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Rare variants affecting host defense against pathogensmay be involved in COVID-
19 severity, but most rare variants are not expected to have a major impact on the
course of COVID-19. We hypothesized that the accumulation of weak effects of
many rare functional variants throughout the exomemay contribute to the overall
risk in patients with severe disease. This assumption is consistent with the
omnigenic model of the relationship between genetic and phenotypic variation
in complex traits, according to which association signals tend to spread across
most of the genome through gene regulatory networks from genes outside the
major pathways to disease-related genes. We performed whole-exome
sequencing and compared the burden of rare variants in 57 patients with
severe and 29 patients with mild/moderate COVID-19. At the whole-exome
level, we observed an excess of rare, predominantly high-impact (HI) variants
in the group with severe COVID-19. Restriction to genes intolerant to HI or
damaging missense variants increased enrichment for these classes of variants.
Among various sets of genes, an increased signal of rare HI variants was
demonstrated predominantly for primary immunodeficiency genes and the
entire set of genes associated with immune diseases, as well as for genes
associated with respiratory diseases. We advocate taking the ideas of the
omnigenic model into account in COVID-19 studies.
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Introduction

Since the first pandemic outbreak of coronavirus in 2019 (COVID-19), more than
664 million cases of COVID-19 and more than 6.7 million deaths have been reported
(https://coronavirus.jhu.edu, assessed 9 January 2023). The clinical presentation of SARS-
CoV-2 infection is highly variable, ranging from asymptomatic infection to severe disease
with respiratory failure, overactive immune response, and death occurring in about 0.5%–1%
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of infections (Salzberger et al., 2021). Known risk factors for severe
disease course include demographic characteristics (male sex, older
age, and ancestry) and chronic diseases such as obesity, as well as
cardiovascular, renal, and respiratory disease (Yang et al., 2020;
O’Driscoll et al., 2021; Sokologorskiy et al., 2022), but these factors
do not fully explain differences in clinical severity (Duman et al.,
2022; Nhung et al., 2022; Petersen et al., 2022).

An individual’s genetic background influences susceptibility to
infectious diseases and the severity of their course (Kwok et al.,
2021). The GWAS meta-analysis of the worldwide COVID-19 Host
Genetics (HG) Initiative identified 23 loci with minor allele
frequencies ranging from 0.003 to 0.66, of which seven loci
influenced susceptibility to SARS-CoV-2 infection, and 16 loci,
including loci involved in inflammation or innate immunity (e.g.,
the OAS1/OAS2/OAS3 gene cluster, IFNAR2, DPP9, TYK2, SFTPD,
and MUC5B) were strongly associated with critical disease
(COVID-19 Host Genetics Initiative, 2022). Measuring the
association of rare genetic variants with COVID-19 is more
challenging (Butler-Laporte et al., 2022). Although variants with
a large effect on COVID-19 are likely to be rare, most rare variants
are likely to have little effect on COVID-19 severity (Ganna et al.,
2018). Most studies of genetic associations of rare variants have
insufficient test power, and the resulting associations are not
reproducible in independent cohorts (Zhang et al., 2020;
Kosmicki et al., 2021a). The largest meta-analysis of rare variants
performed by the COVID-19 HG project team showed one exome-
wide significant association with severe COVID-19 for rare
deleterious variants in the TLR7 gene (Butler-Laporte et al., 2022).

In some chronic diseases, exome sequencing to test for
enrichment of high-impact (HI) (https://grch37.ensembl.org/info/
genome/variation/prediction/predicted_data.html) and/or
damaging missense variants assessed as qualifying variants (QVs)
in patients compared to controls was performed not only at the gene
level but also in large specific gene sets. A significant excess of rare
QVs in genes intolerant to loss of function or missense variants was
observed in patients with psychiatric disorders (Ganna et al., 2018;
Feng et al., 2019; Zoghbi et al., 2021) and amyotrophic lateral
sclerosis (Farhan et al., 2019). A higher burden of QVs in
patients with psoriasis compared to controls was found in the
immune disease-related gene set (Xu et al., 2021). An enrichment
in deleterious ultra-rare variants in gene sets previously associated
with epilepsy was observed in epilepsy-affected individuals
compared to controls (Feng et al., 2019). Large sets of genes with
QVs have never been tested in relation to infectious diseases and
critical conditions, although this approach may be promising
because the recovery from acute infection requires the
coordinated action of many genes (Talla et al., 2021).

The relationship between some or many genetic variations and
complex traits is described by two main hypotheses: polygenic and
omnigenic. In the polygenic model, disease-associated variants are
combined into key pathways that determine disease manifestation
and progression (Marouli et al., 2017). According to the omnigenic
model, disease can be caused by a huge number of variants in most
of the genome because the regulatory gene networks are highly
interconnected. Through regulatory networks, associative signals
from many so-called peripheral genes are transmitted to a much
smaller number of core genes directly related to the disease (Boyle
et al., 2017). Thus, all genes with regulatory variants expressed in

disease-relevant cells can affect the function of the major genes
associated with the disease. The omnigenic model was developed
based on data from genome-wide studies for common genetic
variants, but subsequent work has shown that a similar approach
holds true for rare variants (Pullabhatla et al., 2018; Scelsi et al.,
2021), which, while consistent with life, may have small effect sizes
but be associated with more severe and/or earlier diagnoses (Wray
et al., 2018). Although the concept of a set of core genes and a rigid
dichotomy of core and peripheral genes is still debated (Wray et al.,
2018; Iakoucheva et al., 2019), the general idea of a wide dispersion
of genetic contributions to disease development due to the
interconnectedness of biological systems seems widely accepted
(Giral et al., 2018). In fact, the poly- and omnigenic models do
not contradict each other, and recent studies have shown broad
compatibility between the two models (Lombardo et al., 2018;
Vuckovic et al., 2020; Zhu et al., 2021).

In this study, we performed whole-exome sequencing in
86 Russian patients with severe or mild/moderate COVID-19.
Given the omnigenic hypothesis, we aimed to characterize the
entire exomic landscape of rare genetic variants at different
disease severity. We also set out to compare the burden of rare
variants in patient groups stratified by sex, age and comorbidities.
Our subsequent analyses of COVID-19 phenotypes focused on
testing the enrichment of QVs in sets of genes, particularly
intolerant to the variants under consideration and biologically
relevant to COVID-19.

Materials and methods

Patients and clinical data

The study included 86 patients diagnosed with COVID-19 who
were hospitalized at the Moscow Regional Scientific and Clinical
Institute named after M. F. Vladimirsky, the Moscow Clinical
Center for Infectious Diseases “Voronovskoe” and the City
Clinical Hospital of the Moscow Department of Health named
after V.P. Demikhov from April 27 to 28 November 2020. The
exclusion criteria were as follows: patients with terminal incurable
diseases, immunodeficiency, long-term use of corticosteroids,
pregnancy, alcoholism, drug addiction, and HIV. Upon
admission, all patients underwent a PCR test for the SARS-CoV-
2 virus from nasopharyngeal smears. The diagnosis and severity of
the course of the disease were established in accordance with
international recommendations for the prevention, diagnosis and
treatment of new coronavirus infection (COVID-19) (World Health
Organization, 2020) and “Temporary clinical guidelines on
prophylaxic, diagnosis and treatment of COVID-19–2020” of the
RussianMinistry of Health (CNR_COVID-19_V17. pdf (minzdrav.
gov.ru)). All patients were divided into two groups. Severe COVID-
19 patients included patients with severe/extremely severe course
(57 patients), while non-severe COVID-19 patients included
patients with mild/moderate course (29 patients) (Supplementary
Table S1). The diagnosis of pneumonia was made according to
provisional clinical guidelines (CNR_COVID-19_V17. pdf
(minzdrav.gov.ru)), taking into account the results of chest
computed tomography with an assessment of the severity of lung
damage using a point scale (Supplementary Table S1), as well as
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clinical and laboratory data described elsewhere (Kashatnikova et al.,
2022). The diagnosis of sepsis has been revised according to the
2021 version of the Sepsis Survival Campaign guide (Evans et al.,
2021). The diagnosis of ARDS was based on the Berlin definition
(Force et al., 2012). The Ethics Committee of the Federal Research
and Clinical Center of Intensive Care Medicine and Rehabilitology
approved the study; all included patients or their legal
representatives signed an informed consent.

Exome sequencing and variant calling

DNA was isolated from blood using Qiagen DNA blood mini
kit. Fifty samples were sequenced at Genomed (Moscow, Russia).
DNA was fragmented and barcoded using Swift 2S® Turbo DNA
Library Kit. Enrichment was performed using Twist Human Core
Exome (https://www.twistbioscience.com/products/ngs/fixed-
panels/human-core-exome). Sequencing was implemented on
Illumina Hiseq X Ten platform with 150 bp paired-end reads.
Thirty-six samples were sequenced at Resource Center “Bio-bank
Center”, the Research Park of St. Petersburg State University (St.
Petersburg, Russia). Samples were prepared for sequencing with
Illumina TruSeq DNA Exome kit (https://www.illumina.com/
products/by-type/sequencing-kits/library-prep-kits/truseq-exome.
html) and sequenced on HiSeq2500 and HiSeq4000 platforms with
90 bp paired-end reads.

The sequencing data of 86 samples in FASTQ format were
analyzed. Reads were aligned to human reference GRCh38.
p13 using Burrows-Wheeler Alignment Tool (bwa https://bio-
bwa.sourceforge.net/bwa.shtml). The quality control of
sequencing results performed in the FastQC program (Andrews,
2010) showed high quality of readings and the presence of an
insignificant number of adapter sequences. Data preparation was
carried out by the programs of the GATK package (Van der Auwera
and O’Connor, 2020), namely, for each sample, the source FASTQ
files were converted to bam files without alignment by the
FastqToSam utility, adapter sequences were labeled using
MarkIllumina Adapters. Mapping of readings to the reference
genome was carried out using BWA MEM (Li, 2013), after which
the marking of PCR duplicates by the MarkDuplicates program was
carried out. The target regions in the analysis were the genome
regions common to the two sets that were used for sample
preparation. The quality of mapping results and targeted
enrichment with target sequences was evaluated using the
CollectHsMetrics program.

The search for variants in bam format files was carried out using
the HaplotypeCaller program of the GATK package, a filter was
applied to the results using the VariantFiltration program of the
GATK package. Only variants within the target regions were
analyzed. The filtering conditions included a value of QD
(Variant Confidence/Quality by Depth) of at least 2.0, a value of
FS (Phred-scaled p-value using Fisher’s exact test to detect strand
bias) of ≥60 and Strand Odds Ratio (SOR) < 3 (for indels FS ≥
200 and SOR <10), a value of MQ (RMSMapping Quality) of at least
40, a value of MQRankSum of at least −12.5, a value of
ReadPosRankSum (Z-score from Wilcoxon rank sum test of Alt
vs. Ref read position bias) at least −8.0. Variants were required to
pass GATK’s standard variant quality score recalibration (VQSR)

threshold. We removed variants previously identified as problematic
by ExAC (Lek et al., 2016), GnomAD (Karczewski et al., 2020), or
EVS (http://evs.gs.washington.edu/EVS/HelpDescriptions.jsp).
Variant calls were required to have at least 10x coverage. For
heterozygous genotypes, the alternative allele ratio (allelic
balance) was set to be ≥25%. Site-coverage harmonization
between samples of patients with severe COVID-19 and non-
severe COVID-19 was performed by removal of all variants with
a greater than 7% absolute difference in 10-fold coverage (Petrovski
et al., 2017). Average sequencing depth was 75.22 ± 56.59 (mean ±
SD) in patients with severe COVID-19 and 73.39 ± 56.71 in patients
with non-severe COVID-19.

Variant annotation

The annotation of the variants was carried out by the SnpSift
(Cingolani et al., 2012a), SnpEff (Cingolani et al., 2012b) and
FAVOR programs (Zhou et al., 2023) using the dbSNP, ClinVar,
and population databases GnomAD (Karczewski, et al., 2020),
1000G (1000 Genomes Project Consortium, 2015) and TopMed
(Taliun et al., 2021). Variants with presumably disruptive impact in
the protein were classified as HI. They included splice acceptor
variants, splice donor variants, stop gained, frameshift variants, stop
lost, and start lost variants. Missense variants were defined as
potentially pathogenic using the rare exome variant ensemble
learner (REVEL) tool with a recommended threshold of >0.5 to
classify the variant as “harmful” (Ioannidis et al., 2016). We also
used the missense tolerance ratio (MTR) tool, which detects regional
intolerance to missense variations. As recommended by the authors,
we applied the conservative threshold of MTR FDR <0.1 (Silk et al.,
2019). Our analysis focused on rare variants, which were filtered
according an alternative allele frequency (AF) in the Genome
Aggregation Database (GnomAD), 1000 G and TopMed
databases. Since our sample was rather small, in order to
combine our results with the available literature data and to
minimize possible bias from sample size, we focused not on the
internal AF, but on AF from these databases. The variants were
divided by AF into three main bins with AF ≤0.001 to ≤0.01, with
AF <0.001 and without AF data in population resources, i.e., not
present in any of the considered population databases.

Gene set curation

Because the omnigenic hypothesis suggests that genes with
regulatory variants in at least one disease-relevant tissue are
likely to influence disease risk, we compiled a list of eGenes
(genes whose expression levels are associated with at least one
genetic variant) using data from the GTEx V8 release with a
threshold Q value (p-value with FDR correction) of 0.05 (https://
gtexportal.org/home/datasets).

To create sets of genes intolerant to missense variants and loss of
function, i.e., HI variants, we used the recommended threshold
values pLI >0.9 and missense Z score >3.09 based on constraint
metrics from gnomAD v2.1 (https://storage.googleapis.com/
gnomadpublic/release/2.1.1/constraint/gnomad.v2.1.1.lof_metrics.
by_gene.txt.bgz). Missense and loss-of-function tolerant gene sets
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comprised genes with missense Z < 1 and pLI <0.001, respectively
(Zoghbi et al., 2021). We also generated gene sets of genes essential
for life (Dickinson et al., 2016), genes of primary
immunodeficiencies (PID) from the 2022 Update on the
Classification from the International Union of Immunological
Societies (IUIS) Expert Committee (Tangye et al., 2022), cytokine
genes encoding proteins with cytokine/chemokine activity and
cytokine/chemokine receptor activity (Salnikova et al., 2020) and
the updated list of genes linked to SARS-CoV-2 infection and/or
COVID-19 disease from the GENCODE project (https://www.
gencodegenes.org/human/covid19_genes.html#, accessed
12 December 2022). Our next approach was to analyze the lists
of genes associated with human diseases affecting certain organs and
systems. We used our previously constructed gene list of disease
genes described in detail elsewhere (Kolobkov et al., 2022). Shortly,
we generated a set of 9,972 genes from five gene-phenotype
databases (OMIM, ORPHANET, DDG2P, DisGeNet and
MalaCards) and a report of the IUIS. A gene was considered to
be associated with a specific system (e.g., immune, respiratory,
nervous) according to the classification of any of the resources used.

Principal component analysis

Since some of the results may be population-specific, we
explored the cohort’s population structure by projecting it onto
1,000 Genome’s principal component space built using the
intersection of variants between the two datasets. The joint
analysis with the 1,000 Genomes dataset was conducted using
PLINK2 (https://doi.org/10.1186/s13742-015-0047-8). The
visualization was conducted using the Plotly library in Python.

Association analysis

Association analysis of rare variant series was carried out using
unadjusted two-sided Cochran–Mantel–Haenszel (CMH) test,
which generates a combined p-value and odds ratio (McDonald,
2009; Zoghbi et al., 2021). The CMH statistic extends Fisher’s exact
criterion beyond stratified contingency tables 2 × 2 to test whether
the common odds ratios across strata is equal to 1 (Rahardja et al.,
2016). This test was preferred to logistic regression due to its
robustness and the lack of inflation of test statistics in situations
with a small number of carriers (Cirulli et al., 2020). A dominant
model of inheritance was considered. In order to account for the
possible influence of covariates such as gender and age on the
associations identified, we conducted a subgroup analysis. We
applied an experiment-wise p-value threshold of 5.21 × 10−4 to
account for multiple testing (0.05/96 comparisons tested).

Gene-based burden analysis

In order to identify genes with mutational burden statistically
different between severe and non-severe COVID-19 patients we
collapsed qualifying variants (QVs) at the gene level. We considered
three sets of rare QVs combined in the set of variants from bins with
AF <0.001 and no AF data. Qualifying variants included HI variants,

missense variants with REVEL >0.5 and HI +missense variants with
REVEL >0.5. In haploinsufficient (HIS) genes sensitive to decreased
gene dosage, any copy of a gene containing a harmful variant will
cause a detrimental effect on gene function. DECIPHER (https://
www.deciphergenomics.org/about/downloads/data) provides
haploinsufficiency scores which are determined based on
predicted HIS probabilities. Scores in the range 0%–10% mean a
higher probability of a gene to be HIS, while scores in the range
90%–100% mean that a gene is unlikely to be HIS. In HIS genes
(with HIS scores ≤10%), we examined the same three sets of QVs as
described above but without limiting to AF. For each gene, if any
individual in the severe COVID-19 group has ≥1 QVs in the gene,
the group will count one, otherwise it will count 0; the same for the
non-severe COVID-19 group. Then a Fisher’s exact test with
Bonferroni correction (Cirulli et al., 2020) (16,816 genes, six
comparisons, significant p-value <4.96 × 10−7) was performed to
see if there is a difference between the two groups.

Results

Clinical and demographic characteristics

A total of 86 unrelated patients with COVID-19 were included
in the current study. All patients were unvaccinated, since blood
samples were collected in Russia in the era before vaccination, until
2021. The main demographic and clinical characteristics of patients
are summarized in Table 1. The group with severe COVID-19
included 57 patients with severe/extremely severe course, while
the group with mild COVID-19 included 29 patients with mild/
moderate COVID-19. The two groups did not differ in demographic
indicators and pre-existing conditions. As expected, there were
differences in the number of patients admitted to the ICU,
requiring ventilation and having a more severe degree of lung
parenchyma lesion on CT. All deceased patients had severe
COVID-19 disease.

Overview of genetic landscape

A total of 2,504,482 genetic variants were identified in our
sample. After filtering, 1,983,390 variants remained; the number
of variants per person was 28,133.56 ± 914.86. The number of
unique variants, i.e., variants with unique identifiers (position and
alleles), was 116,932. These variants were located in 16,816 different
genes, among which 95.02% were eGenes expressed in an average of
18 tissues (Supplementary Table S2). The distribution of variants by
AF and various functional consequences is shown in Figure 1A.
Common variants (AF >0.01) were the most numerous; missense
variants predominated among variants with different functional
consequences. Among HI variants, the majority of variants (81%)
were in the heterozygous state, and more than half were represented
by frameshift variants (Supplementary Figure S1A). HI variants
without AF data included the greatest number of singletons
(Figure 1B). Maximum differences between patients with severe
versus non-severe COVID-19 were also observed in the proportions
of these variants (p = 6.90 × 10−16) (Figure 1C; Supplementary Table
S3). As expected, as the frequency of genetic variants decreased, so
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TABLE 1 Demographic and clinical characteristics of the COVID-19 patients.

Characteristics Severe COVID-19 (n = 57) Non-severe COVID-19 (n = 29) p-valuea

Demographic

Gender (Males) 32 (56.14%) 18 (62.07%) 0.649

Age (Mean ± SD) 59.6 ± 13.38 58.62 ± 22.86 0.537 (MWU)

Age (Range) 27–85 24–96 —

Pre-existing conditions

No comorbidity 1 (1.75%) 5 (17.24%) 0.015

Hypertension 40 (70.18%) 18 (62.07%) 0.474

Dyslipidemia 2 (3.51%) 0 (0%) 0.548

Hypercholesterolemia 1 (1.75%) 1 (3.45%) 1.000

Type 2 diabetes 20 (35.09%) 10 (34.48%) 1.000

Obesity 18 (31.58%) 8 (27.59%) 0.806

Cardiovascular disease 30 (52.63%) 12 (41.38%) 0.367

Neurological disease 5 (8.77%) 7 (24.14%) 0.096

Respiratory disease 10 (17.54%) 7 (24.14%) 0.569

oCOPD 1 (1.75%) 0 (0%) 1.000

oAsthma 1 (1.75%) 1 (3.45%) 1.000

Digestive/liver disease 14 (24.87%) 7 (24.14%) 1.000

Cancerb 3 (5.26%) 2 (6.9%) 1.000

Kidney disease 10 (17.54%) 2 (6.9%) 0.323

Management and clinical course

ICU 55 (96.49%) 12 (41.38%) 1.6 × 10−8

Ventilatory support 2.3 × 10−5 (LR)

Invasive ventilation 30 (52.63%) 1 (3.45%)

Non-invasive ventilation 1 (1.75%) 0 (0%)

Without ventilatory support 26 (45.61%) 28 (96.55%)

Hospitalization (mean ± SD of days) 17.95 ± 10.79 13.7 ± 5.9 0.265 (MWU)

Chest CT severity scoring 6.8 × 10−4 (LR for scores 0–4)

0 1 (1.75%) 1 (3.45%)

1 4 (7.02%) 9 (31.03%)

2 7 (12.28%) 9 (31.03%)

3 23 (40.35%) 10 (34.48%)

4 17 (29.82%) 0 (0%)

No data 5 (8.77%) 0 (0%)

Pneumonia 57 (100%) 28 (96.55%) 0.337

ARDS 18 (31.58%) 3 (10.34%) 0.035

Sepsis/septic shock 6 (10.53%) 0 (0%) 0.093

(Continued on following page)
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did the sets of overlapping genes in the two patient groups
(Supplementary Table S4). The number of HI variants per
individual was 217.39 ± 100.51, which is consistent with the
literature, according to which the number of HI variants per
individual can range from 100 to 800 variants (MacArthur et al.,
2012; 1000 Genomes Project, 20151000 Genomes Project
Consortium, 2015; Johnston et al., 2015; Lek et al., 2016). We
compared the AF in our sample with frequencies from

population databases. The internal frequencies in the entire
sample (Figure 1D) and in the major variant types (HI, missense,
and synonymous) (Supplementary Figure S1B) were consistent with
the population data. The frequencies of variants in bins AF <
0.001 and without AF data were similar, but in the latter case the
scatter of the data was smaller. There were no significant
associations of individual variants with COVID-19 severity
(Figure 1E). The quantile-quantile (Q-Q) plot showed deflation

FIGURE 1
| Exome data. (A) Distribution of variants by allele frequency (AF) bins according to population databases and different functional consequences. (B)
Distribution of variants by number of singletons. (C) Proportion of variants with different AF and functional consequences in patients with severe and non-
severe COVID-19. (D)Raincloud plot to compare internal AFwith data frompopulation databases, including three subplots for different AF bins with cloud
for data kernel density—half violin, umbrella for boxplot, rain for data points below the cloud and flash for connection lines between means. The
mean and SD of the internal AF for the AF bins are shown in the table. (E)Manhattan plot of association p values for COVID-19 Severity. Genes passing the
threshold 1.0 × 10−4 are displayed in the table. The significant exome-wide p-value is 4.28 × 10−7 (Bonferroni correction: 0.05/116,932). Manhattan plot
and raincloud plot were constructed using https://www.bioinformatics.com.cn/en, a free online platform for data analysis and visualization. (F)Quantile-
Quantile (QQ) plot of association results for variants from different AF bins.

TABLE 1 (Continued) Demographic and clinical characteristics of the COVID-19 patients.

Characteristics Severe COVID-19 (n = 57) Non-severe COVID-19 (n = 29) p-valuea

Outcome

Recovered 23 (40.35%) 29 (100%) 2.7 × 10−8

Deceased 31 (54.39%) 0 (0%)

No data (transfer to another hospital) 3 (5.26%) 0 (0%)

aThe exact two-tailed Fisher test unless otherwise indicated in parentheses.
bComplete remission [Severe COVID, group: lung cancer (1), kidney cancer (1), uterine cancer (1); non-severe COVID, group: lung cancer (1), rectal cancer (1)]. LR, the likelihood ratio χ2 test;

MWU, the Mann–Whitney U test. Significant results with a p-value threshold of 2.1 × 10−3 to account for multiple testing are highlighted in bold.
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of the observed p values, which means that our sample size is
insufficient to analyze and interpret the results at the level of
individual genetic variants (Figure 1F). Deflation increased in
subsets of variants in different AF bins as AF decreased. These
results reflect the low number of minor allele counts and an excess of
singletons (Figure 1B) and are consistent with the literature
(Kosmicki et al., 2021b).

Principal component analysis (PCA) showed that our cohort
(sampled in Russia), with the exception of seven samples, clusters
together with the European superpopulation (Supplementary Figure
S2). We also compared AF in our sample with the data in the
ESPOSITO database. This resource, developed by CEINGE
researchers, contains data derived from whole-exome sequencing of
more than 1,000 subjects infected with SARS-CoV-2. ESPOSITO-
COVID (espocovid.ceinge.unina.it/) includes variant frequencies in
individuals from southern Italy with asymptomatic and severe
COVID-19 (D’Alterio et al., 2022). Of the 64,839 overlapping
variants in our sample and in the ESPOSITO-COVID database, the
vast majority of variants had similar frequencies (Supplementary Table
S5). At significance thresholds of less than 0.05 and 0.01, there were
264 and 35 overlapping variants in both data sets, for which
unidirectional effects occurred in 60.6% and 68.6%of cases, respectively.

Distribution of rare and pathogenic/likely
pathogenic (P/LP) variants between severe
and non-severe COVID-19 groups

Our primary analysis focused on comparing the burden of rare
HI, missense and synonymous variants in individuals with severe
and non-severe COVID-19 (Figure 2). We did not limit the study to
considering eGenes, since only a small part of the genes in our study
were not eGenes, and, according to GTEx, the detection of eGenes
strongly depends on the sample size (GTEx Consortium, 2017), so as
the GTEx project develops, we can expect an expansion of the
eGenes list. We found that individuals with severe COVID-19 had a

significantly higher burden of variants belonging to bins with
AF <0.001 and no AF data, while the signal was absent for less
rare variants from bin with AF ≤0.001 to ≤0.01. The effect size was
higher for the HI variants, then for the missense variants, and the
smallest effect size was observed for the synonymous variants. Thus,
the analysis of the entire set of exome variants showed a significant
increase in the burden for variants without AF data, with a
maximum effect size for HI variants that was 3.5 times higher
per person in severe compared to non-severe COVID-19 patients.

Next, we repeated this analysis by excluding all singletons
(Supplementary Figure S3). In a significantly reduced sample, the
results were essentially unchanged. We observed a significantly
higher burden of HI variants related to bin with AF <0.001 and
HI and missense variants without AF data in severe patients
compared with non-severe COVID-19 patients.

As PCA showed that seven samples from our cohort did not
cluster together with the rest, we removed them and repeated the
association analysis without them (Supplementary Figure S4). The
results were consistent with those for the entire sample.

We also examined the distribution of P/LP variants from the
ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/, assessed
12 December 2022) in patients from the two groups. We found
175 overlapping P/LP variants in 167 genes whose distribution did
not differ between patients with different COVID-19 severity (p = 0.
15, OR = 0.88, 95% CI 0.73–1.04).

Analysis in the subgroups of patients
stratified by gender, age and comorbidities

Because the internal AF for variants assigned to bins with
AF <0.001 and no AF data were similar (Figure 1C; Supplementary
Figure S1B) and there was a significant increase in these variants in
severe patients with COVID-19 compared to non-severe patients
(Figure 2), we combined these variants into one set, termed rare
variants, for subsequent analysis. Given the high burden of rare

FIGURE 2
| Burden of rare HI, missense, and synonymous variants in 57 individuals with severe COVID-19 and 29 individuals with non-severe COVID-19. Odds
ratios and horizontal bars denoting 95% confidence intervals are shown. The number of variants/number of genes for each set of variants is shown in
parentheses. The left subplot shows the distribution of variants per individual using a 100% stacked bar chart. The absolute numbers of variants per
individual for each set of variants are indicated. Significant p-value threshold is 5.21 × 10−4.
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variants in severe COVID-19, we expect that analysis of relatively large
subsets of patients, genes, and variants should also show enrichment of
these variants in severe COVID-19, in which case we can compare effect
sizes. We divided the groups of patients by gender and age. There were
32 men and 25 women with severe disease, 13 patients ≥70 years old
and 44 patients <70 years old; there were 18 men and 11 women with
non-severe disease, 9 patients ≥70 years old and 20 patients <70 years
old. For all strata, the analysis showed highly significant results. The
greatest effects were observed for HI variants, followed by missense
variants. In the group with severe versus non-severe COVID-19, the
burden of rare variants was higher in women than in men and in
patients ≥70 years old compared to patients <70 years old (Figure 3). In
the group with the highest association signal (age ≥70 years), the
proportion of HI variants in patients with severe disease was
5 times higher than in patients with non-severe disease, who had
the lowest number of HI variants per person, only 17.3.

We also examined the burden of rare HI variants in subgroups of
patients with obesity, type 2 diabetes, and hypertension. We
observed significant enrichment for these variants in all three

subgroups of patients with severe COVID-19, with the lowest
signal found in the obese subgroup (Figure 3).

Rare variant burden in intolerant genes in
severe COVID-19

We performed a burden test in two sets of intolerant genes:
genes with a high probability of being loss-of-function intolerant,
i.e., intolerant to HI variations (pLI score >0.9) and genes intolerant
to missense variations (missense Z score >3.09) (Figure 4;
Supplementary Table S2). The highest burden of rare HI variants
was found in genes with a pLI score >0.9, followed by genes with a
missense Z score >3.09. We used two tools to select potentially
damaging missense variants in genes intolerant to missense
variations. The missense tolerance ratio, MDR tool predicts the
sensitivity of gene regions to missense variants, which may, for
example, include regions corresponding to key protein domains
(Silk et al., 2019). The rare exome variant ensemble learner, REVEL

FIGURE 3
| Burden of rare HI, missense, and synonymous variants in subgroups with severe and non-severe COVID-19 formed by gender, age and
comorbidities. Odds ratios and horizontal bars denoting 95% confidence intervals are shown. The number of variants/number of genes for each set of
variants is shown in parentheses. The left subplot shows the distribution of variants per individual using a 100% stacked bar chart. The absolute numbers of
variants per individual for each set of variants are indicated. Significant p-value threshold is 5.21 × 10−4.
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tool predicts variant pathogenicity, maximizing sensitivity and
specificity to predict deleteriousness (Ioannidis et al., 2016). MTR
FDR <0.1 and REVEL score >0.5 were used as thresholds. In
missense-intolerant genes, we observed a stronger association
signal for missense variants in gene regions with subgenic
intolerance (MTR FDR <0.1) compared to missense variants in
other gene regions (MTR FDR ≥0.1). We also found a higher burden
of damaging missense variants (REVEL >0.5) compared to rare
missense variants with a REVEL score ≤0.5. Combining these
predictors further amplified the effect, but because the set of
variants became much smaller, the statistical significance did not
pass the experiment-wise p-value threshold 5.21 × 10−4.
Summarizing these results, we can conclude that the more
intolerant the genes are to variations and the more pathogenic
these variations are, the larger the effect size when comparing groups
of patients with different courses of COVID-19.

Rare HI variant burden in selected gene sets
in severe COVID-19

We tested the burden of rare HI variants in several sets of genes
that may be biologically important and interpretable in the context

of the development and course of acute infection (Figure 5;
Supplementary Table S2). The highest association signal was
observed in the PID-related gene set (n = 71), followed by the
signal observed in genes essential for life (n = 562). In these two sets
of genes, the association signals were higher than in the entire set of
genes with rare HI variants (n = 2926). The other two gene sets
representing the cytokine network (n = 31) and the updated list of
genes associated with SARS-CoV-2 infection and/or COVID-19
disease from the GENCODE project (n = 48) showed no
significant enrichment, but we cannot rule out that this result is
due to too small a sample size.

We also compared the burden of rare HI variants for gene sets
associated with specific systemic diseases (Figure 5). The highest
association signal was observed in the immune disease gene set (n =
297), which included 69 PID genes representing 23.2% of all
immune genes. The second strongest association signal was in
the respiratory disease gene set (n = 386), followed by the
nervous system disease gene set (n = 752). Notably, the weakest
effect was found for the neoplastic disease gene set (n = 676). Rare HI
variants were 2.9, 3.9, and 2.8 times higher per person in severe
compared with non-severe COVID-19 patients across the all-disease
gene set, immune disease genes, and neoplastic disease genes,
respectively.

FIGURE 4
| Burden of rare variants in intolerant genes. Odds ratios and horizontal bars denoting 95% confidence intervals are shown. The number of variants/
number of genes for each set of variants is shown in parentheses. The left subplot shows the distribution of variants per individual using a 100% stacked
bar chart. The absolute numbers of variants per individual for each set of variants are indicated. Significant p-value threshold is 5.21 × 10−4.
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Gene-based qualifying variant collapsing
analysis

We used a collapsing method to aggregate information across
genes to amplify the signal from QVs (Supplementary Table S6). In
none of the six series of rare HI variants, missense REVEL >0.5 and
HI + missense REVEL >0.5 and the same series of QVs with any AF
in the HIS genes, we found results with significance levels <1 × 10−4.
No individual gene in our study can be considered as a candidate
gene in a gene-level burden test.

Discussion

In this study, we performed whole-exome sequencing to
compare the distribution of rare genetic variations between
patients with severe and mild/moderate course of COVID-19. In
our cohort, patients with severe COVID-19 had an excess of rare
variants at the whole-exome level. The burden of rare variants was
higher in women than in men and in patients aged ≥70 years
compared to patients aged <70 years. The excess of rare HI
variants in severe COVID-19 was also observed in subgroups of
patients with obesity, type 2 diabetes, and hypertension. Restriction
to genes intolerant to HI or damaging missense variants increased
the enrichment for these classes of variants in severe versus non-
severe COVID-19. Analysis of rare HI variants in different gene sets
showed the maximum burden effect size for PID genes followed by

essential genes; among gene sets associated with diseases of various
body systems, the highest enrichment levels were obtained for the
immune and respiratory disease genes, while the least pronounced
association signal was recorded for genes associated with neoplasia.
Because major studies of host genetics in COVID-19 patients have
focused on individual SNPs, genes, and pathway-level associations,
which are limited to a relatively small number of predominantly
“core” genes (Zhang et al., 2020; Kosmicki et al., 2021a; López-
Rodríguez et al., 2022; Shcherbak et al., 2022) our study can be
viewed as the first experimental work within the omnigenic model of
polygenic heritability (Mathieson, 2021) in severe COVID-19.

The multifactorial and polygenic nature of COVID-19 has been
extensively studied (Casanova et al., 2020). In addition to age, sex,
and comorbidity, factors associated with this disease include socio-
economic status and race/ethnicity (Webb Hooper et al., 2020).
GWAS and exome sequencing studies have shown complex
polygenic architecture of COVID-19. Immune system genes,
primarily those involved in the interferon type I (IFN) signaling
pathway, and genes related to lung function/respiratory disease were
identified as key players in determining disease severity (Severe
Covid-19 GWAS Group, et al., 2020; Zhang et al., 2020; COVID-19
Host Genetics Initiative, 2021; Pairo-Castineira et al., 2021).
However, COVID-19 is a complex multisystem disease, and the
complex traits are products of multiple genes that interact with each
other in complex ways (Mathieson, 2021). Many more genes are
expected to be involved in COVID-19 than the dozens reported thus
far. These genes are likely to include a relatively small number of

FIGURE 5
| Burden of rare HI variants in selected gene sets. Odds ratios and horizontal bars denoting 95% confidence intervals are shown. The number of
variants/number of genes for each set of variants is shown in parentheses. The left subplot shows the distribution of variants per individual using a 100%
stacked bar chart. The absolute numbers of variants per individual for each set of variants are indicated. Significant p-value threshold is 5.21 × 10−4.
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core genes and a much larger number of peripheral genes carrying
both common and rare variants (Fallerini et al., 2022; Zguro et al.,
2022).

In our sample, the burden of rare variants in severe versus non-
severe COVID-19 decreased in the series HI > missense >
synonymous variants. These results seem reasonable because HI
variants include variants with presumably disruptive impact in the
protein, missense variant pathogenicity depends on an amino acid
change and a protein domain affected, while synonymous variants
are often considered neutral. However, synonymous variants can
also be functional because they can disrupt transcription, splicing,
co-translational folding, mRNA stability, and can modulate gene
expression by affecting transcription and splicing regulatory factors
in protein-coding regions [reviewed in (Zeng and Bromberg, 2019)].

The magnitude of the difference between severe and non-severe
COVID-19 was assessed in different age and sex groups and in
subgroups of patients with common comorbidities of severe
COVID-19, in particular, obesity, type 2 diabetes, and
hypertension (Bailly et al., 2022). The burden of rare most
notably HI variants was higher in women than in men and in
elderly patients compared to younger ones. Biological sex modulates
the response to a number of infections, including SARS-CoV-
2 infection, with men being at much greater risk of severe
infection and adverse outcome than women (Takahashi et al.,
2020). One explanation may be a stronger antiviral innate
interferon response and higher levels of adaptive immunity to
viral antigens in women (Peckham et al., 2020), because the
TLR7 gene, which is a sensor for viral RNA, is located on the X
chromosome, thus contributing to sex bias in disease severity due to
a gene dosage effect (Webb et al., 2019). Sex hormones can also affect
sex-related differences in COVID-19 severity (Brandi, 2022). Given
the gender disparity in the severity of COVID-19, an additional risk
factor for the development of severe disease, that is, the burden of
rare variants, should be stronger in women than in men. Regarding
age, we observed an inverse association effect, i.e., an increased
signal of the damaging rare variants in older patients, who are more
susceptible to severe COVID-19. Age is the most important risk
factor for the development of severe COVID-19 (Brodin, 2021).
Ageing has a profound detrimental impact on almost all features of
immune system. Presence of systemic basal mediators of
inflammation increases with aging, and this occurs independently
of acute immune challenges. This persistent, low-level, chronic
inflammation is thought to be responsible for many of the
chronic diseases associated with aging as well as a major
contributor to immunosenescence. The serious consequences of
SARS-CoV-2 infection are probably caused by a pathological
hyperinflammatory response triggering tissue damage, vascular
leakage, systemic cytokine storm and thrombosis. The elderly
immune system may be vulnerable to such severe consequences,
particularly because of defects in type I IFN production and
signaling, impared T cell responses and dysregulated interactions
between neutrophils and monocytes promoting excessive
inflammation (Brodin, 2021). Because of abnormalities in
regulatory pathways, an excess of rare variants can further
weaken the aging immune system’s ability to resist infections,
causing uncontrolled inflammation. In the elderly group, the
association effect was enhanced not only because of the presence
of a large number of QVs in severe patients, but also because of a

small number of these variants in patients with non-severe COVID-
19. Since the burden of rare variants may be associated with chronic
diseases (Ganna et al., 2018; Farhan et al., 2019; Xu et al., 2021;
Zoghbi et al., 2021) and their severity and younger age of
manifestation (Ganna et al., 2018), a genetic landscape with
minimal numbers of rare variants may be associated with healthy
aging and absence of comorbidities aggravating the course of
COVID-19. Regarding comorbid conditions, overrepresentation
of rare HI variants was found in all three subgroups of patients
with severe COVID-19, with the lowest signal observed in the obese
subgroup. The resulting differences may be largely random, but they
may also reflect a greater contribution of a non-genetic component
to the development of more severe disease in obese patients, as
obesity reduces lung capacity and reserve, making ventilation
difficult (Simonnet et al., 2020).

Intolerant genes are depleted by functional variation (HI and
missense) in healthy populations and are subject to negative
selection because they are associated with reduced fecundity
(Gardner et al., 2022). In severe COVID-19 patients, an
increased burden of QVs was observed in genes with specific
cutoffs for intolerance to HI and missense variants. Selection of
the most dangerous missense variants further strengthened the
association signal. Because the results were obtained in
independent strata of QVs, they can be considered confirming of
each other in demonstrating the role of functional rare variants in
severe COVID-19.

PID-related genes can be discussed as key genes for COVID-19
severity. In a recent systematic review involving data on 459 PID
patients with COVID-19, the mortality rate was 9%, the
hospitalization rate was 49%, and the oxygen use rate was 29%
(Drzymalla et al., 2022), which is tens of times higher than in the
general population (https://www.statista.com/statistics/1087466/
covid19-cases-recoveries-deaths-worldwide/). Patients with
cellular immunodeficiency and immune dysregulation may be
more vulnerable to a severe disease course, but disease severity
cannot be predicted for all people with PID, primarily because of the
complex interplay between different immune branches (Delavari
et al., 2021) and the incomplete penetrance and variable expressivity
common in PID (Gruber and Bogunovic. 2020). Essential-for-life
genes, which also showed an increased excess of rare HI variants in
severe COVID-19, are enriched in genes intolerant to HI variants
and disease genes (Dickinson et al., 2016), which are often
overexpressed in disease-related tissues and exhibit high levels of
network connectivity (Kolobkov et al., 2022). We can hypothesize
that essential genes can be mutually regulated with more genes with
fewer steps required to influence the core genes. Regarding the
excess of rare HI variants in a number of disease genes, it should be
noted that the first two most pronounced association signals were
observed for genes of the immune and respiratory systems,
i.e., systems predominantly involved in inflammation in SARS-
CoV-2 infection (Pairo-Castineira, et al., 2021; Ramos-Casals
et al., 2021).

The main limitation of the study is the rather small sample size,
which may be subject to several types of bias. The test has
insufficient power to identify candidate genes in gene-level
burden tests to compare the results with those in the literature.
We cannot rule out that association effects may be influenced by a
limited number of high-penetrant variants in a subgroup of severe
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patients, but it is more likely that, in accordance with the ideas of the
omnigenic model, the accumulation of weak effects of many rare
functional variants throughout the exome contributes to the overall
polygenic risk in patients with severe disease. This assumption is
supported by biologically plausible data from additional analyses.
The burden among rare and novel HI variants, missense, and
synonymous variants exhibited a similar pattern, with the most
significant signal found for novel HI variants. The greatest effect of
damaging rare variants was observed for genes intolerant to these
variants and potentially enriched for core COVID-19 genes (e.g.,
PID genes), and the smallest effect was found for genes that can be
classified as peripheral (e.g., genes associated with neoplasia).
However, a large number of genes cannot be strictly defined as
core or peripheral genes, but rather can be characterized as some
“intermediate” genes involved with greater or lesser efficiency in the
regulatory modulation of disease-specific pathophysiological
drivers.

In conclusion, our results are consistent with the hypothesis that
small genetic effects of many rare variants contribute to the overall
polygenic effect in severe COVID-19. Our study should be viewed as
preliminary, suggesting a possible direction of research on COVID-
19 phenotypes.
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SUPPLEMENTARY FIGURE S1
Characterization of variants from different AF bins. (A) Proportion of variants
from different AF bins and different functional consequences in patients with
severe and non-severe COVID-19. (B) Raincloud plots for HI, missense and
synonymous variants exhibiting internal AF in different AF bins according to
population databases. Each subplot for the AF bin includes cloud for core
density data, umbrella for boxplot, rain for data points below the cloud, and
flash for connecting lines between the mean values. The mean and SD of the
internal AF for the AF bins are shown in the table. Raincloud plots were
constructed using https://www.bioinformatics.com.cn/en, a free online
platform for data analysis and visualization.

SUPPLEMENTARY FIGURE S2
Principal component analysis with 1,000 Genomes Project Phase 3 data.
COVID-19 samples from our study (red) and 1,000 Genomes Phase
3 samples are plotted together based on principal components from
overlapping SNP data. Five super populations: EUR, European; EAS, East
Asian; AMR, Ad Mixed American; SAS, South Asian; AFR, African.

SUPPLEMENTARY FIGURE S3
Burden of rare HI, missense, and synonymous variants in 57 individuals with
severe COVID-19 and 29 individuals with non-severe COVID-19. All
singletons are excluded. Odds ratios and horizontal bars denoting 95%
confidence intervals are shown. The number of variants/number of genes
for each set of variants is shown in parentheses. The left subplot shows the
distribution of variants per individual using a 100% stacked bar chart. The
absolute numbers of variants per individual for each set of variants are
indicated. Significant p-value threshold is 5.21 × 10−4.

SUPPLEMENTARY FIGURE S4
Burden of rare HI, missense, and synonymous variants in 52 individuals with
severe COVID-19 and 27 individuals with non-severe COVID-19. Seven
specimens identified as not belonging to the European superpopulation
were excluded. Odds ratios and horizontal bars denoting 95% confidence
intervals are shown. The number of variants/number of genes for each set of
variants is shown in parentheses. The left subplot shows the distribution of
variants per individual using a 100% stacked bar chart. The absolute numbers
of variants per individual for each set of variants are indicated. Significant
p-value threshold is 5.21 × 10−4.
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