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Background: Bladder cancer (BCa) is the leading reason for death among
genitourinary malignancies. RNA modifications in tumors closely link to the
immune microenvironment. Our study aimed to propose a promising model
associated with the “writer” enzymes of five primary RNA adenosine
modifications (including m6A, m6Am, m1A, APA, and A-to-I editing), thus
characterizing the clinical outcome, immune landscape and therapeutic
efficacy of BCa.

Methods: Unsupervised clustering was employed to categorize BCa into different
RNA modification patterns based on gene expression profiles of 34 RNA
modification “writers”. The RNA modification “writers” score (RMS) signature
composed of RNA phenotype-associated differentially expressed genes (DEGs)
was established using the least absolute shrinkage and selection operator (LASSO),
which was evaluated in meta-GEO (including eight independent GEO datasets)
training cohort and the TCGA-BLCA validation cohort. The hub genes in the RMS
model were determined via weighted gene co-expression network analysis
(WGCNA) and were further validated using human specimen. The potential
applicability of the RMS model in predicting the therapeutic responsiveness
was assessed through the Genomics of Drug Sensitivity in Cancer database
and multiple immunotherapy datasets.

Results: Two distinct RNA modification patterns were determined among
1,410 BCa samples from a meta-GEO cohort, showing radically varying clinical
outcomes and biological characteristics. The RMS model comprising 14 RNA
modification phenotype-associated prognostic DEGs positively correlated with
the unsatisfactory outcome of BCa patients in meta-GEO training cohort (HR =
3.00, 95% CI = 2.19–4.12) and TCGA-BLCA validation cohort (HR = 1.53, 95% CI =
1.13–2.09). The infiltration of immunosuppressive cells and the activation of EMT,
angiogenesis, IL-6/JAK/STAT3 signaling were markedly enriched in RMS-high
group. A nomogram exhibited high prognostic prediction accuracy, with a
concordance index of 0.785. The therapeutic effect of chemotherapeutic
agents and antibody-drug conjugates was significantly different between RMS-
low and -high groups. The combination of the RMS model and conventional
characteristics (TMB, TNB and PD-L1) achieved an optimal AUC value of 0.828 in
differentiating responders from non-responders to immunotherapy.

OPEN ACCESS

EDITED BY

Qiao Li,
University of Ottawa, Canada

REVIEWED BY

Huimin Li,
Henan University, China
Jian Zhou,
Second Xiangya Hospital, Central South
University, China

*CORRESPONDENCE

Jingping Yun,
yunjp@sysucc.org.cn

SPECIALTY SECTION

This article was submitted to
Epigenomics and Epigenetics,
a section of the journal
Frontiers in Genetics

RECEIVED 01 February 2023
ACCEPTED 31 March 2023
PUBLISHED 12 April 2023

CITATION

Zhang Z, Chen P and Yun J (2023),
Comprehensive analysis of a novel RNA
modifications-related model in the
prognostic characterization, immune
landscape and drug therapy of
bladder cancer.
Front. Genet. 14:1156095.
doi: 10.3389/fgene.2023.1156095

COPYRIGHT

© 2023 Zhang, Chen and Yun. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 12 April 2023
DOI 10.3389/fgene.2023.1156095

https://www.frontiersin.org/articles/10.3389/fgene.2023.1156095/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1156095/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1156095/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1156095/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1156095/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1156095&domain=pdf&date_stamp=2023-04-12
mailto:yunjp@sysucc.org.cn
mailto:yunjp@sysucc.org.cn
https://doi.org/10.3389/fgene.2023.1156095
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1156095


Conclusion:We conferred the first landscape of five forms of RNAmodifications in
BCa and emphasized the excellent power of an RNA modifications-related model
in evaluating BCa prognosis and immune landscape.
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1 Introduction

BCa is a common malignancy in women and is the fourth most
diagnosed malignancy in men globally, with an estimated
500,000 new cases and 200,000 deaths annually (Siegel et al.,
2019; Lenis et al., 2020; Richters et al., 2020). Non-muscle-
invasive BCa (NMIBC) account for approximately 75% of all
newly diagnosed BCa cases. The remaining 25% of BCa cases is
muscle-invasive BCa (MIBC) or has already formed metastasis.
Transurethral resection of the bladder tumor (TURBT) is the
first therapy choice of NMIBC cases, followed by intravesical
bacille Calmette-Guerin (BCG) installations or chemotherapy.
The 5-year survival rate of NMIBC is about 90%, nevertheless,
the postoperative recurrence can occur in over 50% of patients (van
Rhijn et al., 2021). MIBC individuals exhibit a poor 5-year survival
rate of merely 50% following radical cystectomy and pelvic lymph
node dissection, without substantial improvement over the past few
decades (van Hoogstraten et al., 2023). The remarkable progresses
acquired by immune checkpoint inhibitors (ICIs) (Pembrolizumab
and Atezolizumab) have fueled the quest to optimize
immunotherapy for both NMIBC and advanced BCa, while only
a small percentage of patients display a prominent and durable
response to immunotherapy (Lenis et al., 2020). Despite a number of
progressions in surgery, radiotherapy, chemotherapy,
immunotherapy and targeted therapy that have been achieved in
BCa, its prognosis improvement remains a great clinical challenge in
BCa. With the development of multi-omic methods, various BCa
biomarkers have been revealed (Lu and Zhan, 2018; Miyamoto et al.,
2018). Nevertheless, there are no effective and satisfactory
biomarkers available for clinical practice to date.

Currently, epigenetic mechanisms implicated in cancer-
associated genes and inflammatory genes have gradually been
becoming the center of BCa etiology research (Zhang et al.,
2019). Epigenetics refers to heritable changes in a cellular
phenotype caused by chromosomal alterations that is
independent of changes in DNA sequence (Dawson and
Kouzarides, 2012). Researches concerning RNA editing, splicing,
polyadenylation, and post-transcription are advancing rapidly, thus
providing an additional lens through which the essential effects of
RNA modifications (also called RNA epigenetics) on modulating
BCa development can be unraveled (Sullenger and Nair, 2016;
Barbieri and Kouzarides, 2020).

In human cells, RNAmodification exists in all nucleotides: A, U,
C, and G (Motorin and Helm, 2011). RNA harbors exceeding
170 forms of chemical modifications, such as N6-
methyladenosine (m6A), N6,2′-O-dimethyladenosine (m6Am), N

1-
methyladenosine (m1A), N7-methylguanosine (m7G), and
alternative polyadenylation (APA) (Dong and Cui, 2020). As
reported, a direct and mutual interplay exists among these

modifications. One of the best-characterized examples is that
inhibition of m6A-catalyzing enzymes leads to global adenosine-
to-inosine (A-to-I) editing alterations potentially via a disturbance
of RNA secondary structure essential for the deamination (Liu et al.,
2015; Xiang et al., 2018a). Moreover, a novel molecular axis
METTL3/ADAR1/CDK2 conjoining m6A and A-to-I that can
forcefully alter the scenario of post-transcriptional events and
ultimately exerts a pro-oncogenic effect in glioblastoma
(Tassinari et al., 2021). Concerning that we are incapable of
underlining all types of RNA modifications in our report and
adenine is a kind of RNA nucleotide with the most widespread
chemical diversities, herein, we primarily concentrated on adenine-
associated RNA modifications (m6A, m6Am, m

1A, APA and A-to-I
editing). Above modifications are commonly generated through the
activity of enzymes referred to as “writers” (Roundtree et al., 2017).

m6A is defined as the methylation occurring at the sixth nitrogen
atom of adenine base, which is the most plentiful and better
characterized internal RNA modification form in eukaryotic cells
(Wei et al., 1975a; Gilbert et al., 2016). This modification is catalyzed
via m6A-methyltransferases complex, including METTL3,
METTL14, RBM15, WTAP, VIRMA, ZC3H13, METTL16,
CBLL1, and RBM15B (Pendleton et al., 2017; Zaccara et al.,
2019). The presence of m6A not only influences RNA stability,
translational efficiency, and epigenetic function of non-coding
RNAs, but also exerts crucial effect on circadian rhythm
maintenance and cell cycle modulation, cell differentiation and
reprogramming, embryonic stem cell self-renewal, T cell
homeostasis, neuronal functions, tumorigenicity and metastasis
(Yu et al., 2018; Dong and Cui, 2020).

2′-O-methyladenosine (Am) (as the first nucleotide adjacent to
m7G cap) is subsequently methylated at the N6 position to convert
into m6Am RNA modification, which is generally mediated by
methyltransferase (including PCIF1 and METTL4) (Wei et al.,
1975b; Sendinc et al., 2019; Chen et al., 2020a). m6Am, known as
the second most abundant modification in cellular mRNAs and
small nuclear RNAs (snRNAs), probably participates in tumor
development through modulating RNA splicing, mRNA stability
and cap-dependent translation (Dong and Cui, 2020). Specifically,
METTL4 as a novel internal m6Am methyltransferase for U2 snRNA
in human has the capacity to catalyze Am at U2 snRNA position
30 into m6Am, loss of which broadly impacts various biological
pathways, including RNA splicing and cell proliferation (Chen et al.,
2020a; Goh et al., 2020; Gu et al., 2020).

m1A can be defined as a reversible modification in tRNA, rRNA,
mRNA, lncRNA and mitochondrial transcripts, affecting the first
nitrogen atom of adenine base (Dominissini et al., 2016; Safra et al.,
2017; Scheitl et al., 2020). Multiple m1A-methyltransferases as “writers”
have been revealed, including TRMT6/61A/61B, TRMT10C, and RRP8
(Zhang and Jia, 2018). The electro-chemical crosstalk caused by positive
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electrostatic charge of m1A canmaintain normal function and structure
of tRNA.Additionally, m1A fosters the translation initiation and tertiary
structure of ribosomes while restrains most reverse transcription of
RNA, thus modulating the onset and development of diseases
(Hauenschild et al., 2015).

APA is a phenomenon that nascent mRNA is cleaved at diverse
sites, followed by addition of a poly (A) tail, and further generate
multifarious transcript isoforms with diverse lengths of 3′-
untranslated region (3′UTR) (Tian et al., 2005; Zhang et al.,
2021a). The APA of mRNAs is elicited by multiple
subcomplexes, namely, CPSF, CSTF, WDR33, FIP1L1, PCF11,
CLP1, and PABPN1 (Schönemann et al., 2014; Tian and Manley,
2017; Brumbaugh et al., 2018; Jang et al., 2019). Because 3′UTR
accommodates microRNA (miRNA)-binding sites, APA event is
implicated in mRNA stability, translation, and cellular localization.
Extensive shortening of 3′UTR has been revealed in a wide variety of
tumors, which enables the activation of oncogenes or restrains
tumor-suppressor genes in trans through a perturbation of
competing endogenous RNA (ceRNA) network, thereby
facilitating tumorigenesis (Xia et al., 2014; Xiang et al., 2018b;
Park et al., 2018). Disturbance in the expression of APA factors
is also detected in diverse malignant tumors, leading to abnormal
usage of proximal polyA sites (PAS) (Chu et al., 2019; Fischl et al.,
2019).

A-to-I editing is one of the most abundant RNA modification
events affecting adenosine in humans, where adenosine deaminase
acting on RNA (ADAR) enzymes (including ADAR, ADARB1, and
ADARB2) shift adenosine nucleotides towards inosines through the
deamination and eventually lead to specific nucleotide alterations at
RNA level and changes in the sequence of amino acids in protein
without influencing DNA sequence (Xiang et al., 2018a; Eisenberg
and Levanon, 2018; Peng et al., 2018). A previous study has reported
that A-to-I-edited miR-376a-3p is diminished in glioblastoma,
thereby accelerating tumor invasiveness (Choudhury et al., 2012).
ADARB1-mediated endogenous and exogenous A-to-I editing in
miR-379-5p suppresses tumor proliferation through targeting the
apoptosis promoter CD97 (Xu et al., 2019). A-to-I RNA editing in
RHOQ is sufficient to confer more aggressive tumor behavior in
colorectal cancer (Han et al., 2014). Therefore, A-to-I editing is
essential for neoplasia and progressive peculiarity of tumor through
modulating site-specific modifications of tumor-associated
molecules.

Above five classes of RNA modification “writers” potentially
constitute a fundamental and sophisticated regulatory network in
BCa, and a thorough comprehending of the network potentially
confers a novel insight into the contribution of RNAmodification to
BCa tumorigenesis. Immune-checkpoint blockade (ICB) is currently
on the cutting edge and profiled as the most promising
immunotherapeutic strategy in tumor. High tumor mutation
burden (TMB) of BCa renders it susceptible to ICB therapy,
specifically for monoclonal antibodies targeted programmed cell
death-1 (PD-1) and its ligand, PD-L1. Nevertheless, merely lower
than 30% of BCa patients yield an objective response from ICB
(Balar et al., 2017; Bellmunt et al., 2017). Thus, the ideal approach to
screening a cluster of BCa patients who will experience optimal
response to the frontline immunotherapy remains to be determined,
one of which is to deeply analyze the tumor microenvironment
(TME) and mechanism underlying the low response rate to ICB.

Compelling and accumulating evidence has demonstrated the
crosstalk between immune cells infiltrating in the TME and
mRNA modification and associated enzymes. For example,
METTL3 deficiency results in the upregulation of IRAKM and
subsequently suppresses TLR4 signaling, thus inhibiting
macrophage activation (Tong et al., 2021). METTL3 can
modulate T cell homeostatic proliferation through targeting IL-7/
STAT5/SOCS pathway (Li et al., 2017). METTL3-mediated m6A
modification also facilitates the translation of CD40, CD80 and
cytokine IL-12 transcripts to accelerate dendritic cell (DC) activation
(Wang et al., 2019). Thus, RNA modification “writers” are
increasingly recognized as an orchestrator to influence
homeostasis and function of immune cells in the host. RNA
modifications-related score potentially develops into a robust
prognostic indicator of immunotherapy.

Precise prognostic model is extremely crucial in tumor
immunotherapy. Nevertheless, current studies have principally
concentrated on single RNA modification “writer” on account of
methodological limitations, while a highly coordinated interaction
of various tumor-inhibiting factors is responsible for the antitumor
effect of these RNA modification regulators (Dong et al., 2021).
Additionally, the potential association between immune landscape
of BCa based on the TME and RNA modifications have not been
explored in depth and there is no prognostic model based on
“writers” of five forms of RNA modifications and their scores in
BCa. Thus, a penetrating investigation of dynamic functional
network composed of RNA modification regulators and TME
components is of extraordinary significance to screen potential
subpopulations and exploit preventive, personalized
immunotherapy strategies in BCa.

In our study, the transcriptomics data combined with
clinicopathological parameters of 1,410 BCa cases were extracted
from eight independent Gene Expression Omnibus (GEO) datasets.
Firstly, two RNA modification clusters were determined through
conducting an unsupervised clustering of gene-expression profiles of
34 RNA modification “writers”. We further correlated RNA
modification pattern with the prognosis of BCa and the
infiltrating characteristics of multiple immune cells in the TME.
Secondly, on the basis of DEGs between two distinct RNA
modification patterns, we established RMS model by least
absolute shrinkage and selection operator (LASSO) regression,
thus individually predicting the prognosis and patients’
responsiveness to chemotherapy drugs, ADCs and ICBs. Then,
because the exploration of model-associated molecular
mechanism is potentially conducive to its future clinical practice,
we investigated the association between the risk score and biological
functions, immune characteristics through gene set enrichment
analysis (GSEA) and correlation analysis. Additionally, survival
analysis, Cox proportional hazards model and receiver operating
characteristic (ROC) analysis were performed to evaluate the
prognostic performance of RMS model. A nomogram was
formulated via integrating RMS mdoel and clinicopathological
characteristics to predict long-term survival probabilities for BCa
patients. The concordance index (C-index), ROC curve, calibration
curve analysis, and decision curve analysis (DCA) were applied for
assessing the predictive power and accuracy of the nomogram.
Ultimately, weighted correlation network analysis (WGCNA) was
performed to identify the hub genes associated with RNA

Frontiers in Genetics frontiersin.org03

Zhang et al. 10.3389/fgene.2023.1156095

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1156095


modifications. We also validated the hub gene expressions in human
BLCA samples compared to tumor-adjacent control samples. In
summary, our results emphasize the predictive efficiency of RNA
modifications-related model in evaluating the prognosis and
therapeutic efficiency of BCa and confer novel insights to
elucidate the mechanisms of immune regulation linked to RNA
modifications in BCa patients.

2 Materials and methods

2.1 Data extraction and preprocessing

The program flowchart of our report was illustrated in Figure 1.
The public somatic mutation information for 412 BCa samples
(workflow type: VarScan2 Variant Aggregation and Masking) was
downloaded from The Cancer Genome Atlas-Bladder Urothelial
Carcinoma (TCGA-BLCA) (https://portal.gdc.cancer.gov/
repository). The somatic copy number variation (CNV) status for
409 BCa cases, and the RNA-sequencing (RNA-seq) data and
corresponding clinical datasheets for 411 BCa tissues were
extracted from the University of California Santa Cruz (UCSC)
Xena browser (https://xenabrowser.net). The clinicopathologic
parameters included age, gender, T, N, M classification, tumor
stage, histological grade, overall survival (OS) and survival status.
RNA-seq data (FPKM values) were further converted into TPM
values to make samples more comparable. The waterfall plot that
depicted the mutant landscape of TCGA-BLCA cohort was
established through “maftools” R package (Mayakonda et al., 2018).

Additionally, the gene expression profiles and detailed clinical
annotations of eight BCa-associated Gene Expression Omnibus
(GEO) cohorts were extracted from the supplementary files of
original manuscript or downloaded from http://www.ncbi.nlm.
nih.gov/geo/ through “GEOquery” R package (Davis and Meltzer,
2007), including GSE13507 based on platform GPL6102 (with
188 BLCA samples) (Kim et al., 2010; Lee et al., 2010),
GSE32894 based on platform GPL6947 (with 308 BLCA samples)
(Sjödahl et al., 2012), GSE32548 based on platform GPL6947 (with
131 BLCA samples) (Lindgren et al., 2012), GSE128959 based on
platform GPL6244 (with 200 BLCA samples) (Sjödahl et al., 2020),
GSE31684 based on platform GPL570 (with 93 BLCA samples)
(Riester et al., 2012; Riester et al., 2014), GSE48075 based on
platform GPL6947 (with 142 BLCA samples) (Choi et al., 2014;
Guo et al., 2020), GSE104922 based on platform GPL6244 (with
41 BLCA samples) (Therkildsen et al., 2018), GSE83586 based on
platform GPL6244 (with 307 BLCA samples) (Sjödahl et al., 2017).
The ComBat algorithm of “sva” R Package was utilized for
eliminating the batch effects caused by non-biological technical
biases (Leek et al., 2012). Eventually, these data from above GEO
sets were united into a meta-GEO group (including 1,410 BCa
patients) to formulate our RMS model.

2.2 Weighted gene co-expression network
analysis (WGCNA)

WGCNA can be employed to illuminate the relationship
between gene networks modules and clinical phenotype at

FIGURE 1
The flow chart of our study.

Frontiers in Genetics frontiersin.org04

Zhang et al. 10.3389/fgene.2023.1156095

https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
https://xenabrowser.net/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1156095


transcriptome level based on data reduction method and
unsupervised classification method (Langfelder and Horvath,
2008). Firstly, the soft threshold power was estimated using
nearly scale-free topology to construct a scale-free network. The
distance between each gene pair was identified in accordance with
the toplogical overlap matrix similarity. Furthermore, hierarchical
clustering analysis with the average method and dynamic method
was utilized to establish the cluster tree and stratify a variant set of
genes into different modules, respectively, respectively. The
branches of the cluster tree labeled with a specific color signified
one module comprising genes with high correlation. Modules were
merged on the condition that their correlation of module eigengene
(ME) was over 0.75, implying the similarity of their expression
profiles. Pearson’s correlation coefficients and the corresponding p
values was applied for assessing the correlation between MEs and
clinical traits, such as tumor stage, histological grade, and survival
status. By convention, one module with the greatest absolute of
module significance (MS) was chosen for subsequent analysis. For
each module, module membership (MM) was characterized with the
correlation coefficient between ME and gene expression profile.
Gene Significance (GS) value was applied to quantify the correlation
between individual gene and clinical factors (Langfelder and
Horvath, 2008). Genes with MM > 0.8 and | GS | > 0.2 were
defined as hub genes in the module. In our study, the “WGCNA” R
package was performed to establish a co-expression network of
5,657 prognosis-associated genes in 411 BCa patients with
clinicopathological parameters (Zhang et al., 2021b).

2.3 Immunohistochemistry (IHC)

Samples were collected from BCa cases who conformed to the
following criteria (Richters et al., 2020). Patients were clinically and
pathologically diagnosed with BCa (Siegel et al., 2019). None of cases
was performed by radiotherapy or chemotherapy before surgery
(Lenis et al., 2020). Paired adjacent non-neoplastic bladder tissues
were available for contrast. All tissues were acquired from Sun Yat-
sen University Cancer Center and immediately fixed with formalin.
The samples were embedded in paraffin for the construction of
tissue microarray (TMA) that included 84 paired BCa samples. Prior
to participating in this study, all patients received written informed
consent. The project was approved by the Ethics Committee of Sun
Yat-sen University Cancer Center.

The BCa TMA was dewaxed with xylene and further blocked
endogenous peroxidase activity in 3% hydrogen peroxide solution.
Antigen retrieval was conducted through boiling the samples in
sodium-citrate buffer (pH 6.0) for 3 min. The TMA was incubated
overnight with primary antibodies (anti-KIAA1429: 1:500, # 25712-
1-AP, Proteintech, United States) at 4°C overnight. After incubating
with secondary antibody at room temperature for 30 min, the TMA
was counter-stained with hematoxylin, dehydrated and covered. The
degree of immunostaining of the TMA was evaluated by two
independent pathologists blinded to the histopathological
characteristics of the samples. The proportion of positively
stained cells was scored on a scale of 0–4 (0%, 1%–25%, 26%–
50%, 51%–75%, and 76%–100%). The staining intensity was scored
with four scoring levels: 0 (negative), 1 (weak), 2 (medium) and 3
(strong). The staining score was staining by multiplying the

proportion of positively stained cells with the intensity score. The
total scores were relatively stratified into three grades, <3 scores, 3 to
6 scores, and >6 scores, which corresponded to negative, weak
positive and strong positive staining, respectively.

2.4 Real-time quantitative PCR (RT-qPCR)

Based on the manufacturer’s instructions, TRIzol reagent
(Invitrogen, Carlsbad, CA) was utilized to isolate total RNA from
tissues. Then, cDNA was generated by reverse transcription using
the HiScript II Q RT SuperMix Kit (Vazyme Biotech, Nanjing,
China). RT-qPCR was performed using the SYBR Green approach
(Roche, Basel, Switzerland) in a Roche LightCycler 480 II PCR
system (Roche Diagnostics, Rotkreuz, Switzerland). GAPDH was
applied for normalizing target gene expression. The RT-qPCR
primer sequences were: KIAA1429, forward 5′- TCGATAGGT
TGGGAAGCCTGG-3′ and reverse 5′- TACCAGCCTCTTAGC
ACCAGA-3′.

2.5 Western blot assay

RIPA Lysis Buffer (Beyotime, Shanghai, China) was used to
extract total protein from fresh tissue samples and the BCA Protein
Assay Kit (Thermo Fisher Scientific, Waltham, United States) was
applied for measuring protein concentrations. Subsequently, total
protein was separated via an SDS-polyacrylamide gel and was
further moved to a polyvinylidene fluoride membrane. The
membrane was incubated overnight at 4°C with primary antibody
rabbit monoclonal anti-KIAA1429 (# 25712-1-AP, Proteintech,
United States; 1:1,000 dilution) and mouse monoclonal anti-beta-
tubulin (# sc- 5274, Santa Cruz, United States; 1:1,000 dilution).

2.6 Collection of clinical datasets with
immunotherapy

Three immunotherapeutic cohorts with accessible genomic/
transcriptomic data and sufficient clinical annotations were
enrolled into our report to investigate the association between
the RMS and efficacy of immunotherapy (Richters et al., 2020).
IMvigor210 cohort, advanced urothelial carcinoma (UC) with
atezolizumab (anti-PD-L1 antibody) treatment (Mariathasan
et al., 2018; Siegel et al., 2019) Snyder UC cohort, patients with
locally advanced or metastatic UC (mUC) treated with atezolizumab
(Snyder et al., 2017; Lenis et al., 2020) Montoya melanoma cohort,
advanced melanoma patients underwent MAGE-3 antigen-based
immunotherapy (Ulloa-Montoya et al., 2013).

For IMvigor210 cohort, according to the Creative Commons
3.0 License, the gene expression data and detailed clinical annotation
were downloaded from http://research-pub.gene.com/
IMvigor210CoreBiologies. The raw data were normalized through
“edgeR” R package and were subsequently converted to TPM values.
Similarly, data of Snyder UC cohort were extracted from http://doi.
org/10.5281/zenodo.546110. Furthermore, RNA-seq and clinical
information from Montoya melanoma cohort were deposited in
GSE35640 (N = 55).
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2.7 Unsupervised clustering analysis of RNA
modification “writers”

To identify the optimal number of clusters, we utilized
unsupervised consensus hierarchical clustering algorithm through
“ConsensuClusterPlus” R package, to perform clustering analysis of
34 RNA modification “writers” of 1,410 BCa samples in the meta-
GEO cohort (Wilkerson and Hayes, 2010). The robustness of above
stratification was identified via the consensus clustering algorithm
with 1,000 times repetitions.

2.8 Gene set variation analysis (GSVA) and
gene ontology (GO) analysis

GSVA was conducted using “GSVA” R package, thus depicting
the differences in the enrichment of signaling pathways between
diverse RNA modification patterns (Hänzelmann et al., 2013). The
well-acknowledged biological signatures were acquired from the
Hallmarker gene set [curated from the Molecular Signature
Database (MSigDB) v7.1] (Subramanian et al., 2005) and
Mariathasan et al. established gene set (download from http://
research-pub.gene.com/IMvigor210CoreBiologies) (Mariathasan
et al., 2018). GO functional annotation for 34 RNA modification
enzyme genes were identified through “clusterProfiler” R package
with a threshold of false discovery rate (FDR) < 0.05 (Yu et al., 2012;
Zhang et al., 2021b).

2.9 Identification of RNA modification
phenotype-related DEGs

A total of 1,410 BCa patients were stratified into two different
RNA modification patterns in line with the preceding consensus
clustering algorithm. RNA phenotype-related DEGs between
Cluster 1 and Cluster 2 were determined using the empirical
Bayesian method of “limma” R package (Ritchie et al., 2015).
DEG with│log2fold change (FC)│> 1 and an adjusted
p-value <0.001 was considered as the significance criteria.

2.10 Construction and validation of the RMS
model

We further established a scoring model to assess RNA
modification pattern of each BCa patient—the signature of RNA
modification “writers”, and we termed as the RMS. Initially,
univariate Cox regression analysis was carried out to estimate the
HR of RNA phenotype-related DEGs using “survminer” R package.
Among the resulting DEGs with significantly prognostic power (p <
0.05) based on univariate Cox regression analysis, pivotal prognostic
DEGs were further identified by the LASSO with L1-penalty using
“glmnet” R package (Engebretsen and Bohlin, 2019), ultimately
formulating the RMS model. The LASSO method determines
interpretable prediction rules that can resolve the collinearity and
overfitting problem, which is applied to build models when there are
plenty of correlated covariates (Gui and Li, 2005). In this algorithm,
a sub-selection of RNA phenotype-related DEGs associated with

BCa patients’ prognosis was identified through shrinkage of the
regression coefficient and fewer parameters with a weight of non-
zero ultimately remained. Thus, LASSO Cox regression reinforced
the prediction accuracy of the model through diminishing the
number of DEGs (Long et al., 2019). Subsequently, RNA
phenotype-associated prognostic model was established through
multiplying the regression coefficient derived from LASSO Cox
regression by the expression level of each DEG. We defined the
RMS of each case in the meta-GEO using the following formula:
RMS = βmRNA1 * ExprmRNA1 + βmRNA2 * ExprmRNA2 + // +
βmRNAn * ExprmRNAn, where Expr was the expression level of DEG
and β was the Cox regression coefficient. Eventually, we categorized
all BCa cases in the meta-GEO dataset into RMS-high and -low
groups using themedian risk score. To reap a uniform cutoff value to
classify the cases into high and low RMS groups, a normalization for
the expression values of DEGs were normalized with standard
deviation (SD) = 1 and average value = 0 in the TCGA-BLCA
and meta-GEO cohort. To further validate the RMS model, the risk
score calculation for each patient and the stratification of patients in
the TCGA-BLCA was determined according to the same formula
and the identical cutoff value derived from the meta-GEO cohort,
respectively.

2.11 Construction and validation of
nomogram model

All statistically significant clinicopathological characteristics
identified by multivariate Cox analysis were included to build the
prognostic nomogram model with “rms” R package, thereby
estimating survival probability of BCa individuals (Chen et al.,
2020b; Zhang et al., 2021b). The concordance index (C-index)
and calibration curves were applied for assessing the prediction
accuracy of the nomogram. The closer to 1 the C-index is, the more
accurate the predictive efficiency of nomogram is (Zhang et al.,
2021b). The time-dependent receiver operating characteristic
(ROC) curve with an area under the curve (AUC) value was
formulated by “survivalROC” R package, thereby evaluating the
predictive performance of the nomogram (Chen et al., 2020b).

2.12 Analysis of RMS-related DEGs in pan-
cancer

The online GSCALite website (http://bioinfo.life.hust.edu.cn/
web/GSCALite/) was applied for exploring the mRNA expression,
CNV, and pathway activity of RMS-related DEGs in pan-cancer (Liu
et al., 2018).

2.13 Characterization and survival analysis of
APA events between RMS-high and -low
group

APA profile in BCa was downloaded from Synapse (https://
www.synapse.org/, syn7888354) (Xiang et al., 2018b). The DaPars
algorithm (https://github.com/ZhengXia/DaPars) has been used to
estimate the relative polyA site usage in 3′UTR caused by APA
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through the Percentage of Distal polyA site Usage Index (PDUI) that
is a quantitative index to determine 3′UTR lengthening (positive
index) or shortening (negative index) (Xia et al., 2014). The
Wilcoxon rank-sum test was used to compare the differences in
3′UTR between RMS-high and -low group, and we considered p < 0.
05 and |ΔPDUI| = |PDUI RMS-high − PDUI RMS-low | > 0.1 as
statistically significant.

Univariate Cox regression analysis was performed to determine
the prognostic significance of each differential APA event between
RMS-high and -low group using “survival” R package. All BCa
patients in the TCGA were stratified into two groups in accordance
with PDUI value, and Kaplan-Meier curve with log-rank test was
established to assess their survival difference.

2.14 Correlation analysis of the RMS and
drug sensitivity

We acquired RNA-seq data of 18 kinds of BCa cell lines, AUC
values as drug response measurements of antineoplastic drugs in
BCa cell lines, and targets or pathways of drugs from Genomics of
Drug Sensitivity in Cancer (GDSC, https://www.cancerrxgene.org/)
(Yang et al., 2013). Spearman correlation analysis was conducted to
estimate the association between drug sensitivity and the RMS, with
the cutoff values of | Spearman Correlation Rs | > 0.2 and FDR <0.05.

2.15 Statistical analysis

Difference analysis was performed by Wilcoxon rank-sum test.
Survival curve was established using Kaplan-Meier method, and log-
rank test was utilized to estimate the significance of differences. Tumor
and Immune System Interaction Database (TISIDB, http://cis.hku.hk/
TISIDB/; up to 15 March 2021) was utilized to unravel the correlation
between the abundance of various tumor-infiltrating immune cells and
the expression of RNA modification “writers” genes (Ru et al., 2019).
The “pROC” R package was utilized to formulate ROC curve with
corresponding AUC value, thus verifying the predictive power of the
RMSmodel. Univariate Cox analysis was applied for calculating the HR
value of RNA phenotype-associated DEGs. All significant independent
prognostic factors were identified via multivariable Cox regression
analysis using “survminer” R package. The Benjamini–Hochberg
algorithm was used to convert p-value to FDR (Glickman et al.,
2014). All statistical analysis was conducted using R 3.6.2 software,
and p < 0.05 were considered statistically significant.

3 Results

3.1 Genetic and transcriptional landscape of
five types of RNA modification “writers”
in BCa

In accordance with published articles depicting RNA
modification (Elkon et al., 2013; Zaccara et al., 2019; Dong and
Cui, 2020; Marceca et al., 2021), a catalog of 34 RNA modification
“writers”were enrolled into our study, including 9m6Amodification
“writers” (METTL3, METTL14, RBM15, WTAP, KIAA1429,

ZC3H13, METTL16, CBLL1 and RBM15B), 2 m6Am modification
“writers” (PCIF1 and METTL4), 5 m1A modification “writers”
(TRMT6, TRMT61A, TRMT10C, TRMT61B, RRP8), 15 APA
modification enzymes (CPSF1/2/3/4, NUDT21, CPSF6/7, CSTF1/
2/3, WDR33, FIP1L1, CLP1, PCF11, PABPN1), and 3 A-to-I
modification enzymes (ADAR, ADARB1 and ADARB2)
(Supplementary Table S1).

To delineate genetic landscape of RNA modification “writers” in
BLCA, we evaluated the frequency of non-silent somatic mutations in
34 “writers” based on mutational information of the TCGA-BLCA
database. Specifically, 127 of 412 BLCA cases (30.83%) experienced
mutations of RNA modification “writers”. METTL3 displayed the
greatest mutation frequency (4%), followed by PCF11 (4%),
KIAA1429 (3%), and WDR33 (3%). While the mutation frequency
of ADARB1, METTL16 and CPSF7 was extremely low in BCa samples.
Missense mutation constitutes the predominant type of mutations for
each writer (Figure 2A).

We demonstrated that BCa patients with mutant “writers”
exhibited a significantly prolonged OS than those without mutation
(HR = 0.53, 95% CI: 0.38–0.75, p < 0.001) (Figure 2B), indicating that
genetic alteration of “writers” potentially exerts a functional effect
towards BCa tumorigenicity. GSEA was carried out to decipher
biologic themes specific for “writers” mutated (“Writers” MUT) group
(N = 126) and “writers” wild-type (“Writers” WT) group (N = 285) of
patients in the TCGA-BLCA. “Writers” WT group was markedly
enriched in carcinogenic activation pathways, such as angiogenesis,
PI3K signaling, MAPK activity, P53 signaling, Jun kinase activity, and
canonicalWnt signaling pathway (Figure 2C; Supplementary Tables S2,
S3). Hence, the mutation of “writers” is prone to trigger functional
alterations with prognostic significance in BCa.

We also investigated CNV alteration frequency of these “writers”
and unraveled that ADAR, ADARB2, CLP1, and CPSF7 had a relatively
high frequency of CNV amplification, while ZC3H13, RBM15B and
RRP8 experienced a widespread frequency of CNV deletion
(Figure 2D). To determine whether CNV plays a considerable role
in the expression of RNA modification “writers” in BCa patients, we
attempted to assess the mRNA level of “writers” between normal and
BCa tissues in the TCGA database. As depicted in Figures 2E–I, a large
proportion of enzyme-associated genes displayed relatively greater
mRNA expression in BCa than normal tissues, highlighting the
profound function of these “writers” in the occurrence and
development of BCa. Moreover, RNA modification “writers” with
CNV gain (such as ADAR, CLP1, and CPSF6) were significantly
upregulated in BCa samples than normal tissues. On the contrary,
the expression of “writers” genes with CNV loss (including
ZC3H13 and RRP8) was significantly diminished in BCa versus
normal bladder tissues. Notably, certain “writers” (such as
ADARB2 and PCF11) with widespread frequency of CNV gain
harbored decreased mRNA level in BCa compared to adjacent non-
tumor tissues (Figures 2D, G, H).

To further elucidate the association between CNV values and
mRNA expression in BCa samples, we stratified the TCGA-BLCA
cohort into three groups according to CNV values of four “writers”
characterized with exceeding 5% of CNV loss in BCa tissues,
including CNV gain, CNV loss and non-significant alteration of
CNV. Concretely, ZC3H13, RBM15B, RRP8, and RBM15 with CNV
gain exhibited dramatically enhanced mRNA level than that with
CNV loss, respectively. Nevertheless, the mRNA levels of above
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“writers” were significantly decreased or without remarkable
alteration in CNV loss group compared with those in non-tumor
samples (Supplementary Figure S1A). Thus, CNV alteration
partially explains why there is differential mRNA expression
between tumor and normal samples (Sebestyén et al., 2016).
Additional parameters, such as DNA methylation and
transcription factors, are also endowed with the robust capacity
to orchestrate gene expression in tumorigenesis (Lambert et al.,
2018; da Rocha and Gendrel, 2019).

3.2 Prognosis and immune characteristics of
RNA modification “writers” in BCa

Pairwise correlation analysis demonstrated that not only RNA
modification “writers” in the same functional category exhibited a
significant correlation in expression, but also a significant
correlation was presented among mRNA levels of different
category of “writers”. For example, BCa samples with high

expression of A-to-I “writer” gene ADAR were accompanied by
increased mRNA levels of eight m6A “writer” gene, including
METTL14, RBM15, WTAP, VIRMA, ZC3H13, METTL16,
CBLL1 and RBM15B, indicating a potential crosstalk between
m6A and A-to-I modification in BCa (Figure 3A). Whether co-
expression phenomenon of these “writer” genes hints a functional
correlation is a topic that motivates us to pursue further
investigation. Additionally, prognosis analysis demonstrated that
seven of 34 RNAmodification “writers” were prognostic parameters
of BCa cases in the TCGA-BLCA. BCa patients with higher
KIAA1429 expression had a shorter survival time (HR = 1.35,
95% CI: 1.01–1.82, p = 0.0447) (Supplementary Figure S1B).

To further comprehensively expound the expression pattern of
34 “writers” in BCa, 1,410 BCa patients from eight independent GSE
sets were combined into a meta-GEO group in our study
(Supplementary Table S4). As revealed in Figure 3B, BCa
patients with high KIAA1429 expression were characterized with
an increased proportion of macrophage and Type 17 T helper cells
(Th17 cells). We also mined the GSCALite web server and found

FIGURE 2
Genetic and transcriptional characteristics of RNAmodification “writers” in the TCGA-BLCA cohort. (A)Waterfall plot showingmutation frequency of
34 “writers” in 412 BCa cases. The upper and the right bar chart represented the TMB for individual sample, and the proportion of mutation type of each
“writer”, respectively. (B) Kaplan-Meier curve of OS in “Writers” MUT and “Writers” WT BCa patients. (C) Bar chart depicting significantly biological pathways
enriched in “Writers” WT (Right) or “Writers” MUT (Left) BCa patients by GSEA. (D) Bar chart depicting CNV frequency of 34 RNA modification “writers”.
(E–I) Boxplot representing mRNA levels of 34 “writers” between normal tissues and BCa samples, with p values derived from Wilcoxon rank sum test.
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that KIAA1429 expression was negatively related to apoptosis, and
positively associated with PI3K/Akt and RTK pathways (Figure 3C).

3.3 WGCNA used for the screening of
KIAA1429

Considering that the broad impacts of m6A “writer”
KIAA1429 on epigenetic modifications, we further emphatically
discussed the prognostic significance of KIAA1429 in BCa. Initially,
a total of 5,657 prognosis-associated genes were extracted in 411 BCa
patients, among which 3,497 genes were associated with favorable
prognosis (HR < 1, p < 0.05) and 2,160 genes were related to
unfavorable prognosis (HR > 1, p < 0.05). To select pivotal hub genes
associated with BCa progression, above 5,657 prognosis-associated
genes were applied to cluster analysis by the “WGCNA” R package.
On the basis of the standard scale-free network distribution, we
carefully set the soft threshold power value as 7 to formulate a
hierarchical clustering tree (dendrogram) of 5,657 genes
(Figure 3D). According to the dynamic tree cut algorithm, the
least gene number of each module and the minimum cut height
was 50 and 0.25, respectively. The correlation of characteristic genes
in integrated modules was over 0.9. We identified six co-expression

modules containing all genes based on their degree of connectivity.
The gray section represented background genes that did not belong
to any modules (Figure 3E). We ultimately assessed the correlation
between MEs and clinical traits, including TNM stage, histological
grade and survival status. Specifically, the green module was
characterized with the strongest positive correlation with survival
status (r = 0.76, p < 0.0001), which was considered as the most
significant module to the prognosis of BCa (Figure 4A). There were
three RNA modification “writers” in the green module, of which
MM value and the absolute value of GS of KIAA1429 ranked first
(p < 0.0001) (Figure 4B). Thus, KIAA1429 can be defined as one hub
gene significantly related to survival status and BCa prognosis in the
green module.

3.4 KIAA1429 expression in bladder cancer

To clarify the role of KIAA1429 in BCa, we used qRT-PCR to
examine the expression of KIAA1429 in 20 pairs of human primary
BCa tissues and paracancerous normal samples. Upregulation of
KIAA1429 mRNA was revealed in BCa tumor samples compared
with the corresponding non-cancerous samples (Figure 4C).
Consistent with the findings of qRT-PCR assay, KIAA1429 at the

FIGURE 3
Prognosis and immune characteristics of RNA modification “writers” in BCa samples. (A) Heatmap showing the positive and negative correlations
among 34 RNA modification “writers” in the TCGA-BLCA cohort. (B) Heatmap displaying the positive and negative correlations between 34 RNA
modification “writers” and infiltrating proportions of 28 immune cells in the meta-GEO cohort. (C) Heatmap displaying “writers” with inhibitory (Blue) or
activated (Red) functions in multiple pathways in BCa. (D) The scale-independence index and the mean connectivity for diverse soft threshold
powers of the WGCNA. (E) Cluster dendrogram of prognosis-associated genes in the TCGA-BLCA using WGCNAmethod. Each branch in the figure and
each color below represented one gene and one co-expression module, respectively.
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protein levels was overexpressed in BCa through Western blotting
test (Figure 4D). Additionally, the KIAA1429 protein was detected
using IHC in 84 paired BCa clinical tissues that underwent radical
cystectomy, and its expression was significantly elevated in BCa
tissues (Figures 4E, F).

3.5 Immune landscape of RNAmodification-
associated patterns in BCa

On the basis of the expression profiles of 34 RNA modification
“writers” in the meta-GEO cohort, we conducted unsupervised
consensus clustering to stratify BCa patients with qualitatively
varying RNA modification patterns into two distinct clusters,
eventually including 1,063 cases in Cluster 1 and 347 cases in
Cluster 2, respectively (Figure 5A and Supplementary Figure
S2A). Specifically, Cluster 1 had significantly increased presence
of RBM15, WTAP, KIAA1429, TRMT6, TRMT61B, CPSF3, CPSF4,
WDR33 and ADARB1, while Cluster 2 was characterized with
elevated level of METTL14, ZC3H13, METTL16, PCIF1,
METTL4, RRP8, CPSF1 and ADARB2 (Figure 5B and
Supplementary Figure S2B). Furthermore, based on above-
identified clusters, BCa patients in Cluster 1 and Cluster 2 were
visibly separated into two discrete groups using three dimensional

PCA, emphasizing that BCa cases are well stratified in line with the
mRNA levels of 34 RNA modification “writers” (Figure 5C).
Survival analysis for two primary RNA modification subtypes
demonstrated that compared with Cluster 1 modification pattern,
Cluster 2 pattern was linked to significantly prolonged survival
(HR = 0.63, 95% CI = 0.43–0.91, p = 0.013) (Figure 5D). We
further conducted GSVA to investigate the biological behaviors
of above different RNA modification patterns. The carcinogenic
activation pathways, including the epidermal growth factor activated
receptor activity, TLR-2 signaling pathway, chemokine
CXCL2 production and cell adhesion, were enriched relative to
Cluster 1, indicating an inflammation activation and tumorigenesis
status in Cluster 1. While Cluster 2 represented a metabolic or
biosynthetic activation phenotype, prominently enriched in
pathways related to the cyclic nucleotide catabolic process,
CAMP-dependent protein kinase activity and DNA replication
(Figure 5E and Supplementary Table S5).

We also unraveled the discrepancies concerning the
compositions of tumor-infiltrating immune cells between two
RNA modification clusters. Significant difference in immune cell
fractions in two primary patterns were summarized in
Supplementary Tables S6, S7. As revealed in Figure 5F and
Supplementary Figure S2C, Cluster 1 was characterized with an
increased proportion of MDSCs with formidable

FIGURE 4
Prognosis and expression characteristics of KIAA1429 in BCa samples. (A) Heatmap illustrating the modules-trait correlation between module
eigengenes and clinical traits using WGCNA method. (B) Scatter plots showing the correlation between GS and MM of genes in green module using
WGCNAmethod. (C) qRT-PCR analysis revealing mRNA expression levels of KIAA1429 in SYSUCC samples. GAPDH was served as an internal control. (D)
Western blot analysis showing increased KIAA1429 protein levels in BCa tissues, compared to the paired adjacnt normal bladder urothelial tissues. (E)
Representative IHC images exhibiting KIAA1429 expression in BCa samples and adjacent normal bladder urothelial tissues. Original magnification, ×200.
(F) IHC score of KIAA1429 staining in BCa tissues and corresponding non-cancerous samples.
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immunosuppressive property (p < 0.0001) and Th17 cells (p <
0.0001). Conversely, cases in Cluster 2 exhibited prominent
infiltration of activated CD8+ T cells with pronounced antitumor
activity (p < 0.001), effector memory CD4+ T cells (p < 0.0001), and
central memory CD8+ T cells (p = 0.032). Consistently, compared
with cases in Cluster 2, those in Cluster 1 had significantly increased
levels of MDSC marker genes (including STAT2, S100A9, CXCL2,
CSF1, PTGS2, TREM1, CEBPB) while significant downregulation of
activated CD8+ T cell marker genes (such as CD8A, IFN-γ, IL-13,
and FASLG) (Figure 5G). In summary, RNA modification patterns

exert an effect on the proportions of infiltration by specific immune
cell types while fail to change the types of infiltrating immune cells.

3.6 Establishment of the RMS model and its
clinical significance in BCa

We further determined 632 RNA modification phenotype-
associated DEGs between Cluster 1 and Cluster 2. The biological
processes with significant enrichment associated with these DEGs

FIGURE 5
RNA modification patterns and their biological significance in the meta-GEO cohort. (A) Heatmap presenting unsupervised clustering results of
34 RNAmodification “writers” in eight independent BCa cohorts. Each column and row represented patients and RNAmodification “writers”, respectively.
(B) Specific distribution of 34 RNA modification “writers” enriched in two primary patterns. (C) PCA illustrating the expression of 34 RNA modification
“writers” to distinguish two primary patterns in 1,410 BCa patients. (D) Kaplan-Meier curve of patients’ OS in two RNA modification patterns. (E)
Heatmap displaying the difference in relatively activated biological processes between two distinct RNA modification patterns by GSVA. (F) Bar chart
showing the proportion of immune cells between two clusters. Difference>0 or <0 represented the immune cells enriched in Cluster 2 or Cluster 1,
respectively. (G) Difference in the expression of MDSCs and activated CD8+ T cells marker genes between two clusters. The upper bar chart represented
the number of datasets that were significantly different between Cluster 1 and Cluster 2. The color and size bubble illustrated the difference in each GEO,
and the statistical significance of difference, respectively. Difference>0 or <0 implied greater expression of immune cell marker genes in Cluster 2 or
Cluster 1, respectively.
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were enriched in purine nucleotide metabolic process, methylation,
DNA replication, and cell cycle G1/S phase transition, all of which
were closely related to RNA processing (Supplementary Table S8
and Supplementary Figure S3A). In consideration of the
heterogeneity and complexity of RNA modification, we
attempted to establish a risk score system named the RMS (RNA
Modification “Writers” Score). Firstly, we confirmed that 119 of
632 DEGs was significantly correlated with OS through univariate
Cox regression analysis (Supplementary Table S9). To reveal
potential DEGs with the optimal prognostic performance, we
utilized LASSO Cox analysis, and 14 DEGs were incorporated
into our subsequent analysis (Supplementary Table S10;
Supplementary Figures S3B, C). Furthermore, we performed
normalization of the expression levels of 14 DEGs in the TCGA
and meta-GEO cohort with average value = 0 and SD = 1, thus
acquiring a uniform cutoff value as stratified standard. Then, we
quantified the RNA modification status of each BCa patient by
weighting the normalizedmRNA level of each DEG to the regression
coefficient. The concrete formula was the following: RMS = 0.2062 *
Expr IFNLR1 + 0.1822 *ExprPCDHB11 + (−0.1428) * Expr TIMM21

+. . .. . .+ 0.0057 * Expr CRELD1+0.0028* Expr FOXG1. Ultimately, we
calculated the RMS for each BCa case in themeta-GEO and stratified
all cases into RMS-high and -low cohorts based on the median value
(3.344) (Supplementary Table S11).

As showed in Figure 6A, the RMS classified BCa cases with high
or low risk score into two discrete sections, highlighting that the
RMS distribution of BCa cases in the low-risk group was greatly
different from those with high risk score. There was a high degree of
consistency among the risk score distribution, the heatmap of
14 prognostic DEGs’ expression and survival status of BCa case
in the meta-GEO cohort (Figure 6B). Notably, the cutoff point
(3.344) also served as a classification indicator in the TCGA-BLCA
cohort. Kaplan-Meier curve revealed that high RMS was
significantly correlated with more unfavorable clinical outcome of
BCa cases in the meta-GEO (HR = 3.00, 95% CI: 2.19–4.12, p =
1.06e−11) (Figure 6C) and TCGA-BLCA cohort (HR = 1.53, 95% CI:
1.13–2.09, p = 0.006) (Figure 6D). Additionally, patients with high
RMS had a shorter disease-specific survival (DSS) than their RMS-
low counterparts in GSE32894 (HR = 18.3, 95% CI: 4.30–77.6, p <
0.001) (Supplementary Figure S3D). In GSE31684 dataset with
recurrence data, the RMS was significantly negatively associated
with recurrence-free survival (RFS) (HR = 2.02, 95% CI: 1.06–3.88,
p = 0.033) (Supplementary Figure S3E). We also investigated the
correlation between the RMS and cluster classifier to evaluate the
RMS model’s accuracy. As revealed in Figure 6E, the RMS of BCa
samples in Cluster 1 was significantly higher than that of cases in
Cluster 2 (p = 0.025). We found that 579 out of 742 (78.03%)
samples with high RMS were overlapped with the samples in Cluster

FIGURE 6
Construction and evaluation of the RMSmodel in BCa. (A) PCA exhibiting a remarkable distinction between cases with high or low risk score. (B) The
risk score distribution, heatmap showing the expression of 14 DEGs, and survival status for each BCa case in the meta-GEO group. The black dotted line
indicated the RMS cutoff to classify cases into low- and high-risk groups. Kaplan-Meier curve revealing OS difference between RMS-high or -low patients
in (C) the TCGA and (D)meta-GEO group. (E) Boxplots describing the RMS of two RNAmodification patterns in themeta-GEO cohort. (F) Forest plot
of Cox regression analysis to evaluate the relationship between the RMS and clinicopathological parameters.
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1, and 184 out of 668 (27.54%) cases in RMS-low group overlapped
with the individuals in Cluster 2 (Supplementary Figures S3F, G).
Therefore, there is a high degree of coincidence among three
computational methods of classification.

Univariate Cox analysis indicated that certain clinical variables,
including age, M classification, N classification, T classification,
TNM stage, and RMS exhibited an impact on the survival of BCa
patients (Figure 6F). Above significant parameters were included
into subsequent multivariate Cox regression analysis. The
corresponding findings revealed that age >65 years (HR = 1.87,
95% CI: 1.33–2.64, p = 0.00032), advanced N classification (HR =
1.62, 95% CI: 1.17–2.25, p = 0.00403), and high RMS (HR = 1.61,
95% CI: 1.17–2.24, p = 0.00388) remained adverse and independent
prognostic factor in BCa (Figure 6F). These findings imply that the
RMS model is independent of conventional clinical variables and
can predict the survival of BCa with comparatively satisfactory
performance.

To confer physicians with a visualized approach to predict the
long-term survival of BCa patients, the nomogram model
encompassing the RMS signature and significant clinical risk
factors identified by multivariate Cox analysis was formulated. As
illustrated in Figure 7A, N classification made the greatest
contributions to risk points, followed by age and the RMS model.
The C-index of the nomogram was 0.785 (95% CI: 0.737–0.848)
under 1,000 bootstrap replication. The calibration curves for the OS
probability of 1-, 3-, and 5-year in BCa cases demonstrated a good
agreement between nomogram prediction and practical observation
(Figure 7B). The time-ROC curves were established to compare the

predictive efficiency of this nomogram with that of N classification,
age and the RMS. For the ROC curve of 1-year survival, the AUC of
nomogram (0.821) was higher than that of age (0.772), the RMS
(0.732), and N classification (0.690) (Figure 7C). The nomogram to
predict 3-year OS obtained the optimal AUC of 0.825, followed by
the RMS (0.753), age (0.738), and N classification (0.708)
(Figure 7D). The AUC for the nomogram, the RMS, N
classification and age to predict 5-year survival were 0.806, 0.725,
0.701 and 0.684, respectively (Figure 7E). The decision curve
analysis (DCA) of the nomogram was characterized with the
optimal net benefits, followed by N classification, age, and the
RMS (Figure 7F). In sum, the nomogram incorporating N
classification, age and the RMS exhibits a relatively satisfactory
predictive performance for the long-term survival of BCa patients.

3.7 Molecular subtypes and functional
annotation associated with the RMS in BCa

We further illustrated the functional characteristics of the RMS
signature through analyzing the association between the RMSmodel
and known biological processes-associated gene sets identified by
MSigDB (Subramanian et al., 2005), emphasizing that high RMSwas
significantly associated with stromal activation status and cancer
progression-associated pathways, such as inflammatory response,
NF-KB-mediated TNF-a, epithelial-mesenchymal transition (EMT),
angiogenesis, IL-6/JAK/STAT3 signaling (Figure 8A and
Supplementary Figure S3H).

FIGURE 7
Construction and validation of nomogrammodel for survival prediction in BCa. (A)Nomogram for predicting the probability of 1-, 3-, and 5-year OS
for BCa patients. (B) Calibration curve of nomogram to assess the consistency between predicted and observed 1-, 3-, and 5- year outcomes. Time-
dependent ROC curve of the nomogram, N classification, age and the RMS for (C) 1-year, (D) 3-year, and (E) 5-year OS of BCa patients. (F)DCA curves of
the nomogram model for BCa patients’ survival.

Frontiers in Genetics frontiersin.org13

Zhang et al. 10.3389/fgene.2023.1156095

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1156095


Based on a comprehensive molecular subtypes landscape of UC
established by Sjödahl et al.‘s study (Sjödahl et al., 2012), UC cases were
classified into five molecular subtypes, including urobasal A
(MS1 subdivided into MS1a and MS1b), genomically unstable
(MS2a subdivided into MS2a1 and MS2a2), urobasal B (MS2b2.1),
squamous cell carcinoma (SCC)-like (MS2b2.2), and one highly
infiltrated by non-tumor cells (MS2b1). Notably, above molecular
subtypes differed in survival patterns in which urobasal A exhibited
favorable prognosis, genomically unstable and the infiltrated group
were with moderate prognosis, and the urobasal B and the SCC-like
were characterized with the shortest survival (Sjödahl et al., 2012). We
compared the difference of the RMS among above five molecular
subtypes through analyzing data downloaded from GSE32894. The
SCC-like subtype showed the highest RMS, followed by the urobasal B,
genomically unstable, the infiltrated subgroup and urobasal A
(Figure 8B). Additionally, there was a significant discrepancy in the
distribution of molecular subtypes between RMS-high and -low
group. The urobasal A subtypes was primarily clustered in RMS-low
group, conversely, the SCC-like and the infiltrated subtype were
markedly concentrated on RMS-high group (Figure 8C).

To further decipher potential biological processes associated
with different molecular subtypes of BCa patients in GSE32894,
GSVA was performed implying that tumorigenesis-associated
biological processes were significantly enriched in the SCC-like
and the urobasal B subtype, including WNT, NOTCH,
angiogenesis, and IL2-STAT5 signaling pathways. In contrast, the
biological pathways activated in the urobasal A subtype were

significantly correlated with the heme metabolism, protein
secretion and peroxisome (Figure 8D). Consistently, the SCC-like
and the urobasal B-related signaling pathways were prevailingly
enriched in RMS-high cases, while the enrichment score of urobasal
A-related biological processes were markedly clustered in RMS-low
group (Supplementary Figure S3H). BCa patients in the urobasal B
and the SCC-like subtype were prone to be diagnosed at more
advanced stage compared with those in the urobasal A subtype
(Figure 8E), which was also significantly correlated with diminished
OS (HR = 12.3, 95% CI: 1.36–111, p = 0.026 for the urobasal B
subtype) (Figure 8F). Previous results in our report demonstrated
that the RMS positively correlated with BCa patients’ degree of
malignancy. Thus, high RMS roughly corresponding to the urobasal
B and the SCC-like subtype indicates unsatisfactory prognosis,
which is potentially partly ascribed to the activation of EMT,
WNT, angiogenesis, and additional signaling pathways mediating
BCa tumorigenicity and tumor metastasis.

3.8 Pan-cancer analysis of RMS model-
associated genes

Initially, we explored the correlation between CNV and mRNA
expression in 14 RMS model-associated genes in 33 kinds of tumors
and revealed that CHMP7 expression was significantly modulated
by CNV in almost all cancers, followed by SEPHS1 and AASDHPPT
(Supplementary Figure S4A). Specifically, a majority of RMS model-

FIGURE 8
Biological function characteristics of the RMS model in BCa patients. (A) Boxplot representing the association between the RMS and known
signatures based on the meta-GEO cohort. (B) Violin plot illustrating RMS distribution among five molecular subtypes based on GSE32894 (C) Bar chart
describing difference in the distribution of five molecular subtypes between RMS-high and -low groups based on GSE32894 cohort. (D) Heatmap
showing difference in the biological processes among five molecular subtypes. (E) Bar chart exhibiting difference in the distribution of histological
grade among five molecular subtypes. (F) Kaplan-Meier curve revealing difference in OS among five molecular subtypes for BCa cases at histological
grade 3.
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associated genes was characterized with heterozygous amplification
of CNV in adenoid cystic carcinoma, while homozygous
amplification was prone to occur in OV, esophageal cancer, and
unconditioned stimulus (Supplementary Figure S4B). Thus, the
findings highlight that the CNV of RMS model-associated genes
is various among different tumors and it is essential to investigate
the source of the heterogeneity. Furthermore, we explored the
difference in mRNA expression between tumor and normal
sample and revealed that the fold difference in the expression of
RMS model-associated genes was the greatest in LUSC. Concretely,
GDPD5 and IL28RA were significantly downregulated in BRCA
than normal samples, while ROMO1 was overexpressed in BRCA
samples (Supplementary Figure S4C). Additionally, pathway
analysis demonstrated that RMS model-associated genes
principally triggered cell cycle and EMT pathway while exerts an
inhibitory effect on apoptosis and RAS/MAPK pathway
(Supplementary Figure S4D). Therefore, our RMS model genes
potentially plays a crucial role in malignant progression of tumors.

3.9 Difference in post-transcriptional events
between RMS-high and -low groups in BCa

To elucidate the functional effect of RNA modification
“writers” on post-transcriptional characteristics of BCa patients,

we investigated APA events of each gene in the TCGA-BLCA.
Initially, we analyzed APA alterations between 246 BCa cases with
high or low RMS and determined the prognostic significance of
transcripts with significant 3′UTR alterations. A total of
11,598 APA events remained for differential analysis, and there
were 503 genes with significantly lengthened 3′UTR (ΔPDUI >0.1)
and 96 transcripts with markedly shortening 3′UTR (ΔPDUI <0.1)
in RMS-high group, respectively (p < 0.05) (Figure 9A and
Supplementary Table S12), and shortening APA events in RMS-
high group were characteristic with worse OS based on univariate
Cox regression analysis (Figure 9B and Supplementary Table S13),
thus indicating that usage of a PAS may exacerbate BLCA
malignancy. Specifically, the transcripts of CCNO
(ΔPDUI = −0.16, p = 0.003) and PAOX (ΔPDUI = −0.15, p =
0.03) both underwent statistically significant 3′UTR shortening in
patients with high RMS, which was associated with worse survival
in BLCA (HR = 1.92, 95% CI: 1.30–2.86, p = 0.001 for CCNO; HR =
1.52, 95% CI: 1.02–2.22, p = 0.039 for PAOX) (Figure 9C). A report
have demonstrated that CCNO is overexpressed in cervical
squamous cell carcinoma (CSCC) and RACK1/miR-302b/c/d-
3p-mediated CCNO inhibition can dampen the progression of
CSCC (Wang and Chen, 2020). Suppression of PAOX is sufficient
to widen the therapeutic index of cytotoxic drugs and overwhelm
DNp73-mediated chemoresistance in cancers (Bunjobpol et al.,
2014). Thus, we speculate that shortening 3′UTR of CCNO and

FIGURE 9
Post-transcriptional characteristics related to the RMS of BCa patients in the TCGA-BLCA cohort. (A) Volcano plot representing significantly
differences in the PDUI of each gene between RMS-high and -low groups. (B) Bar graphs showing transcripts with shortening 3′UTR events in RMS-high
group. Forest plots showing univariate Cox regression analysis for genes with differential PDUI between RMS-high and -low group. (C) Kaplan-Meier
curve showing OS between PDUI lengthening and PDUI shortening of CCNO and PAOX.
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PAOX in BLCA samples with high RMS potentially results in loss
of several RNA regulatory elements, such as miRNA binding sites,
thus enabling the upregulation of oncogenes expression and the
progression of BLCA.

3.10 Potential role of the RMS in antitumor
chemotherapy and antibody-drug
conjugates (ADC) therapy

To further assess the relationship between the RMS and drug
response of BCa cell lines, we determined 34 significantly correlated
pairs between the RMS and drug response in the GDSC database
based on Spearman correlation analysis (Yang et al., 2013).
Specifically, there was significant correlation between drug
sensitivity and the RMS in 8 pairs, including EGFR inhibitor
HG-5–88–01 (Rs = −0.804, p = 0.005), CSF1R inhibitor GW-
2580 (Rs = −0.43, p = 0.016), and AR inhibitor Bicalutamide
(Rs = −0.383, p < 0.0001). Conversely, 26 pairs displayed drug
resistance significantly related to the RMS, including JNK1 inhibitor
ZG-10 (Rs = 0.867, p < 0.0001) and CDK9 inhibitor THZ-2–49 (Rs =
0.625, p < 0.0001) (Figure 10A and Supplementary Table S14).
Additionally, we also explored the potential signaling pathways of
drug-targeted genes. As revealed in Figure 10B, drugs whose
sensitivity was linked to high RMS primarily targeted hormone-
related, ADCK4, and EGFR signaling pathways, while drugs whose
resistance was related to high RMSmostly targeted DNA replication,
cell cycle and PI3K/MTOR signaling pathways. Thus, above findings

indicate that RNAmodification patterns are related to drug response
of tumors. The RMS potentially develops into a novel biomarker to
confer a reference for appropriate clinically interventional strategies.

Currently, certain ADCs have been approved by the US Food
and Drug Administration (FDA) for the cancer therapy
(Supplementary Table S15) (Bross et al., 2001; Krop et al., 2010;
Senter and Sievers, 2012; Starodub et al., 2015; Trudel et al., 2019;
Wynne et al., 2019; Modi et al., 2020; Sehn et al., 2020). Two target
antigens (ERBB2 and TROP2) were lineage-specific markers of two
out of above approved ADCs—Trastuzumab deruxtecan, and
Sacituzumab govitecan, which have consistently high expression
across the BCa tumor population than normal samples in the
TCGA-BLCA (Figure 10C). We further evaluated the differences
in the expression of seven target antigen molecules of ADC in RMS-
low and -high groups. The target antigens, including ERBB2 and
TROP2, were preferential expression on RMS-high BCa samples
with a relative low expression on RMS-low subgroup (Figure 10C).
Together, above findings implied that RNA modification patterns
are potentially associated with ADC sensitivity.

3.11 Predictive value of the RMS in
immunotherapeutic efficacy

Immunotherapies of blocking T-cell inhibitory molecules PD-
L1 and PD-1 have undoubtedly emerged a significant breakthrough
in anticancer intervention. Meanwhile, it is urgent for us to make
judgment about which subset of patients can benefit most from

FIGURE 10
The association between the RMS and efficacy of antitumor chemotherapy. (A) Spearman correlation analysis between the RMS and drug sensitivity.
The columns represented drugs. The brightness and height represented the significance and degree of the correlation, respectively. Rs > 0.2 or
Rs < −0.2 indicated drug resistance or drug sensitivity, respectively. (B)Bar chart displaying signal pathways associatedwith drugs that were resistant (Blue)
or sensitive (Red) to the RMS. X and Y-axis displayed drug names and corresponding signaling pathways, respectively. (C) Violin plot displayingmRNA
levels of eight target antigens of ADC between normal tissues and BCa samples, and between RMS-low and -high BCa samples, respectively.
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immunotherapies (Zeng et al., 2019). Therefore, we investigated the
predictive power of the RMS for patients’ response to ICB therapy
based on two immunotherapy cohorts. Patients with low RMS
exhibited significantly prolonged OS than those with high RMS
in IMvigor210 cohort (HR = 0.76, 95% CI: 0.58–0.99, p = 0.040)
(Figure 11A). For IMvigor210 cohort, Chi-squared test
demonstrated that compared with RMS-high group, RMS-low
group was endowed with markedly increased proportion of the
sum of CR and PR patients while significantly diminished the sum of
PD and SD cases (p = 0.037) (Figure 11B). Likewise, CR patients
were characterized with the lowest RMS compared with their
counterparts with other types of response (Figure 11C).
Significant therapeutic advantage and strengthened clinical
response to anti-MAGE-A3 immunotherapy in patients with low
RMS were also confirmed in Montoya melanoma cohort (Figures
11D, E). Additionally, we also validated the predictive performance
of the RMS in anti-MAGE-A3 immunotherapy, with a satisfactory
AUC value of 0.712 (Figure 11F). Collectively, cases with lower RMS
are more possibly to reap better prognosis and enhanced clinical
benefit from ICB therapy.

Accumulated evidence has emphasized that patients with elevated
TMB, higher neoantigen burden, certain DNA repair mutations,

mismatch repair deficiency, and higher PD-L1 expression level are
correlated with improved objective response, durable clinical benefit,
and prolonged long-term survival when receiving ICB therapy (Rizvi
et al., 2015; Le et al., 2017). Based on tumor-associated immune
phenotypes depicted in IMvigor210 cohort, patients with low RMS
were characterized with significantly increased PD-L1 level
(Figure 12A). Similarly, cases in RMS-low group had significantly
strengthened TMB and neoantigen burden than those with high
RMS (Figures 12B, C), indicating a potential response to ICB.
Patients with the combination of low RMS and high TMB/
neoantigen burden displayed the optimal survival advantage (HR =
0.51, 95% CI: 0.33–0.79, p = 0.003 for Low RMS with high TMB; HR =
0.48, 95% CI: 0.31–0.76, p = 0.002 for Low RMS with high neoantigen
burden) (Figures 12D, E). We further explored the difference in the
RMS among three phenotypes, including “immune inflamed”,
“immune excluded”, and “immune desert” (Chen and Mellman,
2017). As illustrated in Figure 12F, patients with an immune-
inflamed phenotype exhibited the lowest RMS compared with the
other two phenotypes. Above findings partly explain why
immunotherapy is prone to exert intensive antitumor effect in the
low RMS subset. Our aforementioned results also demonstrated that
MDSC which is recognized to mediate immune tolerance in the TME

FIGURE 11
The association between the RMS and efficacy of immunotherapy in two cohorts. (A) Kaplan-Meier curve for OS of RMS-low and -high patients in
IMvigor210 cohort. (B) Bar plot showing the fractions of different clinical responses to anti-PD-L1 immunotherapy in RMS-high or -low group in
IMvigor210 cohort. (C) Violin plot displaying the distribution of the RMS in four groups about clinical response to anti-PD-L1 therapy in IMvigor210 cohort.
(D)Bar plot revealing the proportions of different clinical responses to anti-MAGE-A3 immunotherapy in high/lowRMS group inMontoyamelanoma
cohort. (E) Violin plot displaying the distribution of the RMS in four groups about clinical response to anti-MAGE-A3 treatment in Montoya melanoma
cohort. (F) ROC curve describing the predictive performance of the RMS in evaluating patients’ response to anti-MAGE-A3 immunotherapy in Montoya
melanoma cohort.
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was significantly activated in RMS-high group, indicating that RMS-
high tumors potentially represent “cold tumors” with resistance to
immunotherapy. Furthermore, AUC value evaluating the capacity of
the RMS model, TMB, TNB and PD-L1 to differentiate responders
from non-responders was 0.677 (95% CI = 0.589–0.765), 0.652 (95%
CI = 0.549–0.755), 0.690 (95% CI = 0.595–0.785), and 0.625 (95% CI =
0.517–0.733), respectively. The results also illustrated that the RMS in
combination with TMB, TNB and PD-L1 had the optimal predictive

power, with the highest AUC of 0.828 (95%CI = 0.714–0.941), followed
by TMB combined with TNB and PD-L1 (AUC = 0.797, 95% CI =
0.678–0.916), the RMS combined with TNB (AUC = 0.765, 95% CI =
0.671–0.859), the RMS combined with TMB (AUC = 0.742, 95% CI =
0.641–0.843), and the RMS combined with PD-L1 (AUC = 0.708, 95%
CI = 0.595–0.822) (Figure 12G). Briefly, these results may introduce the
novel piece to the atlas of RNA modification patterns’ influence on the
efficacy of immunotherapy.

FIGURE 12
The biological significance and predictive value of RMS for the efficacy of anti-PD-L1 immunotherapy in IMvigor210 cohort. Violin plot depicting
differences in the levels of (A) PD-L1, (B) TMB, and (C) neoantigen burden between RMS-low and -high group. Kaplan-Meier curve showingOS ofmultiple
subgroups stratified by the RMS and (D) TMB or (E) neoantigen burden (F) Violin plot presenting difference in the RMS among three immune phenotypes.
(G) Histogram and ROC curve displaying the predictive power of nine signatures composed of TMB, TNB, RMS and PD-L1.
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4 Discussion

The building blocks of RNA are canonically confined to four
bases, nevertheless, RNA modifications can tremendously expand
the chemical diversity of RNA. It is therefore not surprising that
RNAmodifications have attracted much attention recently owing to
their sophisticated and widespread impacts on inflammation, innate
immunity, antitumor activity, and the response to immunotherapy
through the cross-talk among multifarious “writers”. With the
exception of certain studies centralized a single type of RNA
modification “writer”, there has been no literature so far of a
comprehensive elucidation in the multifaceted association and
effects of diverse types of “writers” on malignancy (Lan et al.,
2019; Xing et al., 2021). Therefore, in our report, we unveiled the
global profiling of RNA modification patterns and its impact on
prognostic characteristics and immune landscape in the TME of
BCa and further combined the RNA modifications-related model
and additional routine clinicopathological indicators to effectively
predict the clinical outcome and immunotherapy effectiveness,
which potentially opens up a new dimension for the
management of BCa.

The “writers” of RNA modification exerts momentous impacts
on normal growth and their mutation or disharmony is related to
both genetic disorders and multiple malignancies (Zhang et al.,
2015). Herein, we described the mutation landscape of 34 “writers”
and its prognostic role in BCa for the first time. We found that m6A
“writers” METTL3 and KIAA1429 and APA enzymes PCF11 were
more predisposed to mutation than additional “writers” in BCa,
while mutations of the “writers” CPSF1, ADARB2 and
KIAA1429 were proved to be more frequent in hepatocellular
carcinoma (HCC) and the mutation frequency of the “writers”
ZC3H13, PCF11 and KIAA1429 was the highest in colorectal
cancer (CRC) (Qian et al., 2019; Xing et al., 2021). We also
observed that mutations of 34 “writers” genes were correlated
with worse OS of BCa patients, making it clear that total
diminished level of RNA modification is endowed with a crucial
role in BCa development. Similarly, a shorter OS in clear cell renal
carcinoma (ccRCC) patients with “writers” genes loss of function
was revealed (Qian et al., 2019). The carcinogenic activation
pathways were significantly enriched in HCC cases with the
“writers” mutation, indicating the relationship between the
mutant status of “writers” and worse outcomes of HCC patients
(Xing et al., 2021). Intriguingly, CRC cases with mutant “writers”
had poorer prognosis compared with those without mutations
(Chen et al., 2021). Thus, the discrepancies of mutant status of
“writers” and its associated prognostic effects between different
tumor types gave us a clue that the modulation of RNA
modification in cellular level was sophisticated, and more
researches concentrating on the “writers” are required to further
illustrate the regulatory mechanism of RNA modification in BCa.

We specifically summarized global alterations of m6A, m6Am,
m1A, APA, and A-to-I RNA editing enzymes at transcriptional and
genetic levels and their mutual correlation in BCa. Specifically, m6A
“writer” KIAA1429 was the third most common mutant gene and
had relatively prevalent CNV gains, with a negative association with
the prognosis of BCa patients, indicating the potential function of
KIAA1429 in promoting carcinogenesis and metastasis. Prior
studies have confirmed significant overexpression of

KIAA1429 in multifarious human cancers, including
hepatocellular carcinoma (HCC) (Lan et al., 2019), breast cancer
(Qian et al., 2019), non-small cell lung cancer (NSCLC) (Tang et al.,
2021), gastric cancer (Miao et al., 2020), and osteosarcoma (Han
et al., 2020), which was positively correlated with malignant
biological properties while linked to significantly diminished OS
of above tumors. Mechanistically, KIAA1429-mediated m6A
methylation on the 3′UTR of GATA3 pre-mRNA elicits the
separation of HuR and the resulting degradation and
downregulation of GATA3, which triggers HCC development
(Lan et al., 2019). Furthermore, KIAA1429 is sufficient to
enhance the expression of CDK1 by an m6A-independent
manner and further accelerates breast cancer progression (Qian
et al., 2019). KIAA1429 favors the mRNA stability of HOXA1 via
targeting its 3′UTR to confer NSCLC on gefitinib resistance,
suggesting the role of KIAA1429 as potential therapeutic target
in NSCLC (Tang et al., 2021).

In addition to elucidating the specific role of individual RNA
modification “writer” in the prognosis and immunity of BCa, we also
investigated the clustering result of 34 RNA modification “writers”.
Two distinct RNA modification patterns (Cluster 1 and Cluster 2)
were identified based on 34 RNA modification enzymes. We
confirmed that MDSCs and Th17 cells were accumulated in
Cluster 1 cases that was characterized with poor survival and low
response rate to immunotherapy. MDSCs are a cluster of pivotal
immunosuppressive cells in the TME, which are endowed with the
capacity to impede T cell, NK cell and B cell functions partly through
stimulating the expression of ARG1, indoleamine 2, 3-dioxygenase
and inducible nitric oxide synthase (Veglia et al., 2018). MDSCs also
interact with tumor cell and foster its stemness characteristics,
thereby maintaining a malignant phenotype of tumors (Schneider
et al., 2019). MDSCs secrete diversiform chemokine receptors that
are implicated in their recruitment to the TME, such as CXCR4 or
CXCR2, as revealed in BCa patients (Obermajer et al., 2011; Zhang
et al., 2017). Therefore, blocking the recruitment of MDSCs to the
TME or depleting MDSCs in the tumor is a potentially promising
strategy. Previously reports have demonstrated that patients with
tumor who have high levels of circulating MDSCs exhibit an
undesirable response rate to immunotherapy (Schneider et al.,
2019). Intriguingly, a chemical agonist LXR-mediated the
activation of ApoE secretion devastates MDSC survival by
facilitating the binding of ApoE to its receptor LRP8, resulting in
a fortified anti-tumor response (Tavazoie et al., 2018). A phase I
clinical trial in BCa patients, is currently testing a LXR agonist
(RGX-104) as a single agent or combined with nivolumab to
strengthen the anti-tumor activity and the response to anti-PD-
1 therapy (Schneider et al., 2019). Pathologically, Th17 response
participates in certain inflammatory events, autoimmune and
allergic diseases. Th17 cells have been demonstrated in increased
levels in certain tumors, it remains controversial whether IL-17
facilitates or suppresses tumor progression. Specifically, IL-17-
induced the generation of IL-6 activates oncogenic STAT3 and
subsequently accelerates the expression of pro-survival and
angiogenic genes, resulting in the development of BCa (Wang
et al., 2009).

We then formulated a scoring model, RMS, to evaluate the
efficacy of RNA modification “writers” in each case. RMS-high
group was related to worse prognosis, which was partly
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attributed to significant activation of EMT, Notch, IL-2/STAT5, IL-
6/JAK/STAT3, angiogenesis signaling pathways, which was
instrumental in tumor invasion. The biological process of EMT
involves epithelial cells assuming a mesenchymal phenotype, with
reinforced capability for invasion and metastasis to accelerate
malignant progression of BCa (Wang et al., 2018). In studies
encompassing a wide spectrum of malignancies, including
prostate cancer, breast cancer, and multiple myeloma, there is
adamant evidence holding a crucial effect of Jagged-mediated
Notch signaling on tumor metastasis. Notch activation drives
FOXC2-dependent metastasis in PTEN-null prostate cancer mice
(Kwon et al., 2016; Majumder et al., 2021). A paracrine loop
composed of TGF-β and Jagged-mediated Notch activation also
facilitates osteolytic bone metastasis in breast cancer (Sethi et al.,
2011). Activation of IL-2/STAT5 signaling converged on an
enhancer (CNS0) potentiates the generation and accumulation of
IL-2 dependent thymic Treg cell lineage, potentially dampening host
immune responsiveness (Dikiy et al., 2021). In the pathogenesis of
cancer, increased IL-6 directly on stimulate cells in the TME to
upregulate STAT3 target genes, subsequently driving the expression
of proliferation-promoting proteins (such as cyclin D1), survival-
associated molecules (such as BCL2-like protein 1), angiogenic
factors (such as VEGF), invasiveness and metastasis-related
proteins (such as matrix metalloproteinases) and
immunosuppressive molecules (such as IL-10 and TGF-β)
(Johnson et al., 2018).

ADCs are novel targeted agents that concatenate a cytotoxic
drug (also known as cytotoxic payload or warhead) by a linker to a
monoclonal antibody (mAb) which can specifically reach target
antigens expressed on cancer cellular surface and deliver a potent
cytotoxic payload to the tumor location, ultimately strengthening
the chemotherapeutic efficacy and minimizing toxicity to normal
tissue. The target antigen should be abundantly expressed on tumor
cells while is not expressed or at a low level in normal tissues in an
ideal setting, thus lowering off-target toxicity (Hafeez et al., 2020).
Recent clinical progressions in the antibody-drug conjugates field
provide promising potentialities for the future utility of the ADC
agents as targeted treatment for patients with various malignancies.
By 2022, enfortumab vedotin (EV) and sacituzumab govitecan (SG)
are the only ADCs to obtain approval for the therapy of mUC. EV
consists of a monoclonal antibody (mAb) specifically targeted
transmembrane protein nectin-4 which is generally overexpressed
in mUC and exerts a pivotal effect on cell-cell adhesion (Challita-Eid
et al., 2016). SG is an ADC composed of a mAb specific for
TROP2 conjugated via the topoisomerase inhibitor SN-38. Trop-
2, a transmembrane calcium signal transducing glycoprotein, plays
an integral part in cell growth and migration and is upregulated in
various epithelial tumors including UC (Tagawa et al., 2021). In our
report, we investigated whether the RMS could predict the efficacy of
the ADCs for the first time. Collectively, our report deepens the
comprehension of the modulation of RNA modifications in the
TME of BCa and is conducive to the development of novel predictive
indicators for patient stratification, prognosis evaluation, and
personalized therapy in BCa.

Eventually, considering the remarkable effect of RNA
modification patterns on immune infiltration in the TME, we
showed enormous interest in the capacity of the RMS to predict
the potential therapeutic effects of ICB therapy. Our findings

highlight that the RMS was a potent predictor to assess the
clinical outcome of distinct immunotherapy regimens (anti-PD1/
L1 or anti-MAGE-3), which was validated in two UC
immunotherapy cohort and two melanoma immunotherapy
cohorts. The RMS combined with TMB could differentiate non-
responders who underwent immunotherapy from responders with a
more robust capability and a remarkably increased accuracy. Thus,
our results allow the development of personalized cancer
immunotherapy and advance our capacity to exploit an
additional approach through which the response rate of
immunotherapy can be enhanced.

Specific innovativeness and advantages should be emphasized in
our report. Firstly, thus far, an impressive number of studies
primarily focus on the importance of only one type of RNA
modification (especially m6A) in biological processes and tumor
pathogenesis. Considering that epitranscriptome embraces various
RNA modifications and a direct interaction exists between the most
abundant RNA modifications such as m6A and A-to-I (Xiang et al.,
2018a; Tassinari et al., 2021), we elucidated the potential link
between five forms of RNA adenosine modifications (including
m6A, m6Am, m1A, APA, and A-to-I editing) and the prognostic
characterization and immunologic landscape in BCa for the first
time. Additionally, numerous studies have documented the
modulators in RNA modification pathways, including “writers”,
“erasers” and “readers”. Among these modulators, “writers” exert a
major catalytic role and install the methylation in RNAmodification
process. We comprehensively summarized and identified 34 RNA
modification “writers” from all relevant published literature. The
consensus clustering results for 34 “writers” are satisfactory, thanks
to the potential synergistic effect of “writers”. Herein, for the first
time, we demonstrated that the mutant landscape, expression level,
immune modulation, prognostic significance, and tumor-related
pathways of single “writer” (such as KIAA1429) in BCa, which
sets the stage and heightens interest in comprehending the biological
function and underlying mechanisms of RNA modifications
“writer” in BCa. Secondly, a total of 1801 BCa patients were
incorporated into our report. Eight independent GEO datasets
consisting of 1,410 BCa cases were merged into one meta-GEO
as training cohort. The TCGA-BLCA dataset was considered as
independent validation cohort to externally validate the robustness
and application of our RMS model. Thus, our model was developed
and validated in varying platforms and large populations, which can
be served as a promising prognostic signature to optimize BCa
patient management. Also, WGCNA-based analysis determined the
most weighted prognostic marker (KIAA1429) and its expression
levels in BCa were analyzed via human tissue samples, thus
guaranteeing the dependability of the results in this report.
Thirdly, based on multiple ICB therapy cohorts, we validated
that RNA modifications-related model could efficiently predict
the efficacy of immunotherapy and might achieve optimal
predictive performance when combined with traditional
indicators (including TMB, TNB, and PD-L1).

Despite its promising results, several limitations should be
mentioned in our study. Firstly, we merely utilized a median
cutoff of the RMS based on the meta-GEO cohort to stratify BCa
patients. The results need to be validated in a prospective cohort
of patients treated with immunotherapy, thus more
comprehensively defining the cutoff value to be used.
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Furthermore, considering the primary clinical significance of
distinct tumor regions, it is necessary to systematically assess
immune characteristics in the core of the tumor and at the
invasive margin. Because not all cases with low RMS exhibit
enduring and effective response to immunotherapy, other
clinicopathological parameters should be included into the
model to improve predictive performance. Thirdly, the special
role and underlying mechanism of novel predictive indicators in
the RMS model require further experiment research.

5 Conclusion

In summary, our profound and comprehensive analysis of five
forms of RNA modification “writers” highlighted an extensive
modulatory mechanism by which they exert effects on TME and
their correlation with BCa prognosis. We determined two distinct
RNA modification-associated subtypes in BCa and constructed an
individual RNA modification “writers” profile scoring system that
unraveled the interplay and regulatory roles of the “writers” in BCa
prognosis, molecular subtypes and post-transcriptional events and
depicted their predictive performance in chemotherapy, ADC
therapy and immunotherapy. Our study emphasizes the pivotal
clinical significance of the interaction among RNA modifications
and advances our capacity to guide more effective and personalized
immunotherapy for BCa.
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SUPPLEMENTARY FIGURE S1
Biological and expressional characteristics of RNA modification “writers” in
BCa. (A) Violin plot displaying expression levels of “writers” in different
subgroups stratified by CNV values in the TCGA-BLCA cohort. (B) Forest
plot representing OS with HR of 34 RNA modification “writers” using
univariate Cox regression analysis in the TCGA-BLCA cohort.

SUPPLEMENTARY FIGURE S2
Consensus clustering of BCa patients in the meta-GEO cohort. (A)
Consensus clustering matrix of 1410 BCa cases for k = 2, 3, 4, 5, and k =
2 displayed the optimal RNAmodification patterns. (B) Boxplot showing the
relative expression of RNA modification “writers” in two patterns. (C) Boxplot
illustrating difference in the abundance of infiltrating immune cells between
Cluster 1 and Cluster 2.

SUPPLEMENTARY FIGURE S3
Enrichment analysis of DEGs and the association between prognosis and the
RMS of BCa patients. (A) Bar chart depicting significant biological processes
associated with RNA modification phenotype-related DEGs by GSVA. (B)
Tenfold cross-validation to choose the tuning parameters in the LASSO
regression. Two perpendicular dashed lines were drawn at the optimal
values based on the minimum criterion (Right) and the 1-SE criterion (Left).
(C) LASSO coefficient profiles of the 14 candidate DEGs used to establish the
RMS. (D) Kaplan-Meier curve of DSS in patients with high or low RMS in
GSE32894. (E) Kaplan-Meier curve of RFS in patients with high or low RMS
in GSE31684. (F) Venn diagram and (G) Bar chart showing the intersection
between the RMS-high/-low and Cluster 1/2. (H) Heatmap showing
difference in the biological processes between RMS-high and -low group
in GSE32894 cohort.
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SUPPLEMENTARY FIGURE S4
Pan-cancer analysis of RMS model-associated genes. (A) Dot chart showing
RMS model-associated genes whose mRNA expression was significantly
correlated with CNV percentage. Blue and red bubbles represented a
negative or positive correlation between mRNA expression and CNV. The
color and size bubble illustrated the degree of correlation and the statistical
significance, respectively. (B) Pie diagram illustrating proportion of different
types of CNV of RMS model-associated genes in multiple tumors. (C) Dot
chart representing mRNA differential expression analysis of 14 RMS model-

associated genes between multiple tumors and normal samples. The
colors from purple to red represented the fold change between tumor and
normal tissues. (D) Heatmap revealing RMS model-associated genes that
have inhibitory or activated functions in multiple cancers. Pathway_A (Red)
and pathway_I (Blue) represented the proportion of tumor inwhich pathways
may be activated or inhibited by model-related genes, respectively.
Abbreviation: Hete Amp, heterozygous amplification; Hete Del,
heterozygous deletion; Homo Amp, homozygous amplification; Homo Del,
homozygous deletion.

References

Balar, A. V., Castellano, D., O’Donnell, P. H., Grivas, P., Vuky, J., Powles, T., et al.
(2017). First-line pembrolizumab in cisplatin-ineligible patients with locally advanced
and unresectable or metastatic urothelial cancer (KEYNOTE-052): A multicentre,
single-arm, phase 2 study. Lancet Oncol. 18 (11), 1483–1492. doi:10.1016/s1470-
2045(17)30616-2

Barbieri, I., and Kouzarides, T. (2020). Role of RNAmodifications in cancer.Nat. Rev.
Cancer 20 (6), 303–322. doi:10.1038/s41568-020-0253-2

Bellmunt, J., de Wit, R., Vaughn, D. J., Fradet, Y., Lee, J. L., Fong, L., et al. (2017).
Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N. Engl.
J. Med. 376 (11), 1015–1026. doi:10.1056/NEJMoa1613683

Bross, P. F., Beitz, J., Chen, G., Chen, X. H., Duffy, E., Kieffer, L., et al. (2001).
Approval summary: Gemtuzumab ozogamicin in relapsed acute myeloid leukemia.
Clin. Cancer Res. 7 (6), 1490–1496.

Brumbaugh, J., Di Stefano, B., Wang, X., Borkent, M., Forouzmand, E., Clowers, K. J.,
et al. (2018). Nudt21 controls cell fate by connecting alternative polyadenylation to
chromatin signaling. Cell 172 (1-2), 106–120.e21. doi:10.1016/j.cell.2017.11.023

Bunjobpol, W., Dulloo, I., Igarashi, K., Concin, N., Matsuo, K., and Sabapathy, K.
(2014). Suppression of acetylpolyamine oxidase by selected AP-1 members regulates
DNp73 abundance: Mechanistic insights for overcoming DNp73-mediated resistance to
chemotherapeutic drugs. Cell Death Differ. 21 (8), 1240–1249. doi:10.1038/cdd.2014.41

Challita-Eid, P. M., Satpayev, D., Yang, P., An, Z., Morrison, K., Shostak, Y., et al.
(2016). Enfortumab vedotin antibody-drug conjugate targeting nectin-4 is a highly
potent therapeutic agent in multiple preclinical cancer models. Cancer Res. 76 (10),
3003–3013. doi:10.1158/0008-5472.can-15-1313

Chen, D. S., and Mellman, I. (2017). Elements of cancer immunity and the cancer-
immune set point. Nature 541 (7637), 321–330. doi:10.1038/nature21349

Chen, H., Gu, L., Orellana, E. A., Wang, Y., Guo, J., Liu, Q., et al. (2020). METTL4 is
an snRNA m(6)Am methyltransferase that regulates RNA splicing. Cell Res. 30 (6),
544–547. doi:10.1038/s41422-019-0270-4

Chen, H., Yao, J., Bao, R., Dong, Y., Zhang, T., Du, Y., et al.(2021). Cross-talk of four
types of RNA modification writers defines tumor microenvironment and
pharmacogenomic landscape in colorectal cancer. Mol. Cancer 20 (1), 29. doi:10.
1186/s12943-021-01322-w

Chen, P., Zhang, Z., and Chen, X. (2020). Overexpression of PKMYT1 facilitates
tumor development and is correlated with poor prognosis in clear cell renal cell
carcinoma. Med. Sci. Monit. 26, e926755. doi:10.12659/msm.926755

Choi, W., Porten, S., Kim, S., Willis, D., Plimack, E. R., Hoffman-Censits, J., et al.
(2014). Identification of distinct basal and luminal subtypes of muscle-invasive bladder
cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25 (2),
152–165. doi:10.1016/j.ccr.2014.01.009

Choudhury, Y., Tay, F. C., Lam, D. H., Sandanaraj, E., Tang, C., Ang, B. T., et al.
(2012). Attenuated adenosine-to-inosine editing of microRNA-376a* promotes
invasiveness of glioblastoma cells. J. Clin. Investig. 122 (11), 4059–4076. doi:10.1172/
jci62925

Chu, Y., Elrod, N., Wang, C., Li, L., Chen, T., Routh, A., et al. (2019). Nudt21 regulates
the alternative polyadenylation of Pak1 and is predictive in the prognosis of
glioblastoma patients. Oncogene 38 (21), 4154–4168. doi:10.1038/s41388-019-0714-9

da Rocha, S. T., and Gendrel, A. V. (2019). The influence of DNA methylation on
monoallelic expression. Essays Biochem. 63 (6), 663–676. doi:10.1042/ebc20190034

Davis, S., and Meltzer, P. S. (2007). GEOquery: A bridge between the gene expression
Omnibus (GEO) and BioConductor. Bioinformatics 23 (14), 1846–1847. doi:10.1093/
bioinformatics/btm254

Dawson, M. A., and Kouzarides, T. (2012). Cancer epigenetics: From mechanism to
therapy. Cell 150 (1), 12–27. doi:10.1016/j.cell.2012.06.013

Dikiy, S., Li, J., Bai, L., Jiang, M., Janke, L., Zong, X., et al. (2021). A distal
Foxp3 enhancer enables interleukin-2 dependent thymic Treg cell lineage
commitment for robust immune tolerance. Immunity 54 (5), 931–946.e11. doi:10.
1016/j.immuni.2021.03.020

Dominissini, D., Nachtergaele, S., Moshitch-Moshkovitz, S., Peer, E., Kol, N., Ben-
Haim, M. S., et al. (2016). The dynamic N(1)-methyladenosinemethylome in eukaryotic
messenger RNA. Nature 530 (7591), 441–446. doi:10.1038/nature16998

Dong, S., Wu, Y., Liu, Y., Weng, H., and Huang, H. (2021). N(6) -methyladenosine
steers RNAmetabolism and regulation in cancer. Cancer Commun. (Lond) 41, 538–559.
doi:10.1002/cac2.12161

Dong, Z., and Cui, H. (2020). The emerging roles of RNA modifications in
glioblastoma. Cancers (Basel) 12 (3), 736. doi:10.3390/cancers12030736

Eisenberg, E., and Levanon, E. Y. (2018). A-to-I RNA editing - immune protector and
transcriptome diversifier. Nat. Rev. Genet. 19 (8), 473–490. doi:10.1038/s41576-018-
0006-1

Elkon, R., Ugalde, A. P., and Agami, R. (2013). Alternative cleavage and
polyadenylation: Extent, regulation and function. Nat. Rev. Genet. 14 (7), 496–506.
doi:10.1038/nrg3482

Engebretsen, S., and Bohlin, J. (2019). Statistical predictions with glmnet. Clin.
Epigenetics 11 (1), 123. doi:10.1186/s13148-019-0730-1

Fischl, H., Neve, J., Wang, Z., Patel, R., Louey, A., Tian, B., et al. (2019). hnRNPC
regulates cancer-specific alternative cleavage and polyadenylation profiles.Nucleic Acids
Res. 47 (14), 7580–7591. doi:10.1093/nar/gkz461

Gilbert, W. V., Bell, T. A., and Schaening, C. (2016). Messenger RNA modifications:
Form, distribution, and function. Science 352 (6292), 1408–1412. doi:10.1126/science.
aad8711

Glickman, M. E., Rao, S. R., and Schultz, M. R. (2014). False discovery rate control is a
recommended alternative to Bonferroni-type adjustments in health studies. J. Clin.
Epidemiol. 67 (8), 850–857. doi:10.1016/j.jclinepi.2014.03.012

Goh, Y. T., Koh, C. W. Q., Sim, D. Y., Roca, X., and Goh, W. S. S. (2020).
METTL4 catalyzes m6Am methylation in U2 snRNA to regulate pre-mRNA
splicing. Nucleic Acids Res. 48 (16), 9250–9261. doi:10.1093/nar/gkaa684

Gu, L., Wang, L., Chen, H., Hong, J., Shen, Z., Dhall, A., et al. (2020). CG14906
(mettl4) mediates m(6)A methylation of U2 snRNA in Drosophila. Cell Discov. 6, 44.
doi:10.1038/s41421-020-0178-7

Gui, J., and Li, H. (2005). Penalized Cox regression analysis in the high-dimensional
and low-sample size settings, with applications to microarray gene expression data.
Bioinformatics 21 (13), 3001–3008. doi:10.1093/bioinformatics/bti422

Guo, C. C., Bondaruk, J., Yao, H., Wang, Z., Zhang, L., Lee, S., et al. (2020).
Assessment of luminal and basal phenotypes in bladder cancer. Sci. Rep. 10 (1),
9743. doi:10.1038/s41598-020-66747-7

Hafeez, U., Parakh, S., Gan, H. K., and Scott, A. M. (2020). Antibody-drug conjugates
for cancer therapy. Molecules 25 (20), 4764. doi:10.3390/molecules25204764

Han, Q., Yang, J., Yang, H., Li, C., Li, J., and Cao, Y. (2020). KIAA1429 promotes
osteosarcoma progression by promoting stem cell properties and is regulated by miR-
143-3p. Cell Cycle 19 (10), 1172–1185. doi:10.1080/15384101.2020.1749465

Han, S. W., Kim, H. P., Shin, J. Y., Jeong, E. G., Lee, W. C., Kim, K. Y., et al. (2014).
RNA editing in RHOQ promotes invasion potential in colorectal cancer. J. Exp. Med.
211 (4), 613–621. doi:10.1084/jem.20132209

Hänzelmann, S., Castelo, R., and Guinney, J. (2013). Gsva: Gene set variation analysis
for microarray and RNA-seq data. BMC Bioinforma. 14, 7. doi:10.1186/1471-2105-14-7

Hauenschild, R., Tserovski, L., Schmid, K., Thüring, K., Winz, M. L., Sharma, S.,
et al. (2015). The reverse transcription signature of N-1-methyladenosine in RNA-
Seq is sequence dependent. Nucleic Acids Res. 43 (20), 9950–9964. doi:10.1093/nar/
gkv895

Jang, S., Cook, N. J., Pye, V. E., Bedwell, G. J., Dudek, A. M., Singh, P. K., et al. (2019).
Differential role for phosphorylation in alternative polyadenylation function versus
nuclear import of SR-like protein CPSF6. Nucleic Acids Res. 47 (9), 4663–4683. doi:10.
1093/nar/gkz206

Johnson, D. E., O’Keefe, R. A., and Grandis, J. R. (2018). Targeting the IL-6/JAK/
STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 15 (4), 234–248. doi:10.1038/
nrclinonc.2018.8

Kim,W. J., Kim, E. J., Kim, S. K., Kim, Y. J., Ha, Y. S., Jeong, P., et al. (2010). Predictive
value of progression-related gene classifier in primary non-muscle invasive bladder
cancer. Mol. Cancer 9, 3. doi:10.1186/1476-4598-9-3

Krop, I. E., Beeram,M., Modi, S., Jones, S. F., Holden, S. N., Yu,W., et al. (2010). Phase
I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to

Frontiers in Genetics frontiersin.org22

Zhang et al. 10.3389/fgene.2023.1156095

https://doi.org/10.1016/s1470-2045(17)30616-2
https://doi.org/10.1016/s1470-2045(17)30616-2
https://doi.org/10.1038/s41568-020-0253-2
https://doi.org/10.1056/NEJMoa1613683
https://doi.org/10.1016/j.cell.2017.11.023
https://doi.org/10.1038/cdd.2014.41
https://doi.org/10.1158/0008-5472.can-15-1313
https://doi.org/10.1038/nature21349
https://doi.org/10.1038/s41422-019-0270-4
https://doi.org/10.1186/s12943-021-01322-w
https://doi.org/10.1186/s12943-021-01322-w
https://doi.org/10.12659/msm.926755
https://doi.org/10.1016/j.ccr.2014.01.009
https://doi.org/10.1172/jci62925
https://doi.org/10.1172/jci62925
https://doi.org/10.1038/s41388-019-0714-9
https://doi.org/10.1042/ebc20190034
https://doi.org/10.1093/bioinformatics/btm254
https://doi.org/10.1093/bioinformatics/btm254
https://doi.org/10.1016/j.cell.2012.06.013
https://doi.org/10.1016/j.immuni.2021.03.020
https://doi.org/10.1016/j.immuni.2021.03.020
https://doi.org/10.1038/nature16998
https://doi.org/10.1002/cac2.12161
https://doi.org/10.3390/cancers12030736
https://doi.org/10.1038/s41576-018-0006-1
https://doi.org/10.1038/s41576-018-0006-1
https://doi.org/10.1038/nrg3482
https://doi.org/10.1186/s13148-019-0730-1
https://doi.org/10.1093/nar/gkz461
https://doi.org/10.1126/science.aad8711
https://doi.org/10.1126/science.aad8711
https://doi.org/10.1016/j.jclinepi.2014.03.012
https://doi.org/10.1093/nar/gkaa684
https://doi.org/10.1038/s41421-020-0178-7
https://doi.org/10.1093/bioinformatics/bti422
https://doi.org/10.1038/s41598-020-66747-7
https://doi.org/10.3390/molecules25204764
https://doi.org/10.1080/15384101.2020.1749465
https://doi.org/10.1084/jem.20132209
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1093/nar/gkv895
https://doi.org/10.1093/nar/gkv895
https://doi.org/10.1093/nar/gkz206
https://doi.org/10.1093/nar/gkz206
https://doi.org/10.1038/nrclinonc.2018.8
https://doi.org/10.1038/nrclinonc.2018.8
https://doi.org/10.1186/1476-4598-9-3
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1156095


patients with HER2-positive metastatic breast cancer. J. Clin. Oncol. 28 (16), 2698–2704.
doi:10.1200/jco.2009.26.2071

Kwon, O. J., Zhang, L., Wang, J., Su, Q., Feng, Q., Zhang, X. H., et al. (2016). Notch
promotes tumor metastasis in a prostate-specific Pten-null mouse model. J. Clin.
Investig. 126 (7), 2626–2641. doi:10.1172/jci84637

Lambert, S. A., Jolma, A., Campitelli, L. F., Das, P. K., Yin, Y., Albu, M., et al. (2018).
The human transcription factors. Cell 172 (4), 650–665. doi:10.1016/j.cell.2018.01.029

Lan, T., Li, H., Zhang, D., Xu, L., Liu, H., Hao, X., et al. (2019). KIAA1429 contributes to
liver cancer progression through N6-methyladenosine-dependent post-transcriptional
modification of GATA3. Mol. Cancer 18 (1), 186. doi:10.1186/s12943-019-1106-z

Langfelder, P., and Horvath, S. (2008). Wgcna: an R package for weighted correlation
network analysis. BMC Bioinforma. 9, 559. doi:10.1186/1471-2105-9-559

Le, D. T., Durham, J. N., Smith, K. N., Wang, H., Bartlett, B. R., Aulakh, L. K., et al.
(2017). Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.
Science 357 (6349), 409–413. doi:10.1126/science.aan6733

Lee, J. S., Leem, S. H., Lee, S. Y., Kim, S. C., Park, E. S., Kim, S. B., et al. (2010).
Expression signature of E2F1 and its associated genes predict superficial to invasive
progression of bladder tumors. J. Clin. Oncol. 28 (16), 2660–2667. doi:10.1200/jco.2009.
25.0977

Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., and Storey, J. D. (2012). The sva
package for removing batch effects and other unwanted variation in high-throughput
experiments. Bioinformatics 28 (6), 882–883. doi:10.1093/bioinformatics/bts034

Lenis, A. T., Lec, P. M., Chamie, K., andMshs, M. D. (2020). Bladder cancer: A review.
Jama 324 (19), 1980–1991. doi:10.1001/jama.2020.17598

Li, H. B., Tong, J., Zhu, S., Batista, P. J., Duffy, E. E., Zhao, J., et al. (2017). m(6 A
mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS
pathways. Nature 548 (7667), 338–342. doi:10.1038/nature23450

Lindgren, D., Sjödahl, G., Lauss, M., Staaf, J., Chebil, G., Lövgren, K., et al. (2012).
Integrated genomic and gene expression profiling identifies two major genomic circuits
in urothelial carcinoma. PLoS One 7 (6), e38863. doi:10.1371/journal.pone.0038863

Liu, C. J., Hu, F. F., Xia, M. X., Han, L., Zhang, Q., and Guo, A. Y. (2018). GSCALite: A
web server for gene set cancer analysis. Bioinformatics 34 (21), 3771–3772. doi:10.1093/
bioinformatics/bty411

Liu, N., Dai, Q., Zheng, G., He, C., Parisien, M., and Pan, T. (2015). N(6)-
methyladenosine-dependent RNA structural switches regulate RNA-protein
interactions. Nature 518 (7540), 560–564. doi:10.1038/nature14234

Long, J., Wang, A., Bai, Y., Lin, J., Yang, X., Wang, D., et al. (2019). Development and
validation of a TP53-associated immune prognostic model for hepatocellular
carcinoma. EBioMedicine 42, 363–374. doi:10.1016/j.ebiom.2019.03.022

Lu,M., and Zhan, X. (2018). The crucial role of multiomic approach in cancer research and
clinically relevant outcomes. Epma J. 9 (1), 77–102. doi:10.1007/s13167-018-0128-8

Majumder, S., Crabtree, J. S., Golde, T. E., Minter, L. M., Osborne, B. A., and Miele, L.
(2021). Targeting notch in oncology: The path forward. Nat. Rev. Drug Discov. 20 (2),
125–144. doi:10.1038/s41573-020-00091-3

Marceca, G. P., Tomasello, L., Distefano, R., Acunzo, M., Croce, C. M., and Nigita, G.
(2021). Detecting and characterizing A-to-I microRNA editing in cancer. Cancers
(Basel) 13 (7), 1699. doi:10.3390/cancers13071699

Mariathasan, S., Turley, S. J., Nickles, D., Castiglioni, A., Yuen, K., Wang, Y., et al.
(2018). TGFβ attenuates tumour response to PD-L1 blockade by contributing to
exclusion of T cells. Nature 554 (7693), 544–548. doi:10.1038/nature25501

Mayakonda, A., Lin, D. C., Assenov, Y., Plass, C., and Koeffler, H. P. (2018). Maftools:
Efficient and comprehensive analysis of somatic variants in cancer.Genome Res. 28 (11),
1747–1756. doi:10.1101/gr.239244.118

Miao, R., Dai, C. C., Mei, L., Xu, J., Sun, S. W., Xing, Y. L., et al. (2020).
KIAA1429 regulates cell proliferation by targeting c-Jun messenger RNA directly in
gastric cancer. J. Cell Physiol. 235 (10), 7420–7432. doi:10.1002/jcp.29645

Miyamoto, D. T., Mouw, K. W., Feng, F. Y., Wu, S., and Efstathiou, J. A. (2018).
Molecular biomarkers in bladder preservation therapy for muscle-invasive bladder
cancer. Lancet Oncol. 19 (12), e683–e695. doi:10.1016/s1470-2045(18)30693-4

Modi, S., Saura, C., Yamashita, T., Park, Y. H., Kim, S. B., Tamura, K., et al. (2020).
Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N. Engl.
J. Med. 382 (7), 610–621. doi:10.1056/NEJMoa1914510

Motorin, Y., and Helm, M. (2011). RNA nucleotide methylation. Wiley
Interdiscip. Rev. RNA 2 (5), 611–631. doi:10.1002/wrna.79

Obermajer, N., Muthuswamy, R., Odunsi, K., Edwards, R. P., and Kalinski, P. (2011).
PGE(2)-induced CXCL12 production and CXCR4 expression controls the
accumulation of human MDSCs in ovarian cancer environment. Cancer Res. 71
(24), 7463–7470. doi:10.1158/0008-5472.can-11-2449

Park, H. J., Ji, P., Kim, S., Xia, Z., Rodriguez, B., Li, L., et al. (2018). 3’ UTR shortening
represses tumor-suppressor genes in trans by disrupting ceRNA crosstalk. Nat. Genet.
50 (6), 783–789. doi:10.1038/s41588-018-0118-8

Pendleton, K. E., Chen, B., Liu, K., Hunter, O. V., Xie, Y., Tu, B. P., et al. (2017). The
U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron
retention. Cell 169 (5), 824–835.e14. doi:10.1016/j.cell.2017.05.003

Peng, X., Xu, X., Wang, Y., Hawke, D. H., Yu, S., Han, L., et al. (2018). A-to-I RNA
editing contributes to proteomic diversity in cancer. Cancer Cell 33 (5), 817–828.e7. e7.
doi:10.1016/j.ccell.2018.03.026

Qian, J. Y., Gao, J., Sun, X., Cao, M. D., Shi, L., Xia, T. S., et al. (2019). KIAA1429 acts
as an oncogenic factor in breast cancer by regulating CDK1 in an N6-methyladenosine-
independent manner. Oncogene 38 (33), 6123–6141. doi:10.1038/s41388-019-0861-z

Richters, A., Aben, K. K. H., and Kiemeney, L. (2020). The global burden of urinary
bladder cancer: An update. World J. Urol. 38 (8), 1895–1904. doi:10.1007/s00345-019-
02984-4

Riester, M., Taylor, J. M., Feifer, A., Koppie, T., Rosenberg, J. E., Downey, R. J., et al.
(2012). Combination of a novel gene expression signature with a clinical nomogram
improves the prediction of survival in high-risk bladder cancer. Clin. Cancer Res. 18 (5),
1323–1333. doi:10.1158/1078-0432.ccr-11-2271

Riester, M., Werner, L., Bellmunt, J., Selvarajah, S., Guancial, E. A., Weir, B. A., et al.
(2014). Integrative analysis of 1q23.3 copy-number gain in metastatic urothelial
carcinoma. Clin. Cancer Res. 20 (7), 1873–1883. doi:10.1158/1078-0432.ccr-13-0759

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). Limma
powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 43 (7), e47. doi:10.1093/nar/gkv007

Rizvi, N. A., Hellmann, M. D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J. J., et al.
(2015). Cancer immunology. Mutational landscape determines sensitivity to PD-1
blockade in non-small cell lung cancer. Science 348 (6230), 124–128. doi:10.1126/
science.aaa1348

Roundtree, I. A., Evans, M. E., Pan, T., and He, C. (2017). Dynamic RNA
modifications in gene expression regulation. Cell 169 (7), 1187–1200. doi:10.1016/j.
cell.2017.05.045

Ru, B., Wong, C. N., Tong, Y., Zhong, J. Y., Zhong, S. S. W., Wu, W. C., et al. (2019).
Tisidb: An integrated repository portal for tumor-immune system interactions.
Bioinformatics 35 (20), 4200–4202. doi:10.1093/bioinformatics/btz210

Safra, M., Sas-Chen, A., Nir, R., Winkler, R., Nachshon, A., Bar-Yaacov, D., et al.
(2017). The m1A landscape on cytosolic and mitochondrial mRNA at single-base
resolution. Nature 551 (7679), 251–255. doi:10.1038/nature24456

Scheitl, C. P. M., Ghaem Maghami, M., Lenz, A. K., and Höbartner, C. (2020). Site-
specific RNA methylation by a methyltransferase ribozyme. Nature 587 (7835),
663–667. doi:10.1038/s41586-020-2854-z

Schneider, A. K., Chevalier, M. F., and Derré, L. (2019). The multifaceted immune
regulation of bladder cancer. Nat. Rev. Urol. 16 (10), 613–630. doi:10.1038/s41585-019-
0226-y

Schönemann, L., Kühn, U., Martin, G., Schäfer, P., Gruber, A. R., Keller, W., et al.
(2014). Reconstitution of CPSF active in polyadenylation: Recognition of the
polyadenylation signal by WDR33. Genes Dev. 28 (21), 2381–2393. doi:10.1101/gad.
250985.114

Sebestyén, E., Singh, B., Miñana, B., Pagès, A., Mateo, F., Pujana, M. A., et al. (2016).
Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils
novel cancer-relevant splicing networks. Genome Res. 26 (6), 732–744. doi:10.1101/gr.
199935.115

Sehn, L. H., Herrera, A. F., Flowers, C. R., Kamdar, M. K., McMillan, A., Hertzberg,
M., et al. (2020). Polatuzumab vedotin in relapsed or refractory diffuse large B-cell
lymphoma. J. Clin. Oncol. 38 (2), 155–165. doi:10.1200/jco.19.00172

Sendinc, E., Valle-Garcia, D., Dhall, A., Chen, H., Henriques, T., Navarrete-Perea, J.,
et al. (2019). PCIF1 catalyzes m6Am mRNA methylation to regulate gene expression.
Mol. Cell 75 (3), 620–630.e9. e9. doi:10.1016/j.molcel.2019.05.030

Senter, P. D., and Sievers, E. L. (2012). The discovery and development of
brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic
anaplastic large cell lymphoma. Nat. Biotechnol. 30 (7), 631–637. doi:10.1038/nbt.2289

Sethi, N., Dai, X., Winter, C. G., and Kang, Y. (2011). Tumor-derived
JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch
signaling in bone cells. Cancer Cell 19 (2), 192–205. doi:10.1016/j.ccr.2010.12.022

Siegel, R. L., Miller, K. D., and Jemal, A. Cancer statistics (2019). CA Cancer J. Clin.
69(1):7–34.doi:10.3322/caac.21551

Sjödahl, G., Eriksson, P., Liedberg, F., and Höglund, M. (2017). Molecular
classification of urothelial carcinoma: Global mRNA classification versus tumour-
cell phenotype classification. J. Pathol. 242 (1), 113–125. doi:10.1002/path.4886

Sjödahl, G., Eriksson, P., Patschan, O., Marzouka, N. A., Jakobsson, L., Bernardo, C.,
et al. (2020). Molecular changes during progression from nonmuscle invasive to
advanced urothelial carcinoma. Int. J. Cancer 146 (9), 2636–2647. doi:10.1002/ijc.32737

Sjödahl, G., Lauss, M., Lövgren, K., Chebil, G., Gudjonsson, S., Veerla, S., et al. (2012).
A molecular taxonomy for urothelial carcinoma. Clin. Cancer Res. 18 (12), 3377–3386.
doi:10.1158/1078-0432.ccr-12-0077-t

Snyder, A., Nathanson, T., Funt, S. A., Ahuja, A., Buros Novik, J., Hellmann, M. D.,
et al. (2017). Contribution of systemic and somatic factors to clinical response and
resistance to PD-L1 blockade in urothelial cancer: An exploratory multi-omic analysis.
PLoS Med. 14 (5), e1002309. doi:10.1371/journal.pmed.1002309

Starodub, A. N., Ocean, A. J., Shah, M. A., Guarino, M. J., Picozzi, V. J., Jr., Vahdat, L.
T., et al. (2015). First-in-Human trial of a novel anti-trop-2 antibody-SN-38 conjugate,

Frontiers in Genetics frontiersin.org23

Zhang et al. 10.3389/fgene.2023.1156095

https://doi.org/10.1200/jco.2009.26.2071
https://doi.org/10.1172/jci84637
https://doi.org/10.1016/j.cell.2018.01.029
https://doi.org/10.1186/s12943-019-1106-z
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1126/science.aan6733
https://doi.org/10.1200/jco.2009.25.0977
https://doi.org/10.1200/jco.2009.25.0977
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1001/jama.2020.17598
https://doi.org/10.1038/nature23450
https://doi.org/10.1371/journal.pone.0038863
https://doi.org/10.1093/bioinformatics/bty411
https://doi.org/10.1093/bioinformatics/bty411
https://doi.org/10.1038/nature14234
https://doi.org/10.1016/j.ebiom.2019.03.022
https://doi.org/10.1007/s13167-018-0128-8
https://doi.org/10.1038/s41573-020-00091-3
https://doi.org/10.3390/cancers13071699
https://doi.org/10.1038/nature25501
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1002/jcp.29645
https://doi.org/10.1016/s1470-2045(18)30693-4
https://doi.org/10.1056/NEJMoa1914510
https://doi.org/10.1002/wrna.79
https://doi.org/10.1158/0008-5472.can-11-2449
https://doi.org/10.1038/s41588-018-0118-8
https://doi.org/10.1016/j.cell.2017.05.003
https://doi.org/10.1016/j.ccell.2018.03.026
https://doi.org/10.1038/s41388-019-0861-z
https://doi.org/10.1007/s00345-019-02984-4
https://doi.org/10.1007/s00345-019-02984-4
https://doi.org/10.1158/1078-0432.ccr-11-2271
https://doi.org/10.1158/1078-0432.ccr-13-0759
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1016/j.cell.2017.05.045
https://doi.org/10.1016/j.cell.2017.05.045
https://doi.org/10.1093/bioinformatics/btz210
https://doi.org/10.1038/nature24456
https://doi.org/10.1038/s41586-020-2854-z
https://doi.org/10.1038/s41585-019-0226-y
https://doi.org/10.1038/s41585-019-0226-y
https://doi.org/10.1101/gad.250985.114
https://doi.org/10.1101/gad.250985.114
https://doi.org/10.1101/gr.199935.115
https://doi.org/10.1101/gr.199935.115
https://doi.org/10.1200/jco.19.00172
https://doi.org/10.1016/j.molcel.2019.05.030
https://doi.org/10.1038/nbt.2289
https://doi.org/10.1016/j.ccr.2010.12.022
https://doi.org/10.3322/caac.21551
https://doi.org/10.1002/path.4886
https://doi.org/10.1002/ijc.32737
https://doi.org/10.1158/1078-0432.ccr-12-0077-t
https://doi.org/10.1371/journal.pmed.1002309
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1156095


sacituzumab govitecan, for the treatment of diverse metastatic solid tumors. Clin.
Cancer Res. 21 (17), 3870–3878. doi:10.1158/1078-0432.ccr-14-3321

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M.
A., et al. (2005). Gene set enrichment analysis: A knowledge-based approach for
interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102
(43), 15545–15550. doi:10.1073/pnas.0506580102

Sullenger, B. A., and Nair, S. (2016). From the RNA world to the clinic. Science 352
(6292), 1417–1420. doi:10.1126/science.aad8709

Tagawa, S. T., Balar, A. V., Petrylak, D. P., Kalebasty, A. R., Loriot, Y., Fléchon, A., et al.
(2021). TROPHY-U-01: A phase II open-label study of sacituzumab govitecan in patients
with metastatic urothelial carcinoma progressing after platinum-based chemotherapy and
checkpoint inhibitors. J. Clin. Oncol. 39 (22), 2474–2485. doi:10.1200/jco.20.03489

Tang, J., Han, T., Tong, W., Zhao, J., and Wang, W. (2021). N(6)-methyladenosine
(m(6)A) methyltransferase KIAA1429 accelerates the gefitinib resistance of non-small-
cell lung cancer. Cell Death Discov. 7 (1), 108. doi:10.1038/s41420-021-00488-y

Tassinari, V., Cesarini, V., Tomaselli, S., Ianniello, Z., Silvestris, D. A., Ginistrelli, L.
C., et al. (2021). ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in
glioblastoma by an editing-independent mechanism. Genome Biol. 22 (1), 51. doi:10.
1186/s13059-021-02271-9

Tavazoie, M. F., Pollack, I., Tanqueco, R., Ostendorf, B. N., Reis, B. S., Gonsalves, F. C.,
et al. (2018). LXR/ApoE activation restricts innate immune suppression in cancer. Cell
172 (4), 825–840.e18. doi:10.1016/j.cell.2017.12.026

Therkildsen, C., Eriksson, P., Höglund, M., Jönsson, M., Sjödahl, G., Nilbert, M., et al.
(2018). Molecular subtype classification of urothelial carcinoma in Lynch syndrome.
Mol. Oncol. 12 (8), 1286–1295. doi:10.1002/1878-0261.12325

Tian, B., Hu, J., Zhang, H., and Lutz, C. S. (2005). A large-scale analysis of mRNA
polyadenylation of human and mouse genes. Nucleic Acids Res. 33 (1), 201–212. doi:10.
1093/nar/gki158

Tian, B., and Manley, J. L. (2017). Alternative polyadenylation of mRNA precursors.
Nat. Rev. Mol. Cell Biol. 18 (1), 18–30. doi:10.1038/nrm.2016.116

Tong, J., Wang, X., Liu, Y., Ren, X., Wang, A., Chen, Z., et al. (2021). Pooled CRISPR
screening identifies m(6)A as a positive regulator of macrophage activation. Sci. Adv. 7
(18), eabd4742. doi:10.1126/sciadv.abd4742

Trudel, S., Lendvai, N., Popat, R., Voorhees, P. M., Reeves, B., Libby, E. N., et al.
(2019). Antibody-drug conjugate, GSK2857916, in relapsed/refractory multiple
myeloma: An update on safety and efficacy from dose expansion phase I study.
Blood Cancer J. 9 (4), 37. doi:10.1038/s41408-019-0196-6

Ulloa-Montoya, F., Louahed, J., Dizier, B., Gruselle, O., Spiessens, B., Lehmann, F. F.,
et al. (2013). Predictive gene signature in MAGE-A3 antigen-specific cancer
immunotherapy. J. Clin. Oncol. 31 (19), 2388–2395. doi:10.1200/jco.2012.44.3762

van Hoogstraten, L. M. C., Vrieling, A., van der Heijden, A. G., Kogevinas, M.,
Richters, A., and Kiemeney, L. A. (2023). Global trends in the epidemiology of bladder
cancer: Challenges for public health and clinical practice. Nat. Rev. Clin. Oncol. doi:10.
1038/s41571-023-00744-3

van Rhijn, B. W. G., Hentschel, A. E., Bründl, J., Compérat, E. M., Hernández, V.,Čapoun,
O., et al. (2021). Prognostic value of the WHO1973 and WHO2004/2016 classification
systems for grade in primary Ta/T1 non-muscle-invasive bladder cancer: A multicenter
European association of urology non-muscle-invasive bladder cancer guidelines panel study.
Eur. Urol. Oncol. 4 (2), 182–191. doi:10.1016/j.euo.2020.12.002

Veglia, F., Perego, M., and Gabrilovich, D. (2018). Myeloid-derived suppressor cells
coming of age. Nat. Immunol. 19 (2), 108–119. doi:10.1038/s41590-017-0022-x

Wang, H., Hu, X., Huang, M., Liu, J., Gu, Y., Ma, L., et al. (2019). Mettl3-mediated
mRNA m(6)A methylation promotes dendritic cell activation. Nat. Commun. 10 (1),
1898. doi:10.1038/s41467-019-09903-6

Wang, J., and Chen, S. (2020). RACK1 promotes miR-302b/c/d-3p expression and
inhibits CCNO expression to induce cell apoptosis in cervical squamous cell carcinoma.
Cancer Cell Int. 20, 385. doi:10.1186/s12935-020-01435-0

Wang, L., Saci, A., Szabo, P. M., Chasalow, S. D., Castillo-Martin, M., Domingo-
Domenech, J., et al. (2018). EMT- and stroma-related gene expression and resistance to
PD-1 blockade in urothelial cancer.Nat. Commun. 9 (1), 3503. doi:10.1038/s41467-018-
05992-x

Wang, L., Yi, T., Kortylewski, M., Pardoll, D. M., Zeng, D., and Yu, H. (2009). IL-17
can promote tumor growth through an IL-6-Stat3 signaling pathway. J. Exp. Med. 206
(7), 1457–1464. doi:10.1084/jem.20090207

Wei, C., Gershowitz, A., and Moss, B. (1975). N6, O2’-dimethyladenosine a novel
methylated ribonucleoside next to the 5’ terminal of animal cell and virus mRNAs.
Nature 257 (5523), 251–253. doi:10.1038/257251a0

Wei, C. M., Gershowitz, A., and Moss, B. (1975). Methylated nucleotides block 5’
terminus of HeLa cell messenger RNA. Cell 4 (4), 379–386. doi:10.1016/0092-8674(75)
90158-0

Wilkerson, M. D., and Hayes, D. N. (2010). ConsensusClusterPlus: A class discovery
tool with confidence assessments and item tracking. Bioinformatics 26 (12), 1572–1573.
doi:10.1093/bioinformatics/btq170

Wynne, J., Wright, D., and Inotuzumab, Stock W. (2019). Inotuzumab: From
preclinical development to success in B-cell acute lymphoblastic leukemia. Blood
Adv. 3 (1), 96–104. doi:10.1182/bloodadvances.2018026211

Xia, Z., Donehower, L. A., Cooper, T. A., Neilson, J. R., Wheeler, D. A., Wagner, E. J.,
et al. (2014). Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3’-
UTR landscape across seven tumour types. Nat. Commun. 5, 5274. doi:10.1038/
ncomms6274

Xiang, J. F., Yang, Q., Liu, C. X., Wu, M., Chen, L. L., and Yang, L. (2018). N(6)-
Methyladenosines modulate A-to-I RNA editing. Mol. Cell 69 (1), 126–135.e6. e6.
doi:10.1016/j.molcel.2017.12.006

Xiang, Y., Ye, Y., Lou, Y., Yang, Y., Cai, C., Zhang, Z., et al. (2018). Comprehensive
characterization of alternative polyadenylation in human cancer. J. Natl. Cancer Inst.
110 (4), 379–389. doi:10.1093/jnci/djx223

Xing, J., Shen, S., Dong, Z., Hu, X., Xu, L., Liu, X., et al. (2021). Analysis of multi-layer
RNA modification patterns for the characterization of tumor immune
microenvironment in hepatocellular carcinoma. Front. Cell Dev. Biol. 9, 761391.
doi:10.3389/fcell.2021.761391

Xu, X., Wang, Y., Mojumdar, K., Zhou, Z., Jeong, K. J., Mangala, L. S., et al. (2019).
A-to-I-edited miRNA-379-5p inhibits cancer cell proliferation through CD97-induced
apoptosis. J. Clin. Investig. 129 (12), 5343–5356. doi:10.1172/jci123396

Yang, W., Soares, J., Greninger, P., Edelman, E. J., Lightfoot, H., Forbes, S., et al.
(2013). Genomics of drug sensitivity in cancer (GDSC): A resource for therapeutic
biomarker discovery in cancer cells.Nucleic Acids Res. 41, D955–D961. doi:10.1093/nar/
gks1111

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). clusterProfiler: an R package for
comparing biological themes among gene clusters. Omics 16 (5), 284–287. doi:10.1089/
omi.2011.0118

Yu, J., Chen, M., Huang, H., Zhu, J., Song, H., Zhu, J., et al. (2018). Dynamic m6A
modification regulates local translation of mRNA in axons. Nucleic Acids Res. 46 (3),
1412–1423. doi:10.1093/nar/gkx1182

Zaccara, S., Ries, R. J., and Jaffrey, S. R. (2019). Reading, writing and erasing
mRNA methylation. Nat. Rev. Mol. Cell Biol. 20 (10), 608–624. doi:10.1038/
s41580-019-0168-5

Zeng, D., Li, M., Zhou, R., Zhang, J., Sun, H., Shi, M., et al. (2019). Tumor
microenvironment characterization in gastric cancer identifies prognostic and
immunotherapeutically relevant gene signatures. Cancer Immunol. Res. 7 (5),
737–750. doi:10.1158/2326-6066.cir-18-0436

Zhang, C., and Jia, G. (2018). Reversible RNA modification N(1)-methyladenosine
(m(1)A) in mRNA and tRNA. Genomics Proteomics Bioinforma. 16 (3), 155–161.
doi:10.1016/j.gpb.2018.03.003

Zhang, H., Ye, Y. L., Li, M. X., Ye, S. B., Huang, W. R., Cai, T. T., et al. (2017). CXCL2/
MIF-CXCR2 signaling promotes the recruitment of myeloid-derived suppressor cells
and is correlated with prognosis in bladder cancer.Oncogene 36 (15), 2095–2104. doi:10.
1038/onc.2016.367

Zhang, T., Cooper, S., and Brockdorff, N. (2015). The interplay of histone
modifications - writers that read. EMBO Rep. 16 (11), 1467–1481. doi:10.15252/
embr.201540945

Zhang, Y., Liu, L., Qiu, Q., Zhou, Q., Ding, J., Lu, Y., et al. (2021). Alternative
polyadenylation: Methods, mechanism, function, and role in cancer. J. Exp. Clin. Cancer
Res. 40 (1), 51. doi:10.1186/s13046-021-01852-7

Zhang, Z., Chen, P., Xie, H., and Cao, P. (2021). Overexpression of GINS4 is
associated with tumor progression and poor survival in hepatocellular carcinoma.
Front. Oncol. 11, 654185. doi:10.3389/fonc.2021.654185

Zhang, Z., Tang, H., Chen, P., Xie, H., and Tao, Y. (2019). Demystifying the
manipulation of host immunity, metabolism, and extraintestinal tumors by the
gut microbiome. Signal Transduct. Target Ther. 4, 41. doi:10.1038/s41392-019-
0074-5

Zhang, Z. Y., Chen, P., Liu, F. Y., Lin, C. S., Deng, R., Wu, L. Y., et al. Identification of a
novel RNA modifications-related model to improve bladder cancer outcomes in the
framework of predictive, preventive, and personalized medicine, 2022, PREPRINT
(Version 1) available at Research Square. doi:10.21203/rs.3.rs-1452102/v1

Frontiers in Genetics frontiersin.org24

Zhang et al. 10.3389/fgene.2023.1156095

https://doi.org/10.1158/1078-0432.ccr-14-3321
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1126/science.aad8709
https://doi.org/10.1200/jco.20.03489
https://doi.org/10.1038/s41420-021-00488-y
https://doi.org/10.1186/s13059-021-02271-9
https://doi.org/10.1186/s13059-021-02271-9
https://doi.org/10.1016/j.cell.2017.12.026
https://doi.org/10.1002/1878-0261.12325
https://doi.org/10.1093/nar/gki158
https://doi.org/10.1093/nar/gki158
https://doi.org/10.1038/nrm.2016.116
https://doi.org/10.1126/sciadv.abd4742
https://doi.org/10.1038/s41408-019-0196-6
https://doi.org/10.1200/jco.2012.44.3762
https://doi.org/10.1038/s41571-023-00744-3
https://doi.org/10.1038/s41571-023-00744-3
https://doi.org/10.1016/j.euo.2020.12.002
https://doi.org/10.1038/s41590-017-0022-x
https://doi.org/10.1038/s41467-019-09903-6
https://doi.org/10.1186/s12935-020-01435-0
https://doi.org/10.1038/s41467-018-05992-x
https://doi.org/10.1038/s41467-018-05992-x
https://doi.org/10.1084/jem.20090207
https://doi.org/10.1038/257251a0
https://doi.org/10.1016/0092-8674(75)90158-0
https://doi.org/10.1016/0092-8674(75)90158-0
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1182/bloodadvances.2018026211
https://doi.org/10.1038/ncomms6274
https://doi.org/10.1038/ncomms6274
https://doi.org/10.1016/j.molcel.2017.12.006
https://doi.org/10.1093/jnci/djx223
https://doi.org/10.3389/fcell.2021.761391
https://doi.org/10.1172/jci123396
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1093/nar/gkx1182
https://doi.org/10.1038/s41580-019-0168-5
https://doi.org/10.1038/s41580-019-0168-5
https://doi.org/10.1158/2326-6066.cir-18-0436
https://doi.org/10.1016/j.gpb.2018.03.003
https://doi.org/10.1038/onc.2016.367
https://doi.org/10.1038/onc.2016.367
https://doi.org/10.15252/embr.201540945
https://doi.org/10.15252/embr.201540945
https://doi.org/10.1186/s13046-021-01852-7
https://doi.org/10.3389/fonc.2021.654185
https://doi.org/10.1038/s41392-019-0074-5
https://doi.org/10.1038/s41392-019-0074-5
https://doi.org/10.21203/rs.3.rs-1452102/v1
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1156095


Glossary

95% CI 95% confidence interval

39UTR 3′-untranslated region

m6A N6-methyladenosine

m6Am N6,2′-O-dimethyladenosine

m1A N1-methyladenosine

APA alternative polyadenylation

ADC antibody-drug conjugates

A-to-I adenosine-to-inosine

Am 2′-O-methyladenosine

AUC an area under the curve

ADAR adenosine deaminase acting on RNA

BCa bladder cancer

CSCC cervical squamous cell carcinoma

CR complete response

ceRNA competing endogenous RNA

C-index concordance index

CNA somatic copy number variation

DSS disease-specific survival

DEMs differentially expressed miRNAs

DEGs differentially expressed genes

DC dendritic cell

DDR DNA damage repair

EMT epithelial-mesenchymal transition

FC fold change

FDR false discovery rate

GO Gene Ontology

GSEA gene set enrichment analysis

GSVA Gene set variation analysis

GEO Gene Expression Omnibus

HR hazard ratio

IHC Immunohistochemistry

ICB Immune-checkpoint blockade

KEGG Kyoto Encyclopedia of Genes and Genomes

LASSO least absolute shrinkage and selection operator

miRNA microRNA

MDSC Myeloid derived suppressor cell

MSigDB Molecular Signature Database

miRNA-seq miRNA-sequencing

m7G N7-methylguanosine

NES normalized enrichment score

NK cells natural killer cells

OS overall survival

PAS proximal polyA sites

PD-1 programmed cell death-1

PDUI Percentage of Distal polyA site Usage Index

PCA principal component analysis

Pan-FTBRS pan-fibroblast TGF-β response signature

PD progressive disease

RNA-seq RNA-sequencing

PR partial response

RFS recurrence-free survival

ROC receiver operating characteristic

RMS RNA modification “writers” score

SD standard deviation

snRNAs small nuclear RNAs

SCC squamous cell carcinoma

SD stable disease

TMM Trimmed Mean of M

TMA tissue microarray

TISIDB Tumor and Immune System Interaction Database

TME tumor microenvironment

TMB tumor mutation burden

Th17 cell Type 17 T helper cell

TCGA-BLCA The Cancer Genome Atlas-Bladder Urothelial
Carcinoma

UC urothelial carcinoma

UCSC University of California Santa Cruz

WGCNA Weighted gene co-expression network analysis

“Writers” MUT “writers” mutated

“Writers” WT “writers” wild-type
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