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1 Introduction

Major advances in genome sequencing technology have driven a dramatic increase in the
production of epigenome data (ENCODE Consortium, 2012; Sheffield and Furey, 2012;
Martens and Stunnenberg, 2013; Kundaje et al., 2015; Sheffield and Bock, 2016; Zheng et al.,
2018). Epigenomic data result from various experiments, such as chromatin
immunoprecipitation, DNA methylation, and chromatin accessibility assays. The
resulting data is often represented as genome signals, or “wiggle tracks,” which are
summarized into regions, or genomic intervals, stored in BED (browser extensible data)
file format (Kent et al., 2002). Genomic interval data is useful for a variety of biological
questions, such as identifying genetic variants associated with diseases, determining the
function of genes and pathways, understanding gene-by-environment effects, studying the
underlying mechanisms of disease, and developing personalized treatments. To leverage the
value of this public genomic interval data, we must share it broadly, and the number of
publicly available genomic interval files has risen quickly; more than 80,000 BED files are
now available from the Gene Expression Omnibus (GEO) (Figure 1A). However, despite
recent progress in scale and access, reusing genomic interval data is still challenging.

Reusing large-scale data faces many general challenges. Here, we focus specifically on
integrating genomic interval data from different sources to enable researchers to compare
and apply downstream analysis on those data. We outline five challenges with reusing
genomic interval data: 1) identifying and retrieving relevant data; 2) identifying and
integrating across reference genomes; 3) standardizing BED format; 4) integrating
mixed-quality and mixed-process data; and 5) standardizing metadata. We argue that
addressing these challenges will reduce barriers to sharing genomic interval data and lead to
increased biomedical discovery.
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2 Challenges in reusing genomic
intervals

2.1 Identifying and retrieving relevant data

The first challenge in reusing genomic interval data is identifying
and retrieving relevant data. Despite the scale and importance of
existing genomic interval resources, it is difficult to identify and
retrieve relevant data for the following three reasons: 1) data
repositories are fragmented; 2) search methods rely on author-
provided metadata; and 3) genomic interval repositories lack a
standard API for retrieving data (Figure 1B). First, existing interval
databases are fragmented and restricted to subsets of the available
genomic interval data. For example, some databases are restricted by
ethnicity, by research project, or only contain certain data types. This
canmake it difficult to find or retrieve data of interest bymultiplying the
places to search. One solution is to build integrative databases; for
example, the International Human EpigenomeConsortium (IHEC) has
made efforts to integrate and share data frommajor national endeavors
such as United States ENCODE and NIH Roadmap, European
Blueprint, Canadian CEEHRC, German DEEP, Korean KNIH, and
China’s EpiHK (Stunnenberg et al., 2016). Other examples include the
Cistrome Data Browser (Cistrome DB) (Zheng et al., 2018) and ChIP-
Atlas (Zou et al., 2022), which integrate interval data across ChIP-seq,
ATAC-seq, DNase-seq, and Bisulfite-Seq data. These projects reduce
fragmentation, which facilitates reuse; however, integrating is
incomplete—the community still lacks a comprehensive source of all
genomic interval data.

The second problem that makes identifying and retrieving
relevant data a challenge is that existing search methods mostly
rely on metadata matching only, which may result in an incomplete
or incorrect list of relevant results. For example, the Gene Expression
Omnibus (GEO) (Barrett et al., 2013) is probably the largest
repository of genomic interval data, containing tens of thousands
of biological samples. The data search within GEO is limited to
keywords within the metadata provided by the study’s authors. This
can be problematic if the metadata is missing or incorrect, or simply
uses different synonyms. A variety of attempts to restructure the
GEO metadata have tried to improve the situation (Davis and
Meltzer, 2007; Choudhary, 2019; Khoroshevskyi et al., 2023). One
promising approach is to use machine learning to identify patterns
and features and allow data with missing or incorrect metadata to be
retained in search results if they have similar characteristics to data
containing the relevant keywords (Leipzig et al., 2021; Garcia et al.,
2022). New approaches that build on natural language processing to
associate genomic regions with human-friendly keywords is an
opportunity for future development.

Finally, retrieving relevant genomic interval data is challenging
due to the lack of a simple, universal programmatic data retrieval
method. Genomic interval data sources generally provide user-
friendly web interfaces, which are valuable for browsing, but
manually searching and downloading data can be tedious. To
address this issue, tools like DeepBlue and FILER provide easy
programmatic data retrieval via application programming interfaces
(API) (Albrecht et al., 2016; Kuksa et al., 2022). However, these
databases only contain a subset of the available genomic interval

FIGURE 1
Overview of challenges in sharing and reusing genomic interval data. (A) Growth in number of BED-like files in GEO (files on either GEO series or
sample entries with names including bed, bigBed, narrowPeak, or broadPeak, and size less than 25 mb). (B) Illustration of identifying and retrieving
genomic interval data among fragmented repositories with different data retrieval mechanisms. (C) Demonstration of the challenge to integrating
genomic interval data across different reference genomes. (D) Integration of metadata with and without standardization.
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data, and there is a need for a unified platform and standardized,
cross-platform APIs that allow easy access to all existing resources.

2.2 Identifying and integrating across
reference genomes

The second challenge is identifying the reference genome.
Genomic interval annotations are only comparable if they are
defined on the same coordinate system (Figure 1C). Yet, despite
this importance, it remains difficult to identify and integrate
reference genomes across genomic interval data because 1)
genome assembly identifiers are ambiguous; and 2) reference
genome information is not contained in the genomic interval
data file itself.

First, the ambiguity in the genome assembly identifiers can
make identifying the reference genome of genomic interval data
difficult. For example, the same human-readable identifier may
refer to many variations of the human genome. A solution to this
problem is to use unique identifiers that unambiguously identify
a particular assembly (Kitts et al., 2015). However, this approach
relies on a central authority, and different consortia may use
different genome identifier systems, leading to inconsistencies
and potential errors in the analysis. To avoid errors in identifying
and comparing reference genomes for genomic interval data,
refgenie developed a new system to establish the identity of a
genome based on the refget protocol and using the digest of
reference genome content as the genome identifier (Stolarczyk
et al., 2021; Yates et al., 2021). This approach allows users to
confirm via computation the identity of the reference genome
used to generate the genomic interval data across systems.
However, this approach is not yet widespread, and many
reference genome identifiers remain ambiguous.

Another aspect of this challenge is that reference genome
information is not contained within the genomic interval data
files themselves. The reference genome a BED file annotates is
usually given in its metadata or as part of the file name.
Unfortunately, these sources of information may become
disconnected, and also make it difficult to accurately integrate
and annotate genomic interval data without additional metadata.
Therefore, efforts are needed to develop a standard that encodes the
reference genome identity in the genomic interval data file.

2.3 Standardizing BED format

A third challenge is inconsistent file formats. Genomic interval
data is typically summarized in BED format, which, according to the
standard, contains three required fields (seqname, start, and end)
and nine optional fields (Kent et al., 2002). BED-like formats, such as
the narrowPeak and broadPeak formats, are even more flexible and
can have different information. In addition, BED files are frequently
adapted, and dozens of possibly undocumented variations exist. For
example, the signal values that are typically represented in the WIG
file can be a custom field that may not be encoded similarly across
BED files in an integrative study. In addition, there is also GFF
format, which also encodes genomic locations, but differs in column
order. This inconsistency makes integrating BED files challenging

for two reasons: First, some BED files may contain optional or
custom fields that are absent in other BED files. Second, different
BED files may use different names for the custom fields of the same
information. The different file formats can make integrating and
comparing data from different sources difficult, hindering the reuse
of genomic interval data.

2.4 Integrating mixed-quality and mixed-
process data

A fourth challenge is integrating data with different quality,
completeness, or processing steps. The quality of the data and its
computational processing is frequently unknown, because sample
quality may not be included in interval files and pipeline parameters
used to process raw sequencing data are often unknown. Data with
different sources or analysis steps is challenging to integrate, which
hinders building upon previous work. To ensure the quality and
uniformity of the data, one solution is to apply either standardized
quality control (QC) or entire data preprocessing pipelines, or both.
For example, the Cistrome DB applied the ChiLin pipeline for
chromatin profiling data analysis and quality control (QC) using
a set of QC criteria, including uniquely mapped reads, PCR
bottleneck coefficient, and the FRiP score (Qin et al., 2016;
Zheng et al., 2018). This approach creates universal QC scores
and standardizes the pipeline, but it requires far greater resources
than simply re-using existing published genomic interval sets.
Furthermore, there are many different steps in a raw sequencing
processing, such as alignment, peak calling, and signal track
generation. This restricts the standardized pipeline approach to
allowable data types.

In addition to the mixed-quality data, we also want to filter out
the duplicated data when reusing genomic interval data. Because
there are no general-purpose global identifiers for BED files, an
analysis that scrapes BED data from multiple sources is likely to
collect duplicated data. Using a checksum-based approach could
help to identify files that are identical, but differences in whitespace,
columns, or other manipulations can fool this method. A more
effective approach could assign identifiability based on the actual
region coordinates, rather than file checksums alone.

2.5 Standardizing metadata

The last challenge is integrating metadata across sources.
Currently available genomic interval metadata faces three
rampant problems: 1) non-overlapping attribute names, 2)
incomplete data, and 3) lack of controlled vocabulary
(Figure 1D). These classic challenges apply to all types of
biomedical metadata but are particularly pronounced for
genomic intervals due to the diversity of data sources and
processing. First, different sources of genomic interval data may
use different names for the same attribute, making it difficult for
researchers to integrate the data. For example, parsing the metadata
from GEO results in a sporadic table with multiple columns of the
same attribute because the authors of the different studies use
different names for the same attribute. Second, some sources may
provide only some of the metadata required for integration, making
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it difficult to fully understand the context and relevance of the data.
In the context of genomic interval data, metadata should include
information such as experimental assay (e.g., ChIP-seq or ATAC-
seq), type of genomic records (e.g., narrow peaks, broad peaks, and
gene models), biological sources, and the reference genome. Third,
integrating genomic interval data can be particularly challenging
when the metadata values use different terminology. Using a
controlled vocabulary helps ensure that metadata is consistently
and accurately described, making it easier to search for, retrieve, and
analyze the data. Controlled vocabularies can also help reduce
confusion and ambiguity, as they provide a clear, standardized
set of terms that can describe the data. However, their use is
sporadic at best. These three issues can make it challenging to
effectively reuse and integrate genomic interval data from multiple
sources, limiting the potential benefits of reusing such data. One
approach to address this challenge is to reprocess published data to
produce curated databases with uniform processing and
standardized metadata annotation (Albrecht et al., 2016; Kuksa
et al., 2022).

3 Discussion

There are many challenges to handling growing data resources
across disciplines. In this paper, we identified challenges specific to
genomic interval data. Genomic interval data are a major resource
for biological research, but the above challenges with sharing and
reusing genomic interval data prevent the community from making
the most of it. With the overwhelming scale of the existing genomic
interval data, we need platforms and databases that can efficiently
manage these resources. To overcome the challenges, efforts
including integrating genomic interval data from different data
sources, developing new methods to identify reference genomes,
providing standardized data processing and QC pipelines,
standardizing metadata, and designing easy-to-use APIs for data
access. In the future, we must continue to invest in this area to

develop tools that aggregate existing large scale genomic interval
data, improve data standardization and browsing, and enhance
discoverability and programmatic retrievability. This will allow us
to fully leverage the value of genomic interval data and improve
research efficiency, effectiveness, reproducibility, and credibility.
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