10(FDR) values are
flattened at −log10(FDR) = 15.
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Table S7). These results suggest selection against variation in genes
related to cell proliferation, which could be a mechanism protecting
against cancer (Hanahan and Weinberg, 2011).

Genes influenced by cd-ASE were enriched i.a. for cytokine
signaling, particularly for interleukin 10 and tumor necrosis factor
response in treatments including LPS (Supplementary Table S6;
Figure 3). The top upstream regulators included canonical members

of the LPS signaling pathway such as MYD88 and NFKB in genes
with cd-ASE induced by the LPS treatment (Supplementary Table
S7). For genes with dexamethasone induced cd-ASE the predicted
upstream regulators included, for example, the transcription factor
GATA3, a known target of the glucocorticoid receptor (Liberman
et al., 2009). The combined treatment LD shared most of the top
upstream regulators with the specific treatments.

FIGURE 2
LPS-dependent cis-regulatory effects on the expression of the porcine SOD2 in PBMCs. (A): Haplotype-level allelic ratios of SOD2 depending on
treatment (n = 14 heterozygous samples). (B): Fold-change response of SOD2 to treatment depending on haplotype (H1H1 n = 6; H1H2 n = 14). (C): Peak
ratios of three SOD2 SNPs depending on treatment of a different set of informative PBMCs (n = 8). Please note that the reference alleles were assigned to
H1, and the alternative alleles to H2, respectively C: vehicle control. D: Dexamethasone treatment (blue). L: LPS treatment (red). LD: LPS +
Dexamethasone treatment (purple). Asterisks indicate different significance level *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. ns = not significant.
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4 Discussion

In the present study, we performed the first comprehensive
examination of G×E effects on gene expression in farm animals
using the analysis of condition-dependent allele-specific expression.
We investigated cd-ASE in response to stimuli that were also frequently
used in human studies (e.g., Moyerbrailean et al., 2016; Knowles et al.,
2017). The applied treatments do not only model relevant responses to
common challenges in farm animals, but also induce vast gene
expression changes via well-described signaling pathways (Li et al.,
2021) and are thus ideally suited to study cd-ASE. Moreover, the
application of these agents to PBMC in vitro provided standardized
conditions, and in line with the 3R principles in animal experiments
avoided animal stress. In fact, in vitromodels open up new possibilities
in the analysis of G×E interactions for environmental factors that are
difficult to examine on live animals. In addition, using cell models
facilitates biologically better-founded interpretation of the results. In
this regard, future application of cd-ASE analysis on single-cell RNA-
sequencing profiles would bring further improvement because it is likely
that many G×E interactions occur in cell-type specific manner (Findley
et al., 2021).

We first performed ASE analysis for each condition separately to
identify informative loci for the cd-ASE analysis, and thus to reduce the
multiple testing burden for the latter. Out of the 32,730 identified ASE
SNPsmore than 60%do not overlap with cis-eQTL SNPs in the recently
released PigGTEx database (Teng et al., 2022). In addition, less than
15%of the significant ASE variants showedASE in all treatments. These
findings imply that ASE analysis across different environmental
conditions and/or cell types has the potential to uncover novel cis-
regulatory effects, as previously observed in ASE studies in humans
(Findley et al., 2021). On the other hand, about two thirds of all genes
interrogated by the tested cSNPs showed ASE in at least one treatment
and sample. This is consistent with the high prevalence of cis-regulatory
variation affecting majority (around 90%) of all protein-coding genes,
with more than 20% showing evidence for multiple independent cis-
regulatory variants (GTEx Consortium, 2020; Teng et al., 2022).

For the analysis of cd-ASE we performed SNP-wise as well as gene-
wise analysis according to Edsgärd et al. (2016). A current limitation in

the analysis of cd-ASE is that the approach has not yet found broad
application, and consequently the tools and pipelines are not yet firmly
established. The advantage of the approach used here is that, in contrast
to many other tools for cd-ASE analysis (e.g., EAGLE, ASEP), here not
only loci but also samples showing significant cd-ASE were identified,
which may support future identification of the causal cis-regulatory
variants. In addition, the information about the number of informative
samples exhibiting cd-ASE allows conclusions about the strength of the
evidence. In our study analysis of individual SNPs detected more loci
exhibiting cd-ASE compared to the gene-wise GeneiASE method, as
also noted previously by Salavati et al. (2019), but with a high degree of
overlap between the two methods. We independently confirmed cd-
ASE of SOD2, one of the top candidates based on the SNP-wise analysis,
whichwasmissed by the gene-wise analysis. This result corroborates the
advantage of the SNP-wise analysis over the gene-wise approach
implemented by the GeneiASE method.

In order to verify LPS-dependent cis-regulatory effects on SOD2
we used different methodologies including haplotype-level ASE
analysis, and analysis of LPS-response depending on the
diplotype. Although both methods pointed to enhanced LPS-
responsiveness of the H2 haplotype of SOD2, only results from
the haplotype-based ASE analysis were significant, demonstrating
higher power of the ASE approach compared to the reQTL analysis,
particularly for traits such as the LPS-response with inherently high
individual variation. In fact, we were able to confirm the enhanced
transcriptional responsiveness of the H2 haplotype in an
independent cell experiment coupled with locus-specific ASE
analysis. Further research is needed to identify the underlying
cis-regulatory variation. Notably, the PigGTEx database contains
SOD2 eQTLs in nine different tissues. The most significant SNPs
influence SOD2 expression in the blood, and reside at the 3′ end of
the gene, suggesting the most likely location of the causal variation.
Considering the important function of SOD2 in the innate immunity
(Peterman et al., 2015) and generally beneficial effects of superoxide
dismutases during inflammation (Carillon et al., 2013; Ahasan et al.,
2019), it could be speculated that the H2 haplotype, or more
precisely, the causal variation, is likely associated with enhanced
disease resistance. This hypothesis needs further investigation,

FIGURE 3
Heatmap of the enrichment (log10-transformed p-values) of selected functional terms among genes with different ASE characteristics, predicted by
Metascape. L: set of genes showing cd-ASE depending on LPS. D: set of genes showing cd-ASE depending on Dexamethasone. LD: set of genes showing
cd-ASE depending on LPS + Dexamethasone. Static: set of genes exhibiting ASE across treatments but no cd-ASE. No: set of genes showing no
significant ASE.

Frontiers in Genetics frontiersin.org07

Murani and Hadlich 10.3389/fgene.2023.1157267

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1157267


which may be facilitated by the presence of one of the validated cd-
ASE SNPs, rs80857128, on the Illumina porcine SNP array.

The list of genes where both methods evidenced cd-ASE
includes highly relevant candidates such as IDO1. The gene is
strongly activated in response to inflammatory stimuli,
including LPS (Li et al., 2021). Accordingly, IDO1 showed
cd-ASE associated with LPS application (i.e., in C vs. L as
well as C vs. LD). It encodes an enzyme that catalyzes the
initial rate-limiting step in the conversion of tryptophan via
the kynurenine pathway. The resulting depletion of tryptophan
and bioactive metabolites produced by IDO1 have an
immunomodulary function (Pallotta et al., 2022).
Importantly, these metabolites also possess neuromodulatory
activity, linking the immune response and IDO1 to (damaging)
behaviour (Nordgreen et al., 2020).

Regarding the DEX treatment, the strongest evidence for cd-ASE
was found for OLR1, which was detected by both SNP- and gene-
wise analysis. The OLR1 gene encodes a receptor (LOX1) for
oxidatively modified low density lipoprotein (oxLDL), a key
proatherogenic factor. Uptake of oxLDL by monocytes promotes
their aggregation and adhesion to vascular endothelial cells,
differentiation into foam cells and atherosclerosis (Frostegård
et al., 1990). Interestingly, OLR1 exhibited also LPS-dependent
ASE, but only in the SNP-wise analysis. The OLR1 gene is
upregulated by LPS (Li et al., 2021), and other pro-inflammatory
stimuli, connecting inflammation to atherogenesis (Pirillo et al.,
2013). In contrast to LPS andDEX treatments, we found no evidence
for cd-ASE of OLR1 in the combined LD treatment. Taken together,
these findings suggest that glucocorticoids (such as DEX) most likely
modify the risk of atherosclerosis conferred by the cis-regulatory
variation of OLR1.

5 Conclusion

The present study demonstrates the utility of functional
genomics for the investigation of G×E. We applied different
methods of cd-ASE analysis and as evidenced by the example of
SOD2 cd-ASE, found that SNP-wise analysis yields more meaningful
results. Future studies would benefit from methodological
developments such as haplotype- or single cell RNA sequencing-
based cd-ASE analysis. We found strong evidence for
environmentally sensitive cis-regulatory variation in several
prominent candidates for pig health and welfare. Overall, the
genes affected by cd-ASE are enriched in cytokine signaling
pathways. Thus, the established collection of SNPs and genes
showing ASE and cd-ASE may aid future efforts to identify loci
influencing immune response, and may even be directly considered
in genetic improvement of pig health by the currently evolving
methods to incorporate functional annotation into genomic
prediction models (Shi et al., 2022).
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