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The chronic metabolic disease named type 2 diabetes (T2D) accounts for over 90% of
diabetes mellitus. An increasing number of evidences have revealed that hypoxia has a
significantly suppressive effect on cell-mediated immunity, as well as the utilization of
glucose in diabetics. Therefore, we aimed to screen and identify hypoxia-immune-
relatedhubgenes inT2D throughbioinformatic analysis. TheGeneExpressionOmnibus
(GEO) database was used to get T2D gene expression profile data in the peripheral
blood samples (GSE184050), and hypoxia-related genes were acquired fromMolecular
Signatures Database (MSigDB). Differentially expressed mRNAs (DEGs) and lncRNAs
(DELs) between T2D and normal samples were identified by DeSeq2 package. The
clusterProfiler package was used to perform enrichment analyses for the overlapped
genes of DEGs and hypoxia-related genes. Further, Hypoxia-related hub genes were
discovered using twomachine learning algorithms. Next, the compositional patterns of
immune and stromal cells in T2D and healthy groups were estimated by using xCell
algorithm. Moreover, we used the weighted correlation network analysis (WGCNA) to
examine the connection between genes and immune cells to screen immune-related
genes.GeneSet EnrichmentAnalysis (GSEA)was used to investigate the functionsof the
hypoxia-immune-related hub genes. Finally, two peripheral blood cohorts of T2D
(GSE184050 and GSE95849) as well as the quantitative real-time PCR (qRT-PCR)
experiments for clicinal peripheral blood samples with T2D were used for
verification analyses of hub genes. And meanwhile, a lncRNA-TF-mRNA network
was constructed. Following the differentially expressed analysis, 38 out of
3822 DEGs were screened as hypoxia-related DEGs, and 493 DELs were found.
These hypoxia-related DEGs were mainly enriched in the GO terms of pyruvate
metabolic process, cytoplasmic vesicle lumen and monosaccharide binding, and the
KEGG pathways of glycolysis/gluconeogenesis, pentose phosphate pathway and
biosynthesis of nucleotide sugars. Moreover, 7 out of hypoxia-related DEGs were
identified as hub genes. There were six differentially expressed immune cell types
between T2D and healthy samples, which were further used as the clinical traits for
WGCNA to identify AMPD3 and IER3 as the hypoxia-immune-related hub genes. The
results of the KEGG pathways of genes in high-expression groups of AMPD3 and IER3
were mainly concentrated in glycosaminoglycan degradation and vasopressin-
regulated water reabsorption, while the low-expression groups of AMPD3 and IER3
were mainly associated with RNA degradation and nucleotide excision repair. Finally,
whencompared tonormal samples, both theAMPD3 and IER3werehighly expressed in
the T2D groups in the GSE184050 and GSE95849 datasets. The result of lncRNA-TF-
mRNA regulatory network showed that lncRNAs suchasBACH1-IT1 andSNHG15might
induce the expression of the corresponding TFs such as TFAM and THAP12 and
upregulate the expression of AMPD3. This study identified AMPD3 and IER3 as
hypoxia-immune-related hub genes and potential regulatory mechanism for T2D,
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which provided a new perspective for elucidating the upstream molecular regulatory
mechanism of diabetes mellitus.
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1 Introduction

The World Health Organization (WHO) defines diabetes as a
multietiological metabolic disorder characterized by chronic
hyperglycemia and impaired metabolism of carbohydrates, fats and
proteins due to defects in insulin secretion or insulin action or both.
The incidence of diabetes in mainland China has increased in the past
20 years (Peng et al., 2022), and meanwhile, it is expected that the
number of people with diabetes will continue to increase from
141.65 million in 2020 to 202.84 million in 2050 (Li et al., 2022a).
Effective treatment of diabetes could greatly reduce deaths caused by
non-communicable causes (NCD Countdown, 2030 collaborators.,
2020). T2D is characterized by fasting and postprandial
hyperglycemia. There are a number of treatments that can reduce
hyperglycemia in T2D patients by improving insulin secretion or
reducing insulin resistance in peripheral tissues. Nevertheless,
complications of diabetes are prevalent worldwide, and diabetes
remains a leading cause of blindness, end-stage renal disease, lower
limb amputation and cardiovascular disease. Therefore, it is urgent to
develop and implement new prevention and treatment strategies to
address the rising incidence of type 2 diabetes worldwide.

The pathogenesis of diabetes has not been fully elucidated and
hypoxia may be involved in the occurrence and development of
diabetes (Wang et al., 2017). Hypoxia is inadequate or reduced
oxygen supply caused by a decrease in arterial oxygen saturation.
Patients with obstructive sleep apnea hypopnea syndrome (OSAHS)
experience repeated hypopnea and respiratory disruption during
sleep, resulting in intermittent blood oxygen partial pressure and
decreased oxygen saturation. Clinically, OSAHS and type 2 diabetes
often exist in the same patient. The prevalence of OSAHS in T2D
patients is 24%–26% (Tahrani, 2015; Tahrani, 2017), and the risk of
OSAHS is 50% higher than that of non-T2D patients (Subramanian
et al., 2019). Additionally, the prevalence of diabetes in patients with
OSAHS is also significantly higher than that in normal people
(Foster et al., 2009). Animal studies about intermittent hypoxia
(CHI) have shown that CHI-exposed mice exhibit elevated basal
plasma insulin levels and insulin resistance, leading to islet beta cell
dysfunction (Wang et al., 2013). Therefore, we hypothesize that
hypoxia is closely related to the development of type 2 diabetes.

Current studies suggest that glucotoxicity, lipid toxicity, oxidative
stress, and endoplasmic reticulum stress can induce chronic
inflammation of islets (Zhou et al., 2010), contributing to impaired
insulin secretion and even apoptosis of islet β cells, which is associated
with the occurrence and development of T2D. Further, literature has
shown that hypoxia plays an important role in inflammatory
processes, including the regulation of neutrophil production,
macrophage production and differentiation, T cell differentiation,
and dendritic cell function (Hafner et al., 2017). Hypoxia can also alter
transcription of inflammatory cells. Promoting the expression of
inflammation-related genes, including cytokines adhesion
molecules chemokines and enzymes, leads to the development of

inflammation (Wang et al., 2015). The reprogramming of adipocytes
metabolism in obese patients causes hypoxia of adipocytes and
functional impairment of adipocytes, which contributes to chronic
inflammation, lipolysis and insulin resistance. Consequently, the
inflammation may be relevant to the development of type
2 diabetes (Oates and Antoniewicz, 2023).

In this study, bioinformatic methods were used to analysed the
hypoxic-related genes of T2D and identify the immune genes
associated with T2D, so as to screen the key hypoxic-immune
genes of T2D, and provide ideas for the diagnosis and treatment
of diabetes.

2 Materials and methods

2.1 Data source

The gene expression profile data of the GSE184050 and
GSE95849 datasets related to T2D were downloaded from the
Gene Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/). GSE184050 dataset including 50 peripheral
blood samples obtained from T2D patients and 66 non-diabetic
controls, was sequenced by Illumina HiSeq 2000 at the Baylor
Sequencing Center following standard protocols. The
GSE95849 dataset that includes peripheral blood
mononuclear cells (PBMCs) samples from 6 T2D patients
and 6 non-diabetic controls, was obtained from
GPL22448 and used as a validation set. In addition,
Molecular Signatures Database (MSigDB, https://www.gsea-
msigdb. org/gsea/msigdb) provided 196 hypoxia-related genes.

2.2 Identification of hypoxia-related DEGs

The DeSeq2 R package was used to analysed the differentially
expressed lncRNAs (DELs) and mRNAs (DEGs) between T2D and
matched healthy samples in the GSE184050 dataset, with the
screening criteria of |log2FC| > 0.1 and p < 0.05 (Love et al.,
2014; Leirer et al., 2019). R package “ggvenn” was used to
intersect the 196 hypoxia-related genes with the DEGs, and the
overlapped genes were regarded as hypoxia-related DEGs.

2.3 Functional enrichment analysis of
hypoxia-related DEGs

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were taken to investigate the
potential functions of the hypoxia-related DEGs by using the
clusterProfiler package (Wu et al., 2021), and p < 0.05 was set as
the screening threshold values of the results.
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2.4 Screening of hypoxia-related hub genes

To identify hypoxia-related hub genes in T2D, we used two
machine learning algorithms in the study. The Least Absolute
Shrinkage and Selector Operation (LASSO) algorithm in R
package “glmnet” and the Support Vector Machine-Recursive
Feature Elimination (SVM-RFE) algorithm in R package
“e1071” with five-fold cross-validation (nfolds = 5) were
used to screen the hub genes among the hypoxia-related
DEGs in T2D (Sanz et al., 2018; Zhang et al., 2019). For the
LASSO analysis, following the penalty regularization parameter
lambda was selected, that is, binomial deviance reached a
minimum value, the genes with non-zero coefficients were
chosen as candidate genes. Simultaneously, the SVM-RFE
algorithms could identify the most relevant predictors by
visualizing each one the RFE iteration, where the
functionality is removed backward. With the weights for all
genes were ranked and arranged, the feature genes with the
lowest error rate point were chosen. The genes identified by two
algorithms were intersected as hypoxia-related hub genes for
further analysis.

2.5 Evaluation of immune cell infiltration

The scores for 64 immune and stromal cells infiltration of T2D
and control samples in the GSE184050 dataset were calculated using
the xCell algorithm based on the cell genemarkers (https://xcell.ucsf.
edu/) (Aran et al., 2017), where the immune cells and stromal cells
with differentially infiltrated scores between T2D and healthy
groups were identified by Wilcoxon test, with the screening
criteria of p < 0.05.

2.6 Construction of weighted correlation
network analysis (WGCNA)

In order to find the genes associated with differentially
infiltrated immune cells, the WGCNA package in R was
utilized to construct a weighted correlation network based
on all genes of all samples in the GSE184050 dataset
(Langfelder and Horvath, 2008). First, to cluster the samples
in the GSE184050 dataset, we employed the Pearson’s
correlation coefficient and constructed a sample clustering
tree after removing outliers. Then, in order to ensure the
gene interactions accord with the scale-free distribution to
the maximum extent possible, we set the soft threshold
(power) as 7 to construct a scale-free network by using the
“pickSoftThreshold” function provided by WGCNA R package.
The genes were clustered after determining the power value of
the network. For each gene module, the minimum number of
genes was set to 100, then modules were obtained by using
dynamic shear tree algorithm. Next, we used the
“mergeCloseModules” function to set the cut height to 0.3,
and similar modules were analysed using the merged dynamic
shear tree algorithm. Ultimately, we calculated the correlation
between the modules and the differentially infiltrated immune
cells to identify key modules (correlation coefficient > 0.7).

2.7 Identification and GSEA of hypoxia-
immune-related hub genes

Firstly, the immune-related genes identified in WGCNA
were intersected with hypoxia-related hub genes to further
identify hypoxia-immune-related hub genes in T2D.
Moreover, the functional enrichment analyses were carried
for all genes in the high- and low-expression groups of
hypoxia-immune-related hub genes by GSEA (https://www.
gsea-msigdb.org/gsea/index.jsp) (Yu et al., 2019), the top ten
most important GO and KEGG terms were screened and
visualized by “gseaplot2” function in R package.

2.8 Validation of the hypoxia-immune-
related hub genes

We used the GSE184050 and GSE95849 datasets to confirm the
expression of hypoxia-immune-related hub genes. Significance in
gene expression was tested using limma package (Ritchie et al.,
2015).

In addition, quantitative real-time PCR (qRT-PCR) was
used to validate the expressions of hypoxia-immune-related
hub genes with 10 normal blood samples (Con group), and
10 T2D blood samples (T2D gropup). All participants were
aware of the study and signed informed consent. An equal
volume of human peripheral blood lymphocyte separation
medium (Human) (Beijing Solarbio Science and Technology,
Beijing, China) was added to 4 mL blood sample for a
centrifugation of 20 min at 2,000 g. The buffy coats was
collected and placed within a new tube for another 10 min at
1,000 g to extract peripheral blood mononuclear cells (PBMC),
which were furher lysed by TRIzol Reagent (Life Technologies,
CA, United States), and the total RNA was isolated following
the manufacturer’s instructions. After detecting the
concentration and the purity of RNA, 1.5 μg qualified RNA
was reverse-transcribed to cDNA using the SureScript-First-
strand-cDNA-synthesis-kit (Genecopoeia, Guangzhou, China).
The resulting cDNA was 5-fold diluted and used for the qRT-
PCR. The qRT-PCR reaction consisted of 3 µL of cDNA, 5 µL of
2xUniversal Blue SYBR Green qPCR Master Mix (Servicebio,
Wuhan, China), and 1 µL each of forward and reverse primer.
PCR was performed in a BIO-RAD CFX96 Touch TM PCR
detection system (Bio-Rad Laboratories, Inc., United States)
under the thermal cycling conditions: 40 cycles at 95°C for 60 s,
95°C for 20 s, 55°C for 20 s, and 72°C for 30 s. The 2−△△Ct method
was used to compute gene expressions, Statistical differences
were compared using Unpaired t-test and the results of statistic
analysis were conducted by Graphpad Prism 5 (p < 0.05). The
primer sequences used in the current study were given in
following Table 1.

2.9 Construction of the lncRNA-TF-mRNA
network

To find out whether the hypoxia-immune-related hub genes
exist regulatory network mediated by lncRNAs and human
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transcription factors (TFs). We obtained the human TFs from the
AnimalTFDB3.0 database (http://bioinfo.life.hust.edu.cn/
AnimalTFDB#!/), and then used the DELs, TFs and hypoxia-
immune-related hub genes to establish a lncRNA-TF-mRNA
regulatory network, with the screening criteria of the
correlation coefficient > 0.7 and p < 0.05.

2.10 Statistical analysis

All analyses were conducted using R language (https://www.
r-project.org/). Differences between T2D and healthy groups
were compared by Wilcoxon test. Statistical data of the qRT-
PCR experiment was analysed using Unpaired t-test and
shown as mean ± standard deviation (SD) using GraphPad 5.

If not specified above, p < 0.05 was regarded as statistically
significant.

3 Results

3.1 Results for the hypoxia-related DEGs in
GSE184050 cohorts

Theworkflow diagram of the current studywas displayed in Figure 1.
There were 3822 DEGs and 493 DELs between T2D and control samples
identified in the analysis of the GSE184050 dataset. Among 3822 DEGs,
1950 genes were upregulated, but 1872 genes were downregulated in T2D
samples compared to the control samples (Figure 2A; Supplementary
Table S1). In addition, among 493 DELs, 461 lncRNAs were upregulated,
while 32 lncRNAs were downregulated in T2D samples (Figure 2B;
Supplementary Table S2).We plotted the heatmaps of top 200 DEGs and
DELs in the GSE184050 dataset, respectively (Figures 2C, D). Then, we
obtained 38 hypoxia-related DEGs through the intersection of the
196 hypoxia-related genes and the 3822 DEGs (Figure 2E;
Supplementary Table S3).

3.2 Hypoxia-related DEGs were associated
with the activation of “response to oxygen
levels” and “glycolysis/gluconeogenesis”

The functional enrichment analyses of GO and KEGG were
conducted to investigate the possible biological functions of

TABLE 1 Primers for qRT-PCR used in the current study.

Primer Sequence

IER3-F FCAGCCGCAGGGTTCTCTAC

IER3-R RGATCTGGCAGAAGACGATGGT

AMPD3-F FCCACCGGGACTTCTATAACGT

AMPD3-R RGTCAGGCTCCGTCTGGTATGT

Internal reference GAPDH-F ACAACTTTGGTATCGTGGAAGG

Internal reference GAPDH-R GCCATCACGCCACAGTTTC

FIGURE 1
The workflow diagram of the current study.
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these 38 hypoxia-related DEGs. We obtained 59 KEGG
pathways and 1230 GO entries [including 1,145 biological
processes (BP), 63 cell components (CC) and 22 molecular
functions (MF)]. The results revealed that in the BP category,
the hypoxia-related DEGs were mainly associated with “pyruvate
metabolic process,” “glucosemetabolic process,” and “response to oxygen
levels.” As for CC, these hypoxia-related DEGs were mainly correlated
with “cytoplasmic vesicle lumen,” “peroxisomal matrix,” and “vesicle
lumen.” From the MF, these hypoxia-related DEGs were significantly
related to “monosaccharide binding,” “growth factor binding,” and
“ubiquitin protein ligase binding” (Figure 3A). According to the
KEGG analysis, these hypoxia-related DEGs were significantly
enriched in “glycolysis/gluconeogenesis,” “pentose phosphate
pathway,” and “biosynthesis of nucleotide sugars” (Figure 3B).

3.3 Seven hypoxia-related hub genes were
identified through the LASSO and SVM-RFE
algorithms

These 38 hypoxia-related DEGs were analysed by using the
LASSO and SVM-RFE algorithms to explore the hub genes. The
LASSO algorithm revealed that 16 genes have been identified as
signature genes (Figures 4A–C). Besides, we evaluated these
38 hypoxia-related DEGs and 15 signature genes were obtained
by using the SVM-RFE algorithm (Figure 4D). There were
7 overlapping genes (IER3, CDKN1A, KLF6, AMPD3,
SCARB1, VHL and PRDX5) obtained through the
intersection of these two algorithms (Figure 4E).

3.4 Six differentially infiltrated immune cells
were identified in GSE184050

To evaluate abundance of immune infiltrates, xCell
algorithm was used to depict the immune and stromal cell
landscapes of T2D and healthy samples in the
GSE184050 dataset. Figure 5A showed the proportions of
immune cells and stromal cells for each samples. It can be
found that cDC, eosinophils, iDC, MEP, osteoblast and smooth
muscle expressed differently between T2D and healthy samples
through Wilcoxon test (Figure 5B).

3.5 Identification of immune-related genes
through WGCNA

The sample clustering tree of all samples in the
GSE184050 dataset showed there were no outliers
(Figure 6A). The scale independence reached 0.8 when the
soft threshold was set at 7 (Figure 6B). After determining the
soft threshold, we set the minimum module size at 100, the cut
height at 0.3 and then 12 gene co-expression modules were
established (Figure 6C). We correlated modules with
differentially expressed immune and stromal cells and the

results showed that lightyellow module was significantly
correlated with cDC and the correlation coefficient was 0.74.
It was also significantly correlated with smooth muscle and the
correlation coefficient was 0.9. Therefore, we regarded the
2,596 mRNAs in the lightyellow module as the immune-
related genes (Figures 6D, E).

3.6 AMPD3 and IER3 were identified as the
hypoxia-immune-related hub genes

Venn diagram showed AMPD3 and IER3 were hypoxia-
immune-related hub genes in T2D, through the intersection of
2,596 immune-related genes and 7 hypoxia-related hub genes
(Figure 7A). Moreover, the results of GSEA analysis between
these genes in the high- and low-expression groups of hypoxia-
immune-related hub genes showed that the KEGG pathways of
genes in high-expression groups of AMPD3 and IER3 were
mainly enriched in “glycosaminoglycan degradation,”
“amyotrophic lateral sclerosis,” “nicotinate and nicotinamide
metabolism” and “vasopressin-regulated water reabsorption,”
while the genes in low-expression groups of AMPD3 and IER3
were mainly in “RNA degradation” and “nucleotide excision
repair” (Figures 7B, C). Meanwhile, the results of genes in high-
expression groups of AMPD3 and IER3 revealed that the BP
were mainly enriched in “positive regulation of macrophage
differentiation,” “regulation of synaptic vesicle recycling,”
“miRNA metabolic process” and “cell death in response to
hydrogen peroxide,” the genes in low-expression groups were
significantly associated with “rRNA methylation” and
“methylguanosine cap decapping” (Figures 7D, E). As for
CC, the significantly enriched terms in high-expression
groups of AMPD3 and IER3 were “septin cytoskeleton,”
“actomyosin,” “ribonucleoprotein granule” and
“transcription repressor complex,” but the genes in low-
expression groups were closely associated with “small
subunit processome” and “COP9 Signalosome” (Figures 7F,
G). The significantly enriched MF terms in high-expression
groups of AMPD3 and IER3 included “nuclear localization
sequence binding,” “antioxidant activity,” “ubiquitin-like
protein conjugating enzyme binding” and “ubiquitin
conjugating enzyme binding,” while the low-expression
groups were closely correlated with “snoRNA binding” and
“ribosomal small subunit binding” (Figures 7H, I).

3.7 Validation of AMPD3 and IER3 in different
online cohorts and clinical samples

In addition, the GSE184050 and GSE95849 datasets were
utilized to verify the expression of AMPD3 and IER3 between
T2D and healthy groups. The expression results of these two
hub genes were demonstrated in Figures 8A, B, respectively.
Both the IER3 and AMPD3 were highly expressed in the T2D
groups compared with normal samples. And meanwhile, the
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FIGURE 2
Identification of the hypoxia-related differentially expressed mRNAs (DEGs). (A) Volcano plot of DEGs between type 2 diabetes and control subjects
in the GSE184050 dataset, with the screening criteria of |log2FC| > 0.1 and p < 0.05. (B) Volcano plot of differentially expressed lncRNAs (DELs) between
type 2 diabetes and control subjects in the GSE184050 dataset, with the screening criteria of |log2FC| > 0.1 and p < 0.05. (C)Heatmap of top 200 DEGs in
the GSE184050 dataset. (D)Heatmap of top 200 DELs in the GSE184050 dataset. (E) Venn diagram of the intersection of the hypoxia-related genes
and the DEGs.

FIGURE 3
Functional enrichment analyses for the hypoxia-related DEGs. (A) Bar chart of the enriched Gene Ontology (GO) terms. (B) Bubble chart of the
activated Kyoto Encyclopedia of Genes and Genomes (KEGG) terms.
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qRT-PCR results for 10 normal and 10 T2D blood samples
indicated the expression of IER3 was consistent with the
bioinformatic results (Figure 8C; Table 2), but the expression
of AMPD3 was lower in T2D samples than that in controls
(Figure 8D; Table 2).

3.8 The key lncRNAs and TFs targeting
AMPD3 were predicted

Eventually, a lncRNA-TF-mRNA network was constructed to
explore the molecular mechanism of T2D-related lncRNA.
1,665 human TFs were obtained from the database, 493 DELs,
1,665 human TFs and 2 hypoxia-immune-related hub genes
(AMPD3 and IER3) were used to establish the regulatory
network. It can be found from the lncRNA-TF-mRNA network
(Figure 9) that 3 lncRNAs (BACH1-IT1, NPTN-IT1 and
LINC02362) were upregulated while 1 lncRNA (SNHG15) was
downregulated, and they might make the AMPD3 upregulated
through inducing the expression of the corresponding TFs such
as TFAM, CBFB and THAP12.

4 Discussion

Type 2 diabetes is a metabolic disease characterized by abnormal
glucose metabolism. Insulin resistance is the core link of its
development, and obesity is the main inducement. Adipose
hypoxia is one of the early manifestations of obesity,
accompanied by secretion changes of cytokines and fatty acids

(Lolmède et al., 2003). In addition to causing adipose tissue
inflammation and insulin resistance, these factors can also affect
the insulin sensitivity of skeletal muscle and liver through blood
circulation, leading to systematic insulin resistance (Sears et al.,
2009), and further aggravating glucose metabolism disorder.

We used bioinformatic methods to preliminarily explore and
screen the hypoxia-immune-related hub genes associated with
diabetes and validated them in human subjects. Adenosine
monophosphate deaminase 3 (AMPD3) and immediate early
response 3 (IER3) genes were found to be hub genes of hypoxia-
immunity in T2D. AMPD3 encodes AMP deaminase 3, which
catalyzes the first and rate-limiting-step of the purine nucleotide
cycle (PNC). Purine nucleotide cycling deaminates amino acids to
produce α-ketoglutaric acid, which further participates in
metabolism. Previous publications have shown that
overexpression of AMPD3 predisposes skeletal muscles to use
lipids instead of glucose for energy, causing insulin resistance
and glucose intolerance and insulin resistance process could be
aggravated by systemic and tissue-specific alterations of lymphocyte
(Hong et al., 2009; Ip et al., 2015). In addition, AMPD3 in
erythrocytes catalyzes AMP into IMP if AMPD3 is overexpressed,
and it accelerates these biochemical reactions and lowers AMP
levels. Previous studies of the obese rat model of T2D have
shown that the upregulated protein levels of AMPD3 could
impair cardiac energy by targeting ATP depletion and systolic
dysfunction (Tatekoshi et al., 2018; Igaki et al., 2021; Ogawa et al.,
2023). In this study, the results in the online datasets were
consistent with previous studies that the AMPD3 gene was
upregulated in T2D samples. Similarly, it was also reported
that the activation of the amyotrophic lateral sclerosis and

FIGURE 4
Identification of hypoxia-related hub genes. (A–C) Result of the Least Absolute Shrinkage and Selector Operation (LASSO) algorithm (λ =
0.02110191). (D) Result of the Support Vector Machine-Recursive Feature Elimination (SVM-RFE) algorithm. (E) The overlap of genes from the two
algorithms.
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glycosaminoglycan degradation signal pathways in the GSEA
results of AMPD3 could be due to the increased expression of
AMPD3 (Miller et al., 2021), indicating that the crutial
significance of the over-expression of AMPD3 in T2D
progression. However, the results of qRT-PCR for peripheral
blood samples with T2D and found that AMPD3 expression

was downregulated in T2D samples. Considering the
consistency of sample sources both in online databases and the
qRT-PCR experiments, the paradox of AMPD3 expression might
be attributed to the small sample size in clinical experiments. For
this, we will further explore the expression changes and
underlying mechanism of AMPD3 in T2D progression by

FIGURE 5
Immune infiltration analysis. (A) Histogram of 64 immune and stromal cells score through the xCell algorithm. (B) Boxplot for the differentially
infiltrated immune cells and stromal cells between T2D and healthy groups using Wilcoxon test, *p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 6
Construction of weighted correlation network analysis (WGCNA) for key modules. (A) The sample clustering tree of all samples in the
GSE184050 dataset.(B) Analysis of network topology for various soft-thresholding powers through the “pickSoftThreshold” function, including the scale-
free fit index (left) and the mean connectivity (right). (C) Result of clustering dendrogram of genes with different module colors. (D) The correlation
heatmap between the modules and the differentially infiltrated immune cells. (E) Correlation scatter plots of module membership (MM) and gene
significance (GS) for the lightyellow module.
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collecting more clinical samples in the future. Moreover, the
decrease of AMP level leads to the decrease of ATP level,
which reduces the P50 value of erythrocytes and increases the
affinity of erythrocytes for oxygen, thus reducing oxygen delivery
to tissues and leading to the occurrence of tissue hypoxia (O’Brien
et al., 2015). Previous researches have shown that hypoxia can
increase the expression of hypoxia-inducible factor-1α (HIF-1α)
in many human tissues (Lemus-Varela et al., 2010), and
intermittent hypoxia can increase the production of reactive
oxygen species (ROS) in mitochondria (Wang et al., 2013).
The level of ROS in cells depends on the balance of oxidases
and antioxidant enzymes. NADPH oxidase (NOx4) is the major
oxidase of pancreatic β cells (Mahadev et al., 2004), and HIF-1A
increases ROS production by activating NOx4 (Diebold et al.,
2010). Continuous ROS production may contribute to excessive
insulin secretion, further resulting in β cell dysfunction (Anvari
et al., 2015). Mitochondrial ROS may also trigger the activation of
pro-inflammatory signaling pathway, especially, it induces the
activation of redox sensitive transcription factors, such as nuclear
factor κB (NF-κB). NF-κB contributes to the production of pro-
inflammatory cytokines, including IL-1 and IL-8 (Patergnani
et al., 2021), which further influence glucose metabolism.

IER3 is an early stress-inducing gene and a direct downstream
transcription target of NF-κB (De Keulenaer et al., 2002). It plays an
important role in regulating apoptosis and controlling the
heterogeneity of immune cells (Zhang et al., 2003; Shen et al.,
2006). Macrophages are a major cause of obesity-related
inflammation. Adipose macrophages, which switch from anti-
inflammatory alternative activated macrophages (AAM) to pro-
inflammatory classical activated macrophages (CAM), is
important in obesity-related inflammation (Arkan et al., 2005;
Lumeng et al., 2007). The high expression of IER3 in
macrophages can promote the transformation of macrophages
from AAM to CAM, and promote the occurrence of obesity-
related inflammation. Hong et al. (2017), report that increased
AAMs and reduced inflammation in Ier3−/− mice may contribute
to improved insulin sensitivity in these mice. In conclusion, IER3
may affect glucose metabolism through obesity-related
inflammation.

In this study, 38 hypoxia-related DEGs were functionally
enriched by GO and KEGG. Pyruvate is the final product of
glucose anaerobic glycolysis. Peroxisomes are ubiquitous in all
types of cells in eukaryotes, and its signature enzyme is catalase,
a type of ROS scavengers, which hydrolyzes hydrogen peroxide to

FIGURE 7
Gene Set Enrichment Analysis (GSEA) of hypoxia-immune-related hub genes. (A) Venn diagram by intersecting 2,596 immune-related genes and
7 hypoxia-related hub genes. (B,C) The results of GSEA analysis between all genes in the high- and low-expression groups of hypoxia-immune-related
hub genes. (D,E) The results of GSEA analysis in high-expression groups of AMPD3 and IER3. (F,G) The significantly enriched biological processes (BP)
terms in high-expression groups of AMPD3 and IER3. (H,I). The significantly enriched molecular functions (MF) terms in high-expression groups of
AMPD3 and IER3.
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protect cells. If hydrogen peroxide exceeds the catalase catalytic
capacity, cell damage can be caused. Insulin, which is synthesized by
the islet β cells, is packaged in vesicles and shipped out of the cell,
and instability of this system can cause diabetes. The intermediate
products of glycolysis can enter the pentose phosphate pathway to
generate pentose, which provides raw materials for the synthesis of
ribonucleotide. The abnormality of these pathways will affect
glucose metabolism.

Our final lncRNA-TF-mRNA network contains four lncRNAs,
which are BACH1-IT1, NPTN-IT1, LINC02362 and SNHG15. So
far, no relevant studies have been found on lncRNA BACH1-IT1 in
any diseases. NPTN-IT1 is a recently identified lncRNA, located on
chromosome 15q24.1, which has a low expression level in tumor
tissues and can inhibit the growth and metastasis of hepatocellular
carcinoma, lung adenocarcinoma (Yang et al., 2013; Liu et al., 2016),

nasopharyngeal carcinoma and cervical cancer (Jiang et al., 2015;
Sun et al., 2015). LINC02362 is associated with better prognosis of
HCC patients, and inhibits the survival, migration and invasion of
HCC cells and epithelial interstitial transformation (EMT) (Li et al.,
2022b). Although there is no relevant study on the above lncRNANs
in diabetes, it is well known that hypoxia is an important feature of
tumor microenvironment, and the above lncRNAN regulates tumor
growth through hypoxia related pathways, and may also affect
glucose metabolism through hypoxia related pathways. However,
further laboratory studies are needed to verify this. In addition,
SNHG15 is an IL-4-induced macrophage LncRNA that uniquely
inhibits K63 linked TRAF2 ubiquitination, thereby promoting
M2 macrophage polarization and alleviating inflammatory
response after stroke (Sun et al., 2022). In conclusion,
SNHG15 is a negative regulator of inflammation, and its
expression is downregulated in patients with type 2 diabetes,
which may be related to the high level of inflammation in type
2 diabetes.

Our findings provide a new perspective and lay the
foundation for future studies on the potential role of
hypoxia-immune genes in T2D. Altogether, this study
provides a novel reference for the follow-up exploration of
the molecular mechanism of lncRNA in the progression of T2D

FIGURE 8
Validation of hypoxia-immune-related hub genes in T2D and healthy groups. (A) The expression patterns of AMPD3 and IER3 in the GSE184050. (B)
The expression patterns of AMPD3 and IER3 in the GSE95849. (C, D) The qRT-PCR was used to varify the expression of two hub genes in blood
lymphocytes that were extracted from 10 normal samples and 10 T2D samples. Unpaired t-test was performed to analysed the difference significance,
and the results were presented as means ± standard deviation (SD), *p < 0.05, **p < 0.01, ***p < 0.001.

TABLE 2 Statistics result of hub genes by qRT-PCR.

Con T2D t, df p

IER3 1.0355 ± 0.2313 1.3730 ± 0.1027 t = 4.217 df = 18 0.0005

AMPD3 1.4265 ± 1.1501 0.3590 ± 0.2950 t = 2.380 df = 15 0.031
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and provides a new reference for potential immunotherapy
targets. We will continue to focus on the role of these genes in
T2D based on more basic experiments that target potential
pathways.
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