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1 Introduction

The genomic data deluge has led to challenges with sharing and integrating genomic
data. While substantial effort has been devoted to making genomics data easier to share, one
challenge that has received little attention is the related goal of sharing genomicmetadata, or
attributes of biological samples. Genomic metadata is distinct from genomic data in many
important ways that affect the optimal way to share it. Here, we outline several challenges
specific to sharing metadata associated with genomic data. We argue that sharing genomic
metadata is an important and underserved area in genomics, and that addressing this
strategically could lead to alternative sharing paradigms with potentialto improve the overall
computational genomics ecosystem.

2 What is metadata in genomics?

While much effort has been placed on the idea of sharing genomic data, it is helpful to
distinguish between genomic data and metadata. In genomics, data is generally produced by
a DNA sequencer, whereas metadata describes the sample from which these sequences were
derived. Genomic data is inherently sample-centric: most genomic data is naturally derived
from a biological sample. The attributes of these samples comprise the metadata. Metadata
can be categorized into several types (Figure 1A): 1) inherent attributes describe essential
characteristics of a sample, such as species or cell line; 2) experimental attributes describe
processing features, such as treatments, experimental conditions, or library preparation
protocols; finally, 3) analytical attributes describe inputs or outputs to data analysis, such as
parameters or reference genome used. For example, in an RNA-seq experiment, the
metadata may include inherent attributes like the sample cell type (K562), experimental
attributes like treatment (DMSO), and analytical attributes like paths to data stored in .fastq
files.

3 Why distinguish metadata from data?

Broad discussions of sharing genomic data do not always distinguish metadata from the
data itself. This ignores important differences that affect the challenges and opportunities for
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sharing. The characteristics of the data and metadata are different
enough that the two warrant different strategies for sharing. Three
relevant differences with important sharing implications are 1) size;
2) source; and 3) use case. Each of these differences has important
implications that change the optimal strategy for sharing
(Figure 1B).

3.1 Data size

One of the major challenges in sharing genomic data is size. In
fact, this is a driving factor that is shaping our sharing strategies and
driving huge investments in infrastructure (Schatz et al., 2021;
Sheffield et al., 2022). However, metadata is typically much
smaller than the data it describes. While genomic data may
contain many thousands of sequencing reads for a single sample,
the metadata for the same sample might only require a few simple
annotations. As such, although it makes sense to avoid data transfer
by bringing compute to the data for large genomic datasets (Schatz
et al., 2021), this argument simply doesn’t apply to metadata, which
is relatively cheap to duplicate and distribute. Lumping the two
together therefore creates unnecessary barriers to metadata sharing.

3.2 Data source

Another important difference between data and metadata is that
metadata is typically created and curated by humans, rather than by
machines. Genomic data is overwhelmingly generated by high-
throughput sequencers, which have matured to the point of
producing standardized file formats which are computer-friendly
from the beginning. The primary creator and consumer of these files
is machines, as it is impractical for humans to manually explore
hundreds of millions of genome fragments. This machine-centric

quality creates a self-regulating standardization process for genomic
data. In contrast, metadata is more frequently created and consumed
by humans. This drastically increases the diversity of metadata,
which makes it more challenging to consume, integrate, and analyze
by computer. While sequences can all be integrated and processed
similarly by software, metadata cannot. This leads to metadata-
specific challenges in sharing.

3.3 Data use case

Finally, another key sharing-related difference between genomic
data and metadata is how it is used. Of course, both data and
metadata are likely required for any type of re-analysis, but metadata
also has an additional specific use case: it is required for finding the
data of interest in the first place. A search for data of interest is likely
to need access to metadata in order to determine whether the data is
relevant. Finding relevant data requires sifting through lots of
potentially irrelevant datasets. As a result, metadata will be much
more frequently viewed than data, making it even more important
for sharing metadata to be simple, easy, fast, and cheap.

4 Challenges to sharing genomic
metadata

Given the distinctions between data and metadata, it is clear that
sharing metadata warrants a dedicated strategy. This strategy should
address challenges specific to sharing metadata, which can be
grouped into 6 areas: 1) standardizing terms; 2) standardizing
formats; 3) distribution; 4) findability; 5) versioning; and 6)
portability. These challenges span the life-cycle of metadata use,
including discovery, access, harmonization, and processing
(Figure 1C).

FIGURE 1
Challenges to sharing genomic metadata. (A) Biological sample metadata can be classified by type of attribute. (B) Metadata and data have distinct
characteristics that affect sharing strategy. (C) Challenges in sharing metadata can be found along a process of retrieving data, from discovery to
processing. The solutions column offers some recent or future work to address the challenges. (D) A lumped model puts data together with metadata; a
divided model tailors services to the unique features of each. (E) Metadata from different sources may have different structure, making integration
difficult.
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4.1 Findability

The first step to reusing data is finding it. However, because
metadata are not centralized, but scattered across various servers
and databases, finding relevant data can be a challenge. In addition
to the general challenge of multiple sources to find data, the problem
is exacerbated by the inability for computers to parse and index
some metadata, such as PDFs or Excel files. Finally, authorization
barriers inhibit findability. Though there has been some effort to
create centralized search frameworks or open API-oriented systems
(Canakoglu et al., 2019), existing tools are still covering only a small
amount of the possible search space. Moreover, advances in natural
language search indicate an exciting future that could use machine
learning models to retrieve relevant research data (Lee et al., 2019).

4.2 Distribution

Distribution of genomic metadata is also a challenge. The
status quo is ad hoc; there are a variety of different distribution
mechanisms, and none is particularly machine-friendly. Much
genomic metadata is deposited onto data-oriented databases,
such as GEO or dbGap, where metadata is notoriously difficult
to process, leading to a variety of dedicated tools for that purpose
(Davis and Meltzer, 2007; Chen et al., 2019; Gumienny, 2019;
Choudhary, 2019; Ewels et al., 2020; Cannizzaro et al., 2021;
Gálvez-Merchán et al., 2022; Garcia et al., 2022; Khoroshevskyi
et al., 2023). Distribution is sometimes intentionally restricted on
the basis of privacy. Some patient attributes are protected,
requiring authorization barriers, which make it harder to
share. Furthermore, even for unrestricted attributes or cell-line
data, metadata may be deposited under the same access
restrictions as the data itself for convenience, because the
repository may not be set up to separate the two (Figure 1D).
This convenience violates a tenet of the FAIR philosophy, that
metadata should be accessible even if the data itself has restricted
access (Wilkinson et al., 2016). To fulfill this could require
separating protected from public characteristics for some
datasets. Another common distribution mechanism is through
attached to journal publications, but this is highly non-standard
and is not amenable to easy meta-analysis or reuse. One attempt
at making genomic metadata easier to distribute and parse is the
GenoMetric Query Language (GMQL), a declarative language
that provides abstractions of experimental, biological, and clinical
metadata (Masseroli et al., 2015). Modern authentication
advances are making it easier to provide granular controlled
access. Coupled with advances in API infrastructure, the stage
is set for a next-generation of API-based, machine-friendly, data
distribution services with granular access provision (Sheffield
et al., 2022).

4.3 Terminology

A major challenge to sharing and re-using genomic metadata
is that terms must match (Xue et al., 2023). One way to address
this challenge is with ontologies. Ontologies provide vocabularies
with controlled terms and definitions. They may also provide

information about relationships among those terms. Creating
ontologies is labor-intensive and requires coordination and
community, but fortunately, many ontologies already exist for
a variety of biomedical use cases (Smith et al., 2007; Hoehndorf
et al., 2015; Malladi et al., 2015; Bandrowski et al., 2016).
Unfortunately, in practice, researchers do not necessarily use
existing ontologies (Fung and Bodenreider, 2019). One barrier is
that the benefits of ontologies may become most apparent only in
integrative meta-analysis. Therefore, for an individual study, an
ontology may be viewed as merely added cost.

We can address this in two ways: either reducing the cost or
increasing the value of using an ontology for individual studies.
Reducing the cost means lowering the barrier to using controlled
terms. There is an opportunity for tools that make it more user-
friendly to use an ontology by suggesting controlled terms or
mapping existing ontologies while metadata is being created. On
the other side, we could approach the problem by adding value to
an individual study that uses controlled terms. For instance, we
could promote tools that will automatically integrate a new result
with external data, even if this is not the primary analysis of the
study. One example is gene identifiers: even for a standalone
study, researchers want to analyze results in the context of
existing public resources, so they must use standardized gene
names. Work that develops both standards and annotated
datasets for specific data types could encourage others to
adopt those standards, such as projects to standardize
genomic interval set metadata (Gundersen et al., 2021; Xue
et al., 2023). Another possibility is to use machine learning
approaches to standardize terminology post hoc (Cannizzaro
et al., 2021).

4.4 Structure

It is not sufficient for two studies to use the same ontology and
share controlled terms; they must also structure the data in the same
way. Genomic metadata frequently adopts a tabular form, with rows
corresponding to samples or files, and columns corresponding to
attributes of the samples or files. However, genomic metadata may
also adopt schema-less, document-based file formats. Furthermore,
sample attributes are sometimes encoded in less machine-friendly
ways, such as using text formatting or color to mark samples in
Microsoft Excel files. Making metadata machine-understandable is a
difficult challenge. Even if file formats and general structures are
consistent, subtle differences may prevent integration. For example,
CSV files can be one row per sample, or one row per file, or one row
per sequencing lane (Figure 1E). These distinctions make sample
tables non-interoperable, which in turn makes it difficult or
impossible to integrate, hindering integrative re-analysis of data.
Several attempts have been made to address this issue in general,
such as ISA-tab (Sansone et al., 2012), the PEP framework (Sheffield
et al., 2021), and META-BASE (Bernasconi et al., 2020). Another
way to improve structural interoperability is to improve tooling for
validating metadata against schemas. Projects such as JSON-schema
(Pezoa et al., 2016), Schema Salad (Crusoe et al., 2022), and LinkML
(Moxon et al., 2021) are building required infrastructure, but more
work is needed before these become widely used for biomedical
research data.
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4.5 Versioning and identification

Metadata can change. Inherent and experimental attributes are
mostly stable but may be edited or added. Furthermore, analytical
attributes are frequently added to a metadata table as analysis
progresses. Despite clear mutability, metadata tables are often
treated as static. Version control is well established for code and
has a diverse and multifaceted history for data as well (Klump et al.,
2021), but the question of versioning metadata specifically is
distinct. A common strategy for versioning sample metadata is to
use tools built for code versioning, such as git. However, the fit is not
perfect; the line-based nature of git and other code version control
systems is less suited to a sample table which may have long lines. A
more tailored approach would use a table-cell-based framework, but
a bespoke tool for table versioning does not exist. In lieu of this, a
common approach is to develop a protocol for recording revisions,
typically involving incrementing version numbers in file names
(Lawniczak et al., 2022). Also common is to simply not version
control metadata. There are clear opportunities for innovation, new
standards, and tool development to support the specific needs of
metadata versioning.

4.6 Portability

A final challenge dealing with sample metadata is its portability.
By portability, we mean whether relevance is retained if the data or
metadata are moved to a different computing environment.
Metadata often changes locations. e.g., from one collaborator’s
computer to another, from a high-performance computing
environment to a web repository to a laptop. In this process,
some attributes lose their relevance: Although inherent and
experimental attributes tend to be portable, many analytical
properties are not. For example, sample tables often include file
paths, but paths typically refer to a specific computing environment.
Another example is properties used as input to a pipeline. For
instance, the reference genome used is often included as an attribute
in a table; however, it not a property of a sample itself, but of a
particular analysis. If the sample table is reprocessed, this attribute
changes. This distinction between portable and non-portable
metadata is typically ignored, so genomic metadata includes both
in a single table, which renders the table specific to a computing
environment and thereby reduces its portability. This problem
motivated the Portable Encapsulated Project framework (Sheffield
et al., 2021), which allows environment-specific settings to be
extracted from the same table into a configuration file that can
change with the environment. There is opportunity for new
approaches to conceptualize sample attributes in ways to
acknowledge this portability problem to treat metadata attributes
according to their portability.

5 Discussion

Large efforts targeted at standards for genomics data are
underway, and helping to improve interoperability of genomic data
(Field et al., 2011; Rehm et al., 2021; Velde et al., 2022). Relatively less
effort has been focused on metadata specifically; yet genomic
metadata differs enough from the data itself to warrant a specific
sharing strategy. Metadata-specific challenges include findability,
distribution, terminology, structure, identification, and portability;
perhaps the greatest challenge to sharing metadata is caused by the
overwhelming complexity introduced by its human-curated nature.
Addressing these challenges will be critical to improve the
interoperability of sample metadata—and interoperability, in turn,
is a driver for integration and re-use. Only by solving this challenge
will we be able to benefit from the knowledge that emerges from large-
scale, systematic data integration. Of course, metadata sharing is just
the beginning; important challenges remain with sharing the data
itself. Nevertheless, our attempts to integrate data will remain limited
until we address the challenges at metadata level that warrant specific
attention.
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