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Introduction: Stroke, of which ischemic stroke (IS) is the major type, is the second
leading cause of disability and death worldwide. Circular RNAs (circRNAs) are
reported to play important role in the physiology and pathology of IS. CircRNAs
often act as competing endogenous RNA (ceRNA) to regulate gene expression by
acting as miRNA sponges. However, whole transcriptome-wide screenings of
circRNA-mediated ceRNA networks associated with IS are still lacking. In the
present study, we constructed a circRNA-miRNA-mRNA ceRNAnetwork bywhole
transcriptome-wide analysis.

Methods: CircRNAs, miRNAs and mRNAs expression profiles were downloaded
from the Gene Expression Omnibus (GEO) datasets. We identified differentially
expressed (DE) circRNAs, miRNAs, and mRNAs in IS patients. StarBase and
CircBank databases were used to predict the miRNA targets of DEcircRNAs,
and mirDIP database was used to predict the mRNA targets of DEmiRNAs.
CircRNA-miRNA pairs and miRNA-mRNA pairs were established. Then, we
identified hub genes via protein-protein interaction analysis and constructed a
core ceRNA sub-network.

Results: In total, 276 DEcircRNAs, 43 DEmiRNAs, and 1926 DEmRNAs were
explored. The ceRNA network included 69 circRNAs, 24 miRNAs, and 92
mRNAs. The core ceRNA subnetwork included hsa_circ_0011474, hsa_circ_
0023110, CDKN1A, FHL2, RPS2, CDK19, KAT6A, CBX1, BRD4, and ZFHX3.

Discussion: In conclusion, we established a novel hsa_circ_0011474 - hsa-miR-
20a-5p/hsa-miR-17-5p - CDKN1A ceRNA regulatory axis associated with IS. Our
findings provide new insights into the pathogenesis of IS and offer promising
diagnostic and predictive biomarkers.
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1 Introduction

Stroke is the leading cause of permanent disability (Diener and Hankey, 2020). The
latest global burden of disease (GBD) study (GBD 2019 Diseases and Injuries Collaborators,
2020) indicated that stroke is the leading cause of death in the Chinese population. The
overall lifetime risk of stroke in China was 39.9%, ranking first worldwide. Ischemic stroke
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(IS) is one of the two major subtypes of strokes, accounting for
approximately 80% of all subtypes of strokes (Wang et al., 2017),
and is the focus of stroke prevention and treatment. At present,
stroke diagnosis mainly relies on clinical symptoms and medical
imaging technology. Thrombolytic therapy is the most effective
treatment for acute IS (AIS). However, the time window for
therapy is narrow, and most patients do not exhibit typical
imaging changes in time. Missing this therapeutic window may
lead to irreversible brain damage (Herpich and Rincon, 2020;
Phipps and Cronin, 2020). Therefore, the emergence of
biomarkers for the diagnosis and prediction of IS has come to
fruition.

These biomarkers include numerous IS susceptibility genes,
such as matrix metalloproteinase-9 (MMP-9) (Singh et al., 2018;
Lorente et al., 2019), C-reactive protein (CRP) (Kitagawa et al.,
2017), and metabolic intermediate plasma homocysteine (Hcy)
(Chen et al., 2017). However, protein-coding regions represent
only 1.5%–2% of the human genome, and the non-protein-coding
portion of the genome is of crucial functional importance for
normal development and physiology, as well as diseases (Esteller,
2011). MiRNAs, one kind of non-conding RNA (ncRNA), have
been reported that play crucial role in IS. MiR-145, miR-424, and
miR-223 were differentially expressed in patients with is (Zhu
et al., 2014). Previous studies have explained that there were many
miRNAs involved in the post-transcriptional regulation of Nrf2,
and 85 miRNAs can bind to cytoplasmic Nrf2 and affect its
translation (Papp et al., 2012). MiR-93 inhibited the expression
of Nrf2 and heme oxygenase-1 (HO-1) by targeting Nrf2 (Wang
et al., 2016). The Nrf2/HO-1 pathway was an important cellular
defense mechanism against oxidative stress induced by ischemia/
reperfusion (Jiang et al., 2017). Circular RNAs (circRNAs),
another kind of ncRNA, have unique covalently-closed
structures, which are insensitive to nucleic acid exonucleases
and confers relative higher pharmaceutical stability compared to
other linear RNAs, such as miRNAs and mRNAs. Additionally,
circRNAs are conserved across species. Therefore, circRNAs have
obvious advantages as clinical diagnostic biomarkers. CircRNAs
have been reported to play important role in the physiology and
pathology of IS. A study found that the expression of circFUNDC1
(hsa_circ_0007290) increased in patients with AIS, and it
combined with other circRNAs, with a specificity of 91% and a
sensitivity of 71.5% in the diagnosis of AIS (Zuo et al., 2020).
Meanwhile, Bai et al. found that the expression level of
circFUNDC1 was increased in serum exosomes of patients with
AIS (Bai et al., 2022).

CircRNAs often act as miRNA sponges to regulate gene
expression, and circRNA-miRNA-mRNA can be called ceRNA
network. The ceRNA network has garnered significant attention
in the academic community in recent years, representing a novel
paradigm of gene expression regulation. In comparison to the
regulatory networks involving individual RNA molecules, the
ceRNA regulatory network is characterized by its intricacy and
complexity. The ceRNA network establishes connections between
the gene expression modulation of mRNAs and non-coding RNAs
such as circRNAs, miRNAs, and lncRNAs, thereby facilitating a
more profound and comprehensive understanding of the roles
played by non-coding RNAs in critical biological phenomena,
including cellular development and the molecular mechanisms

underlying diseases. Among them, the ceRNA mechanism of IS-
associated circRNAs has been extensively investigated. The ceRNA
network guided by circRNAs typically satisfies the following
conditions: circRNAs can act as “sponges” for endogenous
miRNAs by possessing miRNA response elements or binding
sites, thereby regulating the interaction between miRNAs and
their target mRNAs (Kristensen et al., 2019). Thus, circRNAs can
regulate mRNA expression and protein levels through ceRNA
networks. These networks contain clues to the pathogenesis of IS,
and the circRNA-related ceRNA networks associated with IS may
serve as potential therapeutic targets. For example, circHECTD1 was
overexpressed in plasma samples from mouse stroke models of
transient middle cerebral artery occlusion (tMCAO) and patients
with AIS. CircHECTD1 overexpression increased the risk of IS via
miR-142/TIPARP (Han et al., 2018). In addition, Chen et al. found
that circUCK2 was involved in IS regulation through the circUCK2/
miR-125b-5p/GDF11 functional network (Chen et al., 2020a).
Another study found that circSHOC2 regulated autophagy and
acted on the miR-7670-3p/SIRT1 axis (Chen et al., 2020b),
thereby inhibiting neuronal apoptosis and reducing neuronal
damage.

The above studies employed sequencing analyses of
individual circRNAs and predictions of target miRNAs and
mRNAs, and their results were possibly subject to a certain
degree of artificial bias. To address this point, we screened the
circRNA, miRNA, and mRNA expression profiles of patients
through the National Center for Biotechnology Information
Gene Expression Omnibus (GEO) database via integrated
analysis, constructed an IS-associated ceRNA network which
included 69 circRNAs, 24 miRNAs, and 92 mRNAs. We
analyzed and validated the core sub-network of the ceRNA
network to obtain promising diagnostic biomarkers for IS.
This network will facilitate the identification of new treatment
targets. The flow chart illustrating the steps of the whole analysis
was shown in Figure 1.

2 Materials and methods

2.1 Data preparation

We downloaded circRNA, miRNA, and mRNA expression
profile datasets from the public GEO database (http://www.ncbi.
nlm.nih.gov/geo/). The circRNA data were obtained from
GSE133768, which included data from plasma samples collected
within 72 h of symptom onset from 3 IS patients and 3 healthy
controls (HCs). This data was sequenced on the GPL21825 platform
using Agilent Arraystar Human CircRNA microarray V2, and
10,799 probes were yielded. MiRNA data were downloaded from
GSE110993, which included data from samples collected from
20 patients with IS and 20 HCs. Platelet-poor plasma samples
from these patients were collected within 24 h of symptom onset.
High-throughput transcriptome sequencing, performed on the
GPL15456 platform using Illumina HiScanSQ, yielded
4,447 probes. GSE122709 contained mRNA and lncRNA data
from 5 IS patients and 5 HCs. Samples of peripheral blood
mononuclear cells were collected from patients 24 h and 7 days
after the onset of symptoms. High-throughput transcriptome
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sequencing was performed on the GPL20795 platform using HiSeq
X Ten, and 54,262 probes were yielded.

2.2 Differential expression analysis of
circRNAs

After the circRNA microarray data were downloaded, an
expression matrix containing the 6-digit circRNA_IDs for
10,798 circRNAs was obtained using Perl script conversion,
based on the GPL21825 platform annotation information. Then,
we used the “limma” package (version 3.52.2, https://bioconductor.
org/packages/) in R software (version 4.0.3, https://www.r-project.
org/) to identify differentially expressed circRNAs (DEcircRNAs),

with FDR <0.05 and |log2FC| > 1 as screening criteria. In addition,
to facilitate miRNA prediction, we transformed the 6-digit
circRNA_IDs to 7-digit circRNA_IDs using the ID relationship
conversion file from the CircBase database (http://www.circbase.
org/).

2.3 Differential expression analysis of
miRNAs

After downloading the miRNA sequencing expression matrix,
we removed im-mature miRNAs starting with “hsa-mir” and
obtained an expression matrix comprising 2,587 mature
miRNAs. We used the “DESeq2” package (version 1.34.0,

FIGURE 1
The flow chart of this study. This study contains the following three main aspects: (1) Dowloading and pre-processing datasets. The datasets
included circRNA microarray dataset (GSE133768), miRNA and mRNA sequencing dataset (GSE110993, GSE122709). Differential expression analysis,
prediction of miRNAs targeted by DEcircRNAs, prediction of DEmiRNAs binding mRNAs, gene enrichment analysis, etc., were conducted on the
aforementioned datasets to explore DEcircRNAs, DEmiRNAs, and DEmRNAs and their functional roles between IS and normal control groups. (2)
Construction of ceRNA regulatory network and selection of core genes. By integrating the DEcircRNAs, DEmiRNAs, and DEmRNAs obtained in the first
step and screening their interactions, we constructed the ceRNA functional network of circRNA-miRNA-mRNA and visualized it using the Cytoscape
software. We used the STRING protein database to construct a protein interaction network and used the MCODE algorithm in cytohubba to screen the
core genes, and then selected the core sub-network of the ceRNA network based on them. (3) Validation by other independent datasets. For the nodes
involved in the above core sub-network, we used other datasets to verify their significance and consistency in differential expression. The validation set
were GSE195442 (circRNA), GSE199942 (miRNA), GSE140275 and GSE180470 (mRNA).
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FIGURE 2
The flow chart of the selection of circRNAs, miRNAs and mRNAs involved in the ceRNA network and their interrelationships. The square boxes
indicate the screened data and the oval boxes indicate the databases that were used. In particular, blue, green and yellow boxes indicate DEcircRNAs,
DEmiRNAs and DEmRNAs obtained from differential expression analysis of circRNAs, miRNAs and mRNAs that were extracted from GEO database,
respectively. The orange arrow demonstrates the process of incorporating the sharedmRNAs into the previously identifiedmiRNA-mRNA pairs, and
filtering out the negative regulatorymiRNA-mRNA pairs associated with thesemRNAs. Similarly, the blue arrow illustrates the process of obtainingmiRNA
from the screenedmiRNA-mRNA pairs in the previous step, and incorporating thesemiRNAs into previously identified circRNA-miRNA pairs to obtain the
circRNA-miRNA pairs involved in these miRNAs. Ultimately, by identifying the miRNAs that satisfies both the newly obtained circRNA-miRNA pairs and
miRNA-mRNA pairs, we successfully constructed a ceRNA functional network of circRNA-miRNA-mRNA.
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FIGURE 3
Identification of DEcircRNAs, DEmiRNAs, andDEmRNAs. (A) The heat map of top 20 upregulated and top 20 downregulatedDEcircRNAs. (B) Volcano
plot of circRNAs. Green and red represent downregulated and upregulated DEcircRNAs, respectively. |log2FC| > 1, FDR < 0.05. circRNAs, circular RNAs. (C)
The heatmap of all DEmiRNAs. (D)Volcano plot ofmiRNAs. Green and red represent downregulated and upregulatedDEmiRNAs, respectively. |log2FC|> 1,
FDR < 0.05. miRNAs, microRNAs. (E) The heatmap of top 20 upregulated and downregulated DEmRNAs based on “DESeq2” package. (F) Volcano plot
of mRNAs that were screened based on “DESeq2” package. Green and red represent downregulated and upregulated DEmRNAs, respectively. |log2FC| >
1.5, FDR < 0.05. mRNAs, messenger RNAs. (G) Venn diagram of the shared DEmRNAs obtained by “DESeq2” and “EdgeR” packages.
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https://bioconductor.org/packages/release/bioc/html/DESeq2.
html) to identify differentially expressed miRNAs (DEmiRNAs),
using FDR <0.05 and |log2FC| > 1 as screening criteria.

2.4 Differential expression analysis of
mRNAs

MRNA expression data were downloaded from GSE122709,
including 5 HCs and 5 IS patients within 24 h of the onset of
symptoms. To exclude the lncRNA data from the expression matrix,
Homo sapiens. GRCh38 was used as the reference genome, which is
available from Ensembl (https://asia.ensembl.org/index.html/).

For more accurate results, we both used “DESeq2” and “EdgeR”
(version 3.36.0, https://bioconductor.org/packages/release/bioc/
html/edgeR.html) packages to identify differentially expressed
mRNAs (DEmRNAs). The DEmRNAs were then screened, using
FDR <0.05 and |log2FC| > 1.5 as criteria. The final DEmRNAs were
the shared DEmRNAs using “DESeq2” and “EdgeR” packages.

2.5 Functional enrichment analysis

To reveal the functions of the DEmRNAs, we performed Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses using R software (Kanehisa and Goto,
2000; Gene Ontology Consortium, 2015). The Entrez ID for each
DEmRNAwas obtained using the R package “org.Hs.e.g.,.db.” (version,
3.14.0, https://bioconductor.org/packages/release/data/annottion/html/
org.Hs.eg.db.html). To elucidate the mechanisms underlying the
association of DEmRNAs with biological processes (BPs), GO and
KEGG function annotations were analyzed using “ggplot2” (version 3.3.
5, https://github.com/tidyverse/ggplot2), “enrichplot” (version 1.14,
https://bioconductor.org/packages/release/bioc/html/enrichplot.html),
and “clusterProfiler” (version 4.2.2, https://bioconductor.org/packages/
release/bioc/html/clusterProfiler.html) packages.

2.6 Construction of the ceRNA network

In order to facilitate understanding, the specific process of the
construction of ceRNA network was shown in Figure 2. Initially, we
utilized two databases, namely, StarBase (v2.0, https://starbase.sysu.
edu.cn/) and CircBank (http://www.circbank.cn/), to forecast the
miRNA binding sites of DEcircRNAs. The specific steps involved in
this process are as follows: 1) Due to the unavailability of batch
prediction of miRNA binding sites and the non-uniqueness of the
circRNA naming convention in the files containing circRNA-
miRNA pairs downloaded directly from StarBase, it was not

TABLE 1 The top 20 upregulated and 20 downregulated DEcircRNAs.

Expression circRNA log2FC p-value FDR

Upregulated hsa_circ_0001649 1.679235 0.001848 0.043638

hsa_circ_0064794 1.608807 0.001626 0.040557

hsa_circ_0006987 1.533734 0.002287 0.048381

hsa_circ_0006097 1.504968 0.000935 0.029290

hsa_circ_0000832 1.432463 0.002049 0.045897

hsa_circ_0047376 1.401033 0.001176 0.033688

hsa_circ_0050525 1.377491 0.001917 0.044145

hsa_circ_0001630 1.308806 0.000447 0.019868

hsa_circ_0005227 1.305516 0.000193 0.012681

hsa_circ_0038673 1.290057 0.002223 0.047440

hsa_circ_0030777 1.264306 0.001249 0.034217

hsa_circ_0006886 1.259983 0.001403 0.037324

hsa_circ_0072397 1.217144 0.000451 0.019868

hsa_circ_0006324 1.196506 0.000644 0.024402

hsa_circ_0030281 1.170937 0.000100 0.009525

hsa_circ_0047460 1.164586 0.000083 0.008525

hsa_circ_0001011 1.164247 0.001409 0.037362

hsa_circ_0004773 1.151203 0.001163 0.033545

hsa_circ_0004666 1.139829 0.001852 0.043638

hsa_circ_0004834 1.136592 0.001012 0.030868

Downregulated hsa_circ_0007376 −2.423281 0.000001 0.001764

hsa_circ_0075393 −2.440287 0.000002 0.001764

hsa_circ_0029965 −2.442756 0.000236 0.013586

hsa_circ_0090364 −2.445093 0.000007 0.002498

hsa_circ_0028882 −2.487405 0.000150 0.011085

hsa_circ_0000094 −2.651994 0.000001 0.001764

hsa_circ_0028883 −2.664252 0.000203 0.012745

hsa_circ_0004121 −2.720927 0.000004 0.001890

hsa_circ_0001666 −2.790803 0.001214 0.033881

hsa_circ_0007059 −2.865738 0.000001 0.001764

hsa_circ_0007850 −2.894363 0.000002 0.001764

hsa_circ_0051778 −2.978394 0.000001 0.001764

hsa_circ_0004183 −2.984381 0.000509 0.020814

hsa_circ_0092342 −3.100302 0.000000 0.001216

hsa_circ_0010027 −3.161598 0.000003 0.001861

hsa_circ_0045932 −3.229383 0.000002 0.001764

hsa_circ_0087631 −3.413685 0.000003 0.001861

hsa_circ_0052372 −3.431524 0.000004 0.001943

(Continued in next column)

TABLE 1 (Continued) The top 20 upregulated and 20 downregulated
DEcircRNAs.

Expression circRNA log2FC p-value FDR

hsa_circ_0004099 −3.497811 0.000115 0.010272

hsa_circ_0082319 −3.519317 0.000006 0.002395
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feasible to conduct subsequent batch predictions. Therefore, we
utilized R software to batch download all circRNA-miRNA pairs
corresponding to circRNA IDs named with 7 digits. After removing
duplicates, we merged the resulting 3,502,309 circRNA-miRNA
pairs and filtered out those corresponding to DEcircRNAs. 2)
From the download section of CircBank, we obtained a file
containing all circRNA-miRNA pairs, which comprised a total of
16,844,374 pairs. Similarly, we utilized R software to filter out the
circRNA-miRNA pairs corresponding to DEcircRNAs. 3) The
predicted circRNA-miRNA pairs from both StarBase and
CircBank were intersected, and duplicates were removed to
obtain the shared predicted miRNAs for DEcircRNAs.

We further utilized the mirDIP database (http://ophid.utoronto.
ca/mirDIP/index.jsp) to predict the mRNA binding sites of the
miRNAs predicted by DEcircRNAs. Specifically, we took the
intersection of DEcircRNA-predicted miRNAs and DEmiRNAs,
inputted the shared miRNAs into the “miRNAs” column of
mirDIP, selected the corresponding “Score class” as “Top 1%",
obtained miRNA-mRNA pairs, and removed duplicates to obtain
the shared miRNA-predicted mRNAs.

We then took the intersection of the predicted mRNAs and
DEmRNAs, examined the miRNA-mRNA pairs involved in the
shared mRNAs, selected negative regulatory miRNA-mRNA pairs
(Only the case of miRNA-mRNA pairs with negative regulation is
discussed in this study), and obtained corresponding miRNAs and
mRNAs. We further obtained the circRNA-miRNA pairs in which the
above miRNAs participated, and eliminated the miRNAs that were not
correlated with circRNAs.Through the remaining miRNAs and their
participating circRNA-miRNA pairs, miRNA-mRNA pairs, we
obtained the selected circRNAs, miRNAs and mRNAs to construct
the ceRNA network.

Based on the above analysis, we constructed a ceRNA functional
network composed of circRNA-miRNA-mRNA pairs. For
visualization, we used Cytoscape v3.9.0 (https://cytoscape.org/) to
map the ceRNA functional network.

2.7 Integration of protein-protein
interaction (PPI) networks and construction
of core sub-network

To identify hub genes, we performed PPI network analysis of all
mRNAs involved in the ceRNA network. We searched for interactions
between genes using the STRING database (http://stringdb.org/), with
an interaction score threshold of "> 0.40". To construct the core sub-

TABLE 2 The total of 43 DEmiRNAs.

Expression miRNA log2FC p-value FDR

Upregulated hsa-miR-516b-5p 2.635913 0.000077 0.004739

hsa-miR-516a-5p 1.943530 0.002309 0.046404

hsa-miR-512-3p 2.987824 0.000022 0.003170

Downregulated hsa-miR-92a-3p −1.466306 0.000690 0.025814

hsa-miR-7977 −2.430273 0.001064 0.029846

hsa-miR-660-5p −2.239786 0.000002 0.001026

hsa-miR-532-5p −2.063253 0.000057 0.004500

hsa-miR-423-3p −1.726925 0.000014 0.002414

hsa-miR-378a-3p −1.483360 0.000346 0.018673

hsa-miR-3688-5p −1.910698 0.000444 0.020202

hsa-miR-3688-3p −1.910698 0.000444 0.020202

hsa-miR-3184-5p −1.726925 0.000014 0.002414

hsa-miR-3158-5p −1.946975 0.000044 0.003793

hsa-miR-3158-3p −1.946975 0.000044 0.003793

hsa-miR-3143 −2.074553 0.002173 0.046329

hsa-miR-26b-5p −1.678483 0.000997 0.029846

hsa-miR-20a-5p −2.136953 0.000438 0.020202

hsa-miR-203b-5p −1.668656 0.002252 0.046329

hsa-miR-203a −1.668656 0.002252 0.046329

hsa-miR-19b-3p −1.695119 0.000988 0.029846

hsa-miR-19a-3p −1.604727 0.001776 0.042616

hsa-miR-193a-5p −2.475112 0.000013 0.002414

hsa-miR-18a-5p −2.447728 0.000523 0.021520

hsa-miR-18a-3p −1.715550 0.002033 0.045030

hsa-miR-185-5p −1.726137 0.001071 0.029846

hsa-miR-181a-5p −1.375532 0.001312 0.034726

hsa-miR-17-5p −2.064623 0.000121 0.006977

hsa-miR-17-3p −1.844967 0.001923 0.044894

hsa-miR-16-2-3p −1.711612 0.000743 0.025814

hsa-miR-15b-3p −1.853834 0.002021 0.045030

hsa-miR-140-3p −1.301397 0.001033 0.029846

hsa-miR-130b-3p −1.505549 0.001489 0.036754

hsa-miR-130a-3p −1.467966 0.000982 0.029846

hsa-miR-126-5p −1.686944 0.000039 0.003793

hsa-miR-103b −1.519878 0.001367 0.034726

hsa-miR-103a-3p −1.519878 0.001367 0.034726

hsa-miR-101-3p −2.015893 0.000040 0.003793

hsa-miR-1 −2.861548 0.000000 0.000023

(Continued in next column)

TABLE 2 (Continued) The total of 43 DEmiRNAs.

Expression miRNA log2FC p-value FDR

hsa-let-7i-5p −1.591290 0.000747 0.025814

hsa-let-7i −1.591497 0.000746 0.025814

hsa-let-7f-5p −1.708476 0.000069 0.004608

hsa-let-7f-1 −1.709172 0.000069 0.004608

hsa-let-7b-3p −1.462872 0.000468 0.020232
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network of the ceRNA network, we visualized the PPI network using
Cytoscape and selected hub genes using the Cytohubba plugin.

2.8 Validation in independent datasets

To minimize bias, we utilized multiple independent datasets to
validate the circRNAs, miRNAs, and mRNAs which contained in
the core sub-network. GSE195442, which included microarray data
from plasma exosome samples collected from 10 patients with IS
and 10 HCs, was used as the validation dataset for circRNAs.
GSE199942, which included sequencing data from serum samples
collected from 5 IS patients and 5 HCs, was used as the validation
dataset for miRNAs. GSE180470 and GSE140275 were used as
mRNA validation datasets, both of the datasets containing
sequencing data from blood samples collected from 3 IS patients
and 3 HCs. To verify the accuracy of the results, we used the same
processing methods and analysis criteria when constructing the
ceRNA network.

3 Results

3.1 Identification of DEcircRNAs

We obtained 276 DEcircRNAs, each with a 7-digit circRNA_ID,
by analyzing the expression profiles from GSE133768. Among them,
24 upregulated and 252 downregulated DEcircRNAs were
associated with IS. We then plotted the top 20 upregulated and
top 20 downregulated DEcircRNAs using heat maps and volcano
plots (Figures 3A,B). The basic information for DEcircRNAs were
shown in Table1.

3.2 Identification of DEmiRNAs

Due to the limited number of mature miRNAs obtained by
sequencing, we used “DESeq2” package in R software to analyze the
GSE110993 expression profiles. We obtained 43 DEmiRNAs, of
which 3 were upregulated and 40 were downregulated (Table 2;
Figures 3C,D).

3.3 Identification of DEmRNAs and function
enrichment analysis

We screened the expression matrix for 19,298 mRNAs from
the GSE122709 dataset. Differention expressing analysis found
1966 DEmRNAs (985 upregulated and 981 downregulated) using

TABLE 3 The top 20 upregulated and 20 downregulated DEmRNAs.

Expression mRNA log2FC p-value FDR

Upregulated RAMP3 6.005372 0.000005 0.000021

HBE1 5.571703 0.000144 0.000493

TEX15 5.452020 0.000033 0.000127

KCNT2 5.385740 0.000021 0.000083

MSLN 4.956401 0.007196 0.017393

HIGD2B 4.926683 0.000120 0.000418

OGN 4.774183 0.001611 0.004471

DDAH1 4.773587 0.003045 0.007982

CXCL11 4.624720 0.001732 0.004780

HIST2H3A 4.401545 0.000188 0.000632

HIST1H3G 4.362263 0.000000 0.000000

NDUFAF3 4.122088 0.000000 0.000000

CCL18 4.121776 0.021198 0.045247

CSF2 4.040330 0.001014 0.002949

THEM5 4.021911 0.000291 0.000942

C2CD4D 3.956950 0.005955 0.014646

HIST2H3C 3.917556 0.000000 0.000000

SPESP1 3.892726 0.008030 0.019164

CSMD1 3.853778 0.000009 0.000038

HRASLS 3.849179 0.013554 0.030617

Downregulated KIAA1614 −4.922627 0.001801 0.004951

GHSR −4.927454 0.001071 0.003093

RSPO4 −4.948212 0.001258 0.003575

GPR176 −4.967716 0.000907 0.002660

C16orf96 −5.013368 0.000063 0.000231

MIA −5.051163 0.003078 0.008056

DAAM2 −5.063865 0.000662 0.001988

CAPN13 −5.088329 0.002151 0.005819

CNTNAP3B −5.105684 0.001370 0.003860

HOXA3 −5.135764 0.000023 0.000090

FGF8 −5.142336 0.000181 0.000609

FOXI1 −5.158171 0.000177 0.000596

GPR17 −5.235161 0.000927 0.002714

SPINK8 −5.340008 0.000049 0.000181

OLIG2 −5.344356 0.000282 0.000914

CYP4F2 −5.503473 0.000048 0.000179

CTAGE15 −5.626503 0.000006 0.000026

SPDYA −5.645933 0.000006 0.000027

(Continued in next column)

TABLE 3 (Continued) The top 20 upregulated and 20 downregulated
DEmRNAs.

Expression mRNA log2FC p-value FDR

SEMG1 −5.927450 0.000079 0.000286

BTNL3 −6.509618 0.000007 0.000028
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the “DESeq2” package. We then plotted the top 20 upregulated
and top 20 downregulated DEmRNAs using heat maps and
volcano plots (Table 3; Figures 3E,F). We used “EdgeR”
package to obtain more accurate differential analysis results
and identified 2,102 DEmRNAs, of which 1,090 were
upregulated and 1,012 were downregulated; heat maps and
volcano plots are presented in the Supplementary Materials
(Supplementary Table S1; Supplementary Figure S1A, B). The

results of the two analyses were intersected, yielding
1926 DEmRNAs (Figure 3G).

The top 10 results of GO enrichment analysis indicated that the
DEmRNAs were mainly involved in transcription, translation, nuclear-
transcribed mRNA catabolism, and other related BPs (Figure 4A). For
the cellular components, DEmRNAs were mainly enriched in the large
and small ribosome subunits and mitochondrial protein complexes
(Figure 4B). In the context of molecular functions, the DEmRNAs were

FIGURE 4
GO and KEGG pathway enrichment analysis of DEmRNAs. (A) Bar Plot of BP. (B) Bar Plot of CC. (C) Bar Plot of MF. (D) Bar Plot of KEGG. (GO, Gene
Ontology; BP, biological processes; CC, cell component; MF, molecular function).
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significantly involved in the structural constituents of the ribosome,
CXCR chemokine receptor binding, and c antigen binding (Figure 4C).
Furthermore, KEGG pathway analysis showed that the DEmRNAs

were involved in the ribosome; hematopoietic cell lineage; glycine,
serine, and threonine metabolism; and coronavirus disease-COVID-
19 pathways (Figure 4D).

FIGURE 5
Construction of circRNA-associated ceRNA network in IS. (A) Venn diagram of the shared circRNA-miRNA pairs predicted from CircBank and
StarBase databases for 276 DEcircRNAs. (B) Venn diagram of 574miRNAs predicted by DEcircRNAs and 43 DEmiRNAs. (C) Venn diagram of 2,681 mRNAs
predicted by DEmiRNAs and 1926 DEmRNAs. (D) Visualization of the ceRNA network. The red nodes represent miRNAs, the purple nodes represent
circRNAs, the blue nodes represent mRNAs.
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3.4 Construction of ceRNA regulatory
network

First, StarBase and CircBank databases were used to predict the
target miRNAs of the 276 DEcircRNAs; 5,291 and 21,190 circRNA-
miRNA pairs were predicted, respectively. The results were
intersected to obtain 2,250 circRNA-miRNA pairs (Figure 5A),
comprising 221 circRNAs and 574 miRNAs. We then intersected
these 574 predicted miRNAs with the 43 DEmiRNAs to obtain
25 miRNAs (Figure 5B). We used mirDIP database to predict the
target mRNAs of the 25 miRNAs, resulting in 4,224 miRNA-mRNA
pairs involving 2,681 mRNAs. This result was intersected with the
1926 DEmRNAs, yielding 224 mRNAs (Figure 5C). We verified the
differential expression of the screened circRNAs, miRNAs, and
mRNAs in the GEO datasets and subjected them to further

screening according to the regulatory mechanism of ceRNAs.
Using Cytoscape software, we successfully built a circRNA-based
ceRNA regulatory network (Figure 5D) comprising 110 circRNA-
miRNA pairs and 128 miRNA-mRNA pairs that included
69 circRNAs, 24 miRNAs, and 92 mRNAs.

3.5 PPI network analysis and core ceRNA
sub-network construction

The PPI network, including 92 nodes and 47 edges, was
constructed using the STRING protein database. We used
Cytoscape software to visualize the PPI network (Figure 6A) and
filtered the top 20 hub genes using the Cytohubba plugin (Table 4;
Figure 6B). We then screened the corresponding sub-network from

FIGURE 6
The PPI network, top 20 hub genes, and core ceRNA sub-network. (A) The PPI network of 92 DEmRNAs constructed by Cytoscape software. Larger
nodes indicate higher gene connectivity. (B) The top 20 hub genes obtained by Cytohubba plugin. (C) The core sub-network screened from the ceRNA
network by the 20 hub genes.
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TABLE 4 Functional information of the top20 genes selected from the PPI network.

Gene Aliases for genes Function Expression

BRD4 HUNK1, HUNKI, MCAP BRD4 (Bromodomain Containing 4) is a Protein Coding gene. Diseases associated with BRD4 include Cornelia De Lange Syndrome and
Cornelia De Lange Syndrome 1. Among its related pathways are 7q11.23 copy number variation syndrome and Chromatin Regulation/
Acetylation. Gene Ontology (GO) annotations related to this gene include chromatin binding and lysine-acetylated histone binding. An
important paralog of this gene is BRD3

Downregulated

CBL RNF55, CBL2 CBL (Cbl Proto-Oncogene) is a Protein Coding gene. Diseases associated with CBL include Noonan Syndrome-Like Disorder With Or
Without Juvenile Myelomonocytic Leukemia and Juvenile Myelomonocytic Leukemia. Among its related pathways are Negative
regulation of FGFR1 signaling and PDGFR-beta signaling pathway. Gene Ontology (GO) annotations related to this gene include DNA-
binding transcription factor activity and ligase activity. An important paralog of this gene is CBLB.

Downregulated

CBX1 M31, CBX, HP1Hs-Bet CBX1 (Chromobox 1) is a Protein Coding gene. Diseases associated with CBX1 include Hyperoxaluria, Primary, Type I and Hutchinson-
Gilford Progeria Syndrome. Among its related pathways are HCMV Infection and Chromatin Regulation/Acetylation. Gene Ontology
(GO) annotations related to this gene include protein homodimerization activity and chromatin binding. An important paralog of this
gene is CBX3

Downregulated

CCNG1 CCNG, Cyclin-G1 CCNG1 (Cyclin G1) is a Protein Coding gene. Diseases associated with CCNG1 include Mantle Cell Lymphoma and Breast Cancer.
Among its related pathways are GPCR Pathway and Gene expression (Transcription). Gene Ontology (GO) annotations related to this
gene include protein domain specific binding. An important paralog of this gene is CCNG2

Upregulated

CDK19 KIAA1028, CDC2L6, CDK11 CDK19 (Cyclin Dependent Kinase 19) is a Protein Coding gene. Diseases associated with CDK19 include Developmental And Epileptic
Encephalopathy 87 and Non-Specific Early-Onset Epileptic Encephalopathy. Among its related pathways are Activation of the pre-
replicative complex and PPARA activates gene expression. Gene Ontology (GO) annotations related to this gene include transferase
activity, transferring phosphorus-containing groUpregulateds and protein tyrosine kinase activity. An important paralog of this gene is
CDK8

Downregulated

CDKN1A P21, CAP20, CIP1 CDKN1A (Cyclin Dependent Kinase Inhibitor 1A) is a Protein Coding gene. Diseases associated with CDKN1A include Multiple
Endocrine Neoplasia, Type I and Tongue Carcinoma. Among its related pathways are Cellular Senescence and Defective binding of
RB1 mutants to E2F1, (E2F2, E2F3). Gene Ontology (GO) annotations related to this gene include ubiquitin protein ligase binding and
cyclin binding. An important paralog of this gene is CDKN1C

Upregulated

CKS2 Cyclin-Dependent Kinases Regulatory Subunit 2 CKS2 (CDC28 Protein Kinase Regulatory Subunit 2) is a Protein Coding gene. Among its related pathways are Small cell lung cancer. Gene
Ontology (GO) annotations related to this gene include cyclin-dependent protein serine/threonine kinase regulator activity. An important
paralog of this gene is CKS1B

Upregulated

CNIH1 TGAM77, CNIL, CNIH CNIH1 (Cornichon Family AMPA Receptor Auxiliary Protein 1) is a Protein Coding gene. Diseases associated with CNIH1 include
Variola Major and Schizophrenia. Among its related pathways are Metabolism of proteins and Transport to the Golgi and subsequent
modification. An important paralog of this gene is CNIH3

Upregulated

COMMD8 COMM Domain-Containing Protein 8 COMMD8 (COMM Domain Containing 8) is a Protein Coding gene. Among its related pathways are Class I MHC mediated antigen
processing and presentation and Metabolism of proteins. An important paralog of this gene is ENSG00000285382

Upregulated

COPS2 TRIP15, CSN2, ALIEN COPS2 (COP9 Signalosome Subunit 2) is a Protein Coding gene. Diseases associated with COPS2 include Xeroderma Pigmentosum,
Complementation GroUpregulated E and Persistent Hyperplastic Primary Vitreous. Among its related pathways are Class I MHC
mediated antigen processing and presentation and Metabolism of proteins. Gene Ontology (GO) annotations related to this gene include
obsolete signal transducer activity and transcription corepressor activity. An important paralog of this gene is PSMD11

Upregulated

CREBBP CBP, KAT3A CREBBP (CREB Binding Protein) is a Protein Coding gene. Diseases associated with CREBBP include Rubinstein-Taybi Syndrome 1 and
Menke-Hennekam Syndrome 1. Among its related pathways are Development Ligand-independent activation of ESR1 and ESR2 andMIF
Mediated Glucocorticoid Regulation. Gene Ontology (GO) annotations related to this gene include DNA-binding transcription factor
activity and transcription factor binding. An important paralog of this gene is EP300

Downregulated

(Continued on following page)
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TABLE 4 (Continued) Functional information of the top20 genes selected from the PPI network.

Gene Aliases for genes Function Expression

FHL2 SLIM3, DRAL FHL2 (Four And A Half LIM Domains 2) is a Protein Coding gene. Diseases associated with FHL2 include Familial Isolated Dilated
Cardiomyopathy and Rhabdomyosarcoma. Among its related pathways are Ectoderm differentiation and PPARA activates gene
expression. Gene Ontology (GO) annotations related to this gene include identical protein binding and transcription coactivator activity.
An important paralog of this gene is FHL5

Upregulated

FOXO3 AF6q21, FKHRL1, FOXO3A FOXO3 (Forkhead Box O3) is a Protein Coding gene. Diseases associated with FOXO3 include Chromosome 6Q Deletion and Aging.
Among its related pathways are PI3K/Akt Signaling and PIP3 activates AKT signaling. Gene Ontology (GO) annotations related to this
gene include DNA-binding transcription factor activity and protein kinase binding. An important paralog of this gene is FOXO1

Downregulated

ITGB3 GPIIIa, CD61, GP3A ITGB3 (Integrin Subunit Beta 3) is a Protein Coding gene. Diseases associated with ITGB3 include Bleeding Disorder, Platelet-Type,
24 and Glanzmann Thrombasthenia 2. Among its related pathways are GPCR Pathway and Actin Nucleation by ARP-WASP Complex.
Gene Ontology (GO) annotations related to this gene include identical protein binding and protease binding. An important paralog of this
gene is ENSG00000259753

Upregulated

KAT6A MOZ, ZC2HC6A, RUNXBP2 KAT6A (Lysine Acetyltransferase 6A) is a Protein Coding gene. Diseases associated with KAT6A include Arboleda-Tham Syndrome and
Syndromic Intellectual Disability. Among its related pathways are Regulation of TP53 Activity through Acetylation and Chromatin
organization. Gene Ontology (GO) annotations related to this gene include chromatin binding and transcription coactivator activity. An
important paralog of this gene is KAT6B

Downregulated

MECP2 MRX16, MRX79, RTT MECP2 (Methyl-CpG Binding Protein 2) is a Protein Coding gene. Diseases associated with MECP2 include Rett Syndrome and
Encephalopathy, Neonatal Severe, Due To Mecp2 Mutations. Among its related pathways are Ectoderm differentiation and
Transcriptional Regulation by MECP2. Gene Ontology (GO) annotations related to this gene include RNA binding and chromatin
binding. An important paralog of this gene is MBD4

Downregulated

RPS2 LLREP3, S2 RPS2 (Ribosomal Protein S2) is a Protein Coding gene. Diseases associated with RPS2 include Diamond-Blackfan Anemia. Among its
related pathways are Metabolism of proteins and SARS-CoV-2 Infection. Gene Ontology (GO) annotations related to this gene include
RNA binding and enzyme binding. An important paralog of this gene is MRPS5

Upregulated

RUNX1 AMLCR1, CBFA2, AML1 RUNX1 (RUNX Family Transcription Factor 1) is a Protein Coding gene. Diseases associated with RUNX1 include Platelet Disorder,
Familial, With Associated Myeloid Malignancy and Blood Platelet Disease. Among its related pathways are Gene expression
(Transcription) and RUNX1 regulates transcription of genes involved in BCR signaling. Gene Ontology (GO) annotations related to this
gene include DNA-binding transcription factor activity and protein homodimerization activity. An important paralog of this gene is
RUNX2

Downregulated

SNX16 Sorting Nexin-16 SNX16 (Sorting Nexin 16) is a Protein Coding gene. Diseases associated with SNX16 include Spinocerebellar Ataxia 15. Gene Ontology
(GO) annotations related to this gene include identical protein binding and phosphatidylinositol binding. An important paralog of this
gene is PXK.

Upregulated

ZFHX3 C16orf47, ZNF927, ATBF1 ZFHX3 (Zinc Finger Homeobox 3) is a Protein Coding gene. Diseases associated with ZFHX3 include Prostate Cancer and Atrial
Fibrillation. Among its related pathways are Transcriptional Regulatory Network in Embryonic Stem Cell and Gene expression
(Transcription). Gene Ontology (GO) annotations related to this gene include nucleic acid binding and sequence-specific DNA binding.
An important paralog of this gene is ZFHX4

Downregulated
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the ceRNA network (Figure 6C). The core sub-network
included 48 circRNA-miRNA pairs and 23 miRNA-mRNA
pairs, with a total of 69 nodes (38 circRNAs, 11 miRNAs,
and 20 mRNAs).

3.6 Validation of core sub-network in GEO
datasets

We verified that hsa_circ_0011474 and hsa_circ_0023110,
which were significantly downregulated in IS, were also
significantly downregulated in the circRNA validation set
GSE195442 (Figure 7). We verified that CDKN1A, FHL2, and
RPS2, which were significantly upregulated in IS, and KAT6A,
CDK19, and CBX1, which were significantly downregulated, had
consistent expression changes in the mRNA validation set
GSE140275 (Figure 8). Similarly, we verified that BRD4 and
ZFHX3, which were significantly downregulated in IS, were
also significantly downregulated in the mRNA validation set
GSE180470 (Figure 9). We did not validate any miRNAs that
showed significant changes in expression consistent with
GSE110993.

4 Discussion

Owing to the high incidence, disability, mortality, recurrence,
and economic burden of stroke, the identification of specific
biomarkers for the diagnosis and treatment of IS an urgent task.
In recent years, an increasing number of studies have shown that
circRNAs can influence the onset and progression of cardiovascular
disease through multiple pathways. CircRNA-meidated ceRNA is a
important form of gene regulation for circRNA, and has a great

potential in disease research. However, whole transcriptome-wide
screenings of circRNA-mediated ceRNA networks associated with
IS are still lacking.

In this study, we used expression data downloaded from the
GEO database to identify DEcircRNAs, DEmiRNAs, and
DEmRNAs between IS patients and HCs. By integrating the
interactions, we successfully constructed an IS-specific ceRNA
network with 185 nodes and 238 edges. GO enrichment analysis
showed that the DEmRNAs were mainly involved in IS-related
BPs. In addition, DEmRNAs were significantly enriched in four
KEGG pathways, including coronavirus disease-COVID-19.
Studies have shown that patients infected with COVID-19
may be at a higher risk of IS than patients with influenza
infections (Merkler et al., 2020).

To identify the core of the ceRNA network, we obtained
20 hub genes using PPI and Cytohubba analyses. Eight of these
20 genes have been reported to be associated with IS, including
ITGB3, CDKN1A, ZFHX3, CREBBP,MECP2, RUNX1, BRD4, and
FOXO3. Maguire et al. demonstrated that the ITGB3 (GPIIIa)
variant (rs5918) is associated with functional outcomes in stroke
survivors (Maguire et al., 2011). Fan et al. reported that
CDKN1A/JUN could be a robust and promising gene-pair
diagnostic biomarker for IS, regulating ferroptosis during IS
progression via the C9orf106/C9orf139 - miR-22-3p -
CDKN1A and GAS5-miR-139-5p/miR-429-JUN axes (Fan
et al., 2022). In addition, several studies have found that SNP
rs7193343, located on ZFHX3, is associated with prognostic
recovery in cardioembolic stroke, a subtype of IS
(Gudbjartsson et al., 2009). Another study, Hu et al. identified
SNP rs879324, located on ZFHX3, as an important factor
influencing IS in the Chinese Han population by multifactor
dimension reduction (MDR) software and least absolute
shrinkage and selection operator (LASSO) logistic regression

FIGURE 7
Expression levels of core circRNAs verified in GSE195442: (A) has_circ_0011474; (B) hsa_circ_0023110. (*p < 0.05)
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(Hu et al., 2023). Tseveleki et al. found that CREBBP, a gene
related to the cellular stress response, was upregulated in a mouse
model of permanent middle cerebral artery occlusion (Tseveleki
et al., 2010). Yang et al. demonstrated through in vivo and in vitro

experiments that circSCMH1 binds to the transcription factor
MECP2 and regulates the transcriptional expression of its
downstream genes, thereby affecting functional recovery after
stroke in mice and primates (Yang et al., 2020). Hu et al. revealed

FIGURE 8
Expression levels of core mRNAs verified in GSE140275: (A) CDKN1A; (B) FHL2; (C) RPS2; (D) KAT6A; (E) CDK19; (F) CBX1. (*p < 0.05, ***p < 0.001).
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that overexpression of MECP2 can protect mice against ischemic
brain injury via disruption of the FOXO3a/SPRY2/
ZEB1 signaling axis (Meng et al., 2022). Furthermore, one
study showed that young rats had higher blood vessel density
on day 14 post-stroke than old rats. RUNX1 is involved in
angiogenesis, and its expression level is much higher in young
rats after stroke than in old rats (Buga et al., 2014). In transient IS,
dBET1 ameliorates neurological dysfunction and brain injury by
degrading BRD4, regulating inflammation and oxidative stress,
and protecting the integrity of the blood-brain barrier (Liu et al.,
2022). Fibrous scarring played an important role in preventing
secondary expansion of tissue damage and hindering repair and
regeneration after central nervous system (CNS) injury.
BRD4 was involved in fibrosis in many tissues, and
transforming growth factor-β1 (TGF-β1)/Smad2/3 signaling
was one of the critical pathways of fibrosis. Li et al. were the
first to indicate that inhibition of BRD4 delayed fibrous scarring
after IS through mechanisms involving the phosphorylation of
Smad2/3 (Li et al., 2022). Similarly, FOXO3 is highly expressed in
oxygen-glucose deprivation (OGD)-induced neuronal cells.
Downregulation of FOXO3 can prevent neuronal damage and
inflammatory responses in OGD-induced neuronal cells by
inhibiting the CITED2/IKKα axis (Deng et al., 2020). In their
latest study, Deng et al. indicated that Akt/FoxO3 signaling
pathway activation inhibited oxidative stress-mediated cell
death through activation of autophagy. Their study supported
a critical role for the Akt/FoxO3 signaling pathway in autophagy
activation in stroke (Deng et al., 2023). The remaining 12 genes
(RPS2, CKS2, COMMD8, CDK19, KAT6A, CBL, CBX1, COPS2,
SNX16, CCNG1, FHL2, and CNIH1) have not been reported to be
associated with IS.

Based on the negative regulatory miRNA-mRNA pairs
corresponding to these 20 hub genes, we constructed a core

sub-network of the ceRNA network. This core sub-network
included 48 circRNA-miRNA pairs and 23 miRNA-mRNA
pairs. For external validation, we investigated the relative
expression levels of these nodes in other datasets and
validated several circRNAs and genes in the core sub-network,
including CDKN1A, FHL2, and RPS2. The downregulated nodes
included hsa_circ_0011474, hsa_circ_0023110, CDK19, KAT6A,
CBX1, BRD4, and ZFHX3. By validating the obtained circRNAs
and genes, we identified a ceRNA pathway, hsa_circ_0011474 -
hsa-miR-20a-5p/hsa-miR-17-5p - CDKN1A. In addition to
CDKN1A, which has been previously reported to be associated
with IS, miR-17-5p and miR-20a-5p have been identified as
promising candidate biomarkers for distinguishing embolic
stroke from thrombotic stroke.

CDKN1A (also known as P21) encodes a potent inhibitor of
cyclin-dependent kinases associated with the cellular senescence
pathway (Fitzgerald et al., 2015). The aging of neurons,
astrocytes, and microglia in the central nervous system is
involved in brain aging and the development of age-related
neurological disorders (Yamazaki et al., 2016). A marker of
cellular senescence, CDKN1A expression was significantly
upregulated in the infarcted area of dissected mice 72 h after
tMCAO (Torres-Querol et al., 2021). Therefore, CDKN1Amay be
involved in the occurrence and development of IS by regulating
vascular cell senescence. Supporting the significance of the hsa_
circ_0011474 - hsa-miR-20a-5p/hsa-miR-17-5p - CDKN1A
pathway, previous studies have found that miR-20a can
improve the proliferation rate of mesenchymal stem cells in
the serum of IS patients by inhibiting the expression of
CDKN1A (Kim et al., 2016). Similarly, Rastegari et al. found
that CDKN1A was significantly associated with autism, a
neurodevelopmental disorder, through the WGCNA network
(Rastegari et al., 2023).

FIGURE 9
Expression levels of core mRNAs verified in GSE180470: (A) BRD4; (B) ZFHX3. (*p < 0.05).
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To address the lack of joint analyses of mRNA, miRNA, and
circRNA in IS, this study conducted an integrated analysis of
multiple GEO datasets. We combined the results of circRNA
microarray expression data analysis with the results of mRNA
and miRNA high-throughput sequencing data analysis and
constructed ceRNA functional networks to comprehensively
explore promising diagnostic biomarkers of IS and their potential
mechanisms of action. Our findings improve the current
understanding of ceRNA biological behaviors and their
regulatory roles in IS pathogenesis. Nodes in the hsa_circ_
0011474 - hsa-miR-20a-5p/hsa-miR-17-5p - CDKN1A pathway,
validated in the ceRNA network, may serve as promising
diagnostic biomarkers and therapeutic targets for IS.
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