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Introduction: Apoptosis proteins play an important role in the process of cell
apoptosis, which makes the rate of cell proliferation and death reach a relative
balance. The function of apoptosis protein is closely related to its subcellular
location, it is of great significance to study the subcellular locations of apoptosis
proteins. Many efforts in bioinformatics research have been aimed at predicting
their subcellular location. However, the subcellular localization of apoptotic
proteins needs to be carefully studied.

Methods: In this paper, based on amphiphilic pseudo amino acid composition and
support vectormachine algorithm, a newmethodwas proposed for the prediction
of apoptosis proteins’ subcellular location.

Results and Discussion: The method achieved good performance on three data
sets. The Jackknife test accuracy of the three data sets reached 90.5%, 93.9% and
84.0%, respectively. Compared with previous methods, the prediction accuracies
of APACC_SVM were improved.
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1 Introduction

Apoptosis is a type of programmed cell death mechanism that eliminates unnecessary or
damaged cells from the body for cellular homeostasis regulation. The apoptotic program is
executed by multiple pathways and controlled by the interactions between several molecules.
Apoptosis proteins, such as the inhibitor of apoptosis protein (IAP) family, are proteins
involved in the process of cell apoptosis for various stress responses. The different functions
of apoptosis proteins are related to their subcellular location (Reed and Paternostro, 1999).
The subcellular location of apoptosis proteins will not only help us understand the life
process and mechanism of programmed cell death but also provide a very important method
for understanding the structure and function of proteins (Chou, 2001). It can provide a new
perspective for subsequent protein-related tasks such as protein structure prediction and
drug-protein relationship prediction (Li et al., 2022a; Li et al., 2022b). However, it is
expensive and time-consuming to carry out various experiments to obtain location
information (Koroleva et al., 2005). With the explosive growth of protein sequences in
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the post-genomic era, it is both challenging and necessary to develop
an automatic method for quick and accurate prediction of the
apoptosis proteins’ subcellular location.

In recent years, servalmethods have been proposed for the prediction
of apoptosis proteins’ subcellular location. Yu et al. (2012) proposed a
prediction method called CELLO, which used multiple SVM classifiers
based on N-peptide features. The overall accuracies for their two datasets
achieve 87.1% and 90%, respectively. Zhou and Doctor, (2003)
established a 98 apoptosis protein data set named ZD98 based on the
SWISS-PROT database. They constructed the predictor based on the
amino acid composition of the apoptosis protein sequences. The overall
success rates of the self-consistent test and jackknife test were 90.8% and
72.5%, respectively. Bulashevska and Eils (2006) used the ZD98 dataset
and the jackknife test overall prediction accuracy of the single Bayesian
classifier (BC) and hierarchical Bayesian classifier (HensBC) was 85.7%
and 89.8% respectively. Chen et al. (2021). proposed a new method to
predict the subcellular location of apoptosis proteins by combining
dipeptide composition and a discrete increment (ID) algorithm. They
predicted the subcellular location of apoptosis proteins based on themain
sequence of proteins and the measurement and increase of diversity.
According to the latest SWISS-PROT database, they selected
317 apoptosis proteins to establish a data set CL317 and classified
them into six subcellular locations (Chen and Li, 2007a).
Subsequently, the self-consistent test and jackknife test were
conducted, and the overall prediction success rates were 92.1% and
82.7%, respectively. At the same time, they applied this method to ZD98.
The overall prediction success rates of the self-consistent test and
jackknife test were 94.9% and 90.8%, respectively. Chen and Li,
(2007) applied Discrete Incremental Fusion to the dataset. The overall
prediction accuracy obtained by the Jackknife test reached 90.8%. For
other classes with small samples, the sensitivity reached 91.7%. Later, they
combined the IDwith a support vectormachine (SVM) to propose a new
algorithm. For the database of 317 apoptosis proteins in six categories, the
overall accuracy of the jackknife test was improved to 85.8%. Zhang et al.
(2006) built a larger data set named ZW225. They adopted the feature
extraction method based on grouping weight coding, and the overall
prediction success rates of self-consistent and jackknife tests were 97.3%
and 75.1% respectively. Then they combined the support vector machine
with the encoding based on grouped weights feature extraction method,
and the overall accuracy of the jackknife test rose to 83.1%.

In this article, we proposed a novel algorithm for apoptosis
proteins’ subcellular location prediction. The amphiphilic pseudo
amino acid components were used to extract the features from
protein sequences. Then, the optimal features were inputted into a
machine-learning method to train, test and build a model. The
developed approach will be useful for studying apoptosis proteins’
localization and distribution.

2 Materials and methods

2.1 Datasets

Reliable data is the basis ofmodel construction (Su et al., 2021). Three
datasets extracted from theUniprot (https://www.uniprot.org/)were used
to construct the benchmark dataset. The dataset CL317 provided byChen
and Li (2007) consists of 317 apoptosis proteins divided into six
subcellular locations with 112 cytoplasmic proteins (Cyto), 55 plasma

membrane-bound proteins (Memb), 52 nuclear proteins (Nucl),
47 endoplasmic reticulum proteins (Endo), 34 mitochondrial proteins
(Mito) and 17 secreted proteins (Secr). All the accession numbers can be
found in the literature (Zhou andDoctor, 2003;Chen andLi, 2007; Zhang
et al., 2006). ZW225 is a larger dataset provided by Zhang et al. (2006). It
contains 225 apoptosis proteins divided into four subcellular locations of
which 41 areNucl, 70Cyto, 25Mito and 89Memb. The dataset ZD98was
generated by Zhou and Doctor, 2003. The 98 apoptosis proteins were
classified into four location categories, of which 43 are Cyto, 30 Memb,
13Mito and 12 other proteins (Other). In this study, the jackknife test was
applied to build the prediction model and examine the effectiveness of
these three datasets.

2.2 Feature encoding

We need to convert sequences into vectors in mathematical
representation (Amanatidou, and Dedoussis, 2021; Dao et al., 2022a;
Jeon et al., 2022; LiH et al., 2022; Nidhi et al., 2022; Sun et al., 2022; Tran
and Nguyen, 2022; Wang et al., 2022; Yang et al., 2022; Zhang H et al.,
2022). The amino acid composition (ACC) of the protein has a great
impact on its subcellular location (Chou and Elrod, 1999a; Awais et al.,
2021; Chou and Elrod, 1999b; Rout et al., 2022; Naseer et al., 2021;
Manavalan and Patra, 2022; Shoombuatong et al., 2022). By using the
ACC to extract features of the protein sequences. a protein sequence can
be represented as a 20-D (dimension) vector as follows:

Pξ
k � pξk,1, p

ξ
k,2, . . . , p

ξ
k,i, . . . , p

ξ
k,20[ ]T , i � 1, 2, . . . , 20; ξ � 1, 2, . . . , μ;(

k � 1, 2, . . . ,m)
In Eq. 1, ξ represents the different subcellular locations of proteins, μ

is the total number of subcellular location categories, k represents the
sequence number in the subcellular position ξ,m is the total number of
sequences contained in the subcellular position ξ, and T means that the
feature vector is expressed in the form of a column vector. pξ

k,i means the
occurrence frequency of the amino acid i of the protein sequence k in the
subcellular position ξ. The amphiphilic pseudo amino acid composition
(APAAC) was originally proposed by Chou (2005) to reflect the
sequence-order effects by using the hydrophobicity and hydrophilicity
of the constituent amino acids in a protein (Hosen et al., 2022; Qian et al.,
2022). By using APAAC, a protein sample can be represented as follows:

P � p1, . . . , p20, p20+1, . . . , p20+λ, p20+λ+1, . . . , p20+2λ[ ]T (2)
where the first 20 numbers in Eq. 2 are the classic AAC features, and
the next 2λ discrete numbers are sequence-correlation factors, which
can be calculated according to the literature (Chou, 2005). For
different problems, the optimal value of λ is variable. In this
study, the optimal value of λ was selected as the one that yielded
the highest overall accuracy through the jackknife test. The APAAC
features were generated by the iLearnPlus (Chen, 2021) web server
(https://ilearnplus.erc.monash.edu/).

2.3 Support vector machine

Support vector machine (SVM) is a powerful supervised machine
learning method based on statistical learning theory (Manavalan et al.,
2019a). It was originally designed for solving binary classification
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problems. The basic idea of the generalized linear classifier is as follows:
1) mapping input vector to feature space (possibly high-dimensional
space); 2) In the mapped feature space, a separating hyperplane is
constructed to separate the two categories (Vapnik, 2019). To sidestep
the expensive calculations, the mapping function only involves the
relatively low dimensional vector in the input space and the dot product
in the feature space. SVM always seeks solutions for global optimization
and avoids overfitting. SVM has been successfully applied to many
bioinformatic problems (Wei et al., 2017; Wei et al., 2018; Manayalan
et al., 2019a; Manayalan et al., 2019b; Ao et al., 2021; Basith et al., 2021;
Zeng et al., 2021; Basith et al., 2022; Zhang Q et al., 2022), such as the
disease development prediction (Zhang et al., 2020; Zhang et al., 2021a;
Ren et al., 2022; Yu et al., 2022), protein prediction (Tang et al., 2018;
Tao et al., 2020; Zou et al., 2021; Ao et al., 2022), etc. In this paper, a
widely used software LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/
libsvm) (Chang and Lin, 2011) was used to implement the support
vector machine. The radial basis function which is defined as
K(xi, xj) � exp(−γ‖xi − xj‖2) was chosen as the kernel function.
The regularization parameter C and the kernel width parameter γ

were optimized on the training set using a grid search strategy.

2.4 Evaluation methods

At present, there are three main test methods to evaluate the
prediction results: the re-substitution test, the Jackknife test and the
k-fold cross-validation test (Zhang et al., 2020; Zhang et al., 2021b; Deng
et al., 2021; Liu et al., 2021; Tabaie et al., 2021; Ao et al., 2022a; Dai et al.,
2022; Dao et al., 2022; Jin et al., 2022; Wei et al., 2022; Xiao et al., 2022;
Zhou et al., 2022). Chou and Zhang have discussed in depth the
classification performance estimation in bioinformatics and found the
Jackknife test and k-fold cross-validation test have extrapolation ability
in statistics (Malik et al., 2021; Hasan et al., 2022). In this article, we used
the Jackknife test to evaluate the prediction results. The sensitivity (Sn),

specificity (Sp), overall prediction accuracy (OA) and Matthew’s
correlation coefficient (MCC) were used to evaluate the prediction
performance of the algorithm (Jiang et al., 2013; Guo et al., 2020; Lv
et al., 2020; Xu et al., 2021; Yang et al., 2021; Yu et al., 2021; Han et al.,
2022; Zhang Z Y et al., 2022), which are defined as follows:

Sn � TP

TP + FN
(3)

Sp � TN

TN + FP
(4)

MCC � TP × TN − FP × FN�������������������������������������
TP + FN( ) TP + FP( ) TN + FP( ) TN + FN( )√ (5)

OA � TP + TN

TP + TN + FN + FP
(6)

where TP represents the number of the positive sample correctly
identified, FN represents the positive sample wrongly identified as a
negative sample, FP represents the negative sample wrongly identified
as a positive sample, and TN represents the negative sample correctly
identified (Jia et al., 2020; Li et al., 2021).

3 Results and discussion

3.1 Model performance

The proposed algorithm based on APACC and SVMwas named
APACC_SVM. APAAC was generated by the iLearnPlus, with two

TABLE 1 The predictive results of the three datasets.

Dataset Location Sn Sp MCC OA (%)

CL317 Cyto 0.94 0.91 0.88 90.5

Memb 0.89 0.96 0.91

Mito 0.88 0.81 0.83

Secr 0.76 0.76 0.75

Endo 0.89 0.98 0.92

Nucl 0.92 0.91 0.90

ZW225 Cyto 0.83 0.82 0.74 84.0

Memb 0.93 0.91 0.87

Mito 0.68 0.85 0.73

Nucl 0.76 0.72 0.68

ZD98 Cyto 0.95 0.98 0.94 93.9

Memb 0.97 0.94 0.93

Mito 0.92 0.92 0.91

Other 0.83 0.91 0.85

TABLE 2 Comparison of prediction performance for different methods on the
CL317 dataset.

Localization ID ID-SVM DF-SVM APAAC-SVM

Sn (%) Sn (%) Sn (%) Sn (%)

Cyto 81.3 91.1 92.9 93.8

Memb 81.8 89.1 85.5 89.1

Mito 85.3 79.4 76.5 88.2

Secr 88.2 58.8 76.5 76.5

Nucl 82.7 73.1 93.6 92.3

Endo 83.0 87.2 86.5 89.4

OA (%) 82.7 84.2 88.0 90.5

TABLE 3 Comparison of prediction performance for different methods on the
ZW225 dataset.

Localization EBGW-
SVM

DF-
SVM

ID-
SVM

APAAC-
SVM

Sn (%) Sn (%) Sn (%) Sn (%)

Cyto 90.0 87.1 92.9 82.9

Memb 93.3 92.1 91.0 93.3

Mito 60.0 64.0 69.0 68.0

Nucl 63.4 73.2 73.2 75.6

OA (%) 83.1 84.0 85.8 84.0
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parameters to be determined, λ and ω namely. In order to obtain
ideal results, the selected values of ω were 0.05, 0.1, 0.2, 0.3, 0.4 and
0.5. The selected values of λ were the integers from 2 to 9. The
jackknife test was applied to examine APAAC_SVM model. The
predictive results for the three apoptosis protein datasets were
enumerated in Table 1. When ω = 0.1 and λ = 7, the overall
prediction effect was the best for the CL317 dataset. For CL317,
the predictive results showed that the overall accuracy was 90.5% in
the jackknife test. We noticed the prediction result on the Secr was
far lower than the other which may be due to the small subset
(17 proteins). To improve the accuracy of prediction, it is necessary
to collect enough proteins in the dataset.

When ω = 0.3 and λ = 7, the overall prediction effect was the best
for the ZW225 dataset. For ZW225, the jackknife test showed the
overall accuracy was 84.0%. According to the prediction results
obtained from the training of the ZW225 dataset, although the
prediction effect was not as good as CL317, the overall appearance
was similar. In the subsets Mito and Nucl (25 and 41 proteins,
respectively) with fewer sequences, the prediction accuracies were
significantly lower than the others. It showed that expanding the
data scale was important for prediction improvement.

When ω = 0.2 and λ = 7, the overall prediction effect was the best
for the ZD98 dataset. The predictive results for ZD98 apoptosis
protein sets showed that the overall accuracy was 93.9% in the
jackknife test.

3.2 Model comparison

To prove the prediction ability of our APAAC_SVM algorithm,
we compared our model with previous algorithms. For the
CL317 dataset, Chen and Li proposed the ID method and ID-
SVM method, Zhang Li et al. used the DF-SVM method for the
apoptosis proteins’ subcellular location prediction, respectively. The
comparison results were shown in Table 2. It can be seen from the
table that our APAAC-SVM method significantly improved the
prediction results in both the overall prediction accuracy and in each
subcellular location, especially in Cyto, Mito and Endo.

For the ZW225 dataset, Zhang andWang used the EBGW-SVM
and DF-SVM methods, and Chen and Li used the ID-SVM method
for prediction. The prediction model performances were shown in
Table 3. It can be seen from Table 3 that the overall prediction
accuracy of each method was relatively close. However, the APAAC-
SVM algorithm achieved good prediction accuracy in both the
Memb and Nucl. It indicated that our algorithm was relatively ideal.

For the ZD98 dataset, Zhou and Doctor, Huang Jing,
Bulashevska, Eils, Chen and Li have all conducted research.
They have respectively applied covariant discrimination
algorithm, SVM algorithm, Bayesian discrimination algorithm
and discrete incremental fusion algorithm. The predicted results
were shown in Table 4. The overall prediction accuracy of the
APAAC-SVM method was 93.9% for the ZD98 dataset, which
was higher than other methods. When the Jackknife test was
used, the overall prediction accuracy was improved by 21.3%
compared with the covariant discriminant algorithm of Zhou and
Doctor. Compared with the Bayesian discriminant method of
Bulashevska Eils, the overall prediction accuracy was increased
by about 8.1%. For a small sample of other apoptosis proteins in
the data set, the sensitivity of these two methods was only 25%
and 50%, while the sensitivity of this method can reach 83.33%.
Compared with Huang Jing’s SVM algorithm, this method had a
higher overall prediction success rate, which was increased by
about 3%; Moreover, the sensitivity of Cyto was higher, which
reached 95.3%. Compared with the discrete incremental fusion
method of Chen Yingli and Li Qianzhong, the overall prediction
success rate of this method was also higher.

By compared with previous studies, it can be found that the
APAAC-SVM method was better for category prediction with more
sequence data. It showed that this method was more suitable for the
prediction of apoptosis protein subcellular locations in the case of
increasing sequence data, and it also had an optimistic application
prospect in future research.

4 Conclusion

Previous apoptosis proteins’ subcellular location analysis
demonstrated that information in protein sequence has a great
influence on its subcellular localization. However, the
performance of the proposed algorithms for apoptosis proteins’
subcellular location prediction is inadequate. This study selected
three apoptosis protein sequence datasets CL317, ZD98 and
ZW225 to develop a new prediction algorithm. The APAAC
feature extraction method and SVM were combined to predict
the subcellular location of apoptosis proteins. Through the
reasonable selection of parameters, our algorithm APAAC_SVM
achieved jackknife test prediction accuracy of 90.5%, 93.9% and
84.0% on CL317, ZD98 and ZW225, respectively. Compared with
other methods, APAAC-SVM improved the prediction
performance.

TABLE 4 Comparison of prediction performance for different methods on the ZD98 dataset.

Covariant SVM BC Hensbc IDF APAAC-SVM

Sn(%) Sn(%) Sn(%) MCC Sn(%) MCC Sn(%) Sp(%) MCC Sn(%) Sp(%) MCC

Cyto 97.7 86.0 90.7 0.81 95.3 0.89 90.7 95.1 0.87 95.3 97.6 0.94

Memb 73.3 90.0 90.0 0.83 90.0 0.83 90.0 93.1 0.88 96.7 93.5 0.93

Mito 30.8 100 92.3 0.83 92.3 0.83 92.3 70.6 0.77 92.3 92.3 0.91

Other 25.0 100 50.0 0.57 66.7 0.80 91.7 100 0.95 83.3 90.9 0.85

OA (%) 72.5 90.8 85.7 — 89.8 — 90.8 — — 93.9 — —
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