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Background: Gastric intestinal metaplasia (IM) is the key link of gastric
precancerous lesions. Ferroptosis is a novel form of programmed cell death.
However, its impact on IM is unclear. The focus of this study is to identify and verify
ferroptosis-related genes (FRGs) that may be involved in IM by bioinformatics
analysis.

Materials and methods: Differentially expressed genes (DEGs) were obtained
from microarray dataset GSE60427 and GSE78523 downloaded from Gene
Expression Omnibus (GEO) database. Differentially expressed ferroptosis-
related genes (DEFRGs) were obtained from overlapping genes of DEGs and
FRGs got from FerrDb. DAVID database was used for functional enrichment
analysis. Protein-protein interaction (PPI) analysis and Cytoscape software were
used to screen hub gene. In addition, we built a receiver operating characteristic
(ROC) curve and verified the relative mRNA expression by quantitative reverse
transcription-polymerase chain reaction (qRT-PCR). Finally, the CIBERSORT
algorithm was used to analyze the immune infiltration in IM.

Results: First, a total of 17 DEFRGs were identified. Second, a gene module
identified by Cytoscape software was considered as hub gene: PTGS2, HMOX1,
IFNG, and NOS2. Third, ROC analysis showed that HMOX1 and NOS2 had good
diagnostic characteristics. qRT-PCR experiments confirmed the differential
expression of HMOX1 in IM and normal gastric tissues. Finally, immunoassay
showed that the proportion of T cells regulatory (Tregs) and macrophages
M0 in IM was relatively higher, while the proportion of T cells CD4 memory
activated and dendritic cells activated was lower.

Conclusion: We found significant associations between FRGs and IM, and
HMOX1 may be diagnostic biomarkers and therapeutic targets for IM. These
results may enhance our understanding of IM andmay contribute to its treatment.
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1 Introduction

Gastric cancer (GC) is one of the most common cancer and a
cause of death worldwide. According to statistics from the World
Health Organization (WHO) in 2020 (Sung et al., 2021), the
incidence of GC ranks fifth in all kinds of cancer in the world,
and it is the fourth leading cause of cancer-related death. The
development of GC is a gradual process, and its histological
progression was first described by Correa and Piazuelo (2012).
GC’s histological progression called Correa cascade reaction of
gastric carcinogenesis, shows the histological pathway from
normal gastric mucosa to gastric cancer (normal gastric mucosa
→ non-atrophic gastritis → atrophic gastritis → intestinal
metaplasia (IM) → dysplasia → gastric cancer). IM is the key
link of gastric precancerous lesions and is regarded as an
important inducer for the development of intestinal-type GC
(Kinoshita et al., 2017; Shao et al., 2018). Gastric intestinal
metaplasia (GIM) defined as that the gastric columnar cells are
replaced by intestinal morphology cells, is characterized by the
mucin-containing goblet, Paneth and absorptive cells, causing
normal gastric mucosal epithelium and surrounding glands
replaced by intestinal epithelium and glands (Shah et al., 2020a).
Based on a comprehensive systematic review, Gastric IM is
associated with the baseline gastric cancer risk (annually 0.16%)
(Gawron et al., 2020). With the development of chronic mucosal
inflammation, IM is considered as a response to injury, but we know
little about its mechanism (Goldenring and Mills, 2022). Now, there
is no specific treatment for IM. Regular surveillance in high-risk
patients and the prevention of IM is one of the main management
methods recommended by the guidelines (Shah et al., 2020b).
Therefore, a more comprehensive understanding of IM and
proper monitoring of IM patients may improve GC-related
morbidity and mortality.

Ferroptosis is an iron-dependent form of regulated cell death
driven by the lethal accumulation of lipid peroxidation (Dixon et al.,
2012). Ferroptosis plays a role in the development and progression

of many diseases, including cancer, necroinflammatory disorders,
and many organ damages and degenerative changes (Jiang et al.,
2021). Previous studies have revealed the important role of
ferroptosis in GC (Zhang et al., 2020; Liu et al., 2021; Gu et al.,
2022). Ferroptosis plays an important regulatory role in the
development of malignant tumors such as proliferation, invasion
andmetastasis of GC (Guan et al., 2022; Lu et al., 2022). However, no
attention has been reported to the role of ferroptosis in gastric
precancerous lesions, let alone in IM. Therefore, the purpose of this
study is to explore the role of ferroptosis-related genes (FRGs) in IM
through bioinformatics analysis, and to analyze and verify the
accuracy of related gene diagnosis models as IM biomarkers.

2 Materials and methods

2.1 Data collection

Figure 1 shows the flow chart of our study. The gene expression
data of IM and normal samples were obtained from Gene
Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.
gov/geo/). GSE60427 contained 16 normal samples and 8 IM
samples, and was used as a training set for subsequent analysis.
GSE78523 contained 15 normal samples and 30 IM samples, and
was used to verify the expression of the marker genes. In addition,
the FRGs used in this study were derived from the FerrDb database
(Zhou and Bao, 2020) (http://www.zhounan.org/ferrdb).

2.2 Identification of differently expressed
ferroptosis-related genes

The “limma” package in R software was used to screen
differentially expressed genes (DEGs) between IM and normal
subjects. The screening criterion was adjusted p < 0.05 and |
log2FC| ≥ 1. We selected overlapping DEGs of FRGs as
differently expressed ferroptosis-related genes (DEFRGs).
“volcano” and “heatmap” R packages were used to visualize
differential genes.

2.3 Functional enrichment analysis

The DAVID database (https://david.ncifcrf.gov/) was used for
GO biological processes analysis, including molecular function
(MF), biological process (BP) and cellular component (CC), and
KEGG pathway enrichment analysis of the above differentially
expressed genes, with p < 0.05 as the screening threshold.

2.4 Protein-protein interaction network and
identification of hub genes

The STRING online website (https://string-db.org/) was used to
build a DEFRGs interaction network, with moderate confidence (0.
4) as the required minimum interaction score. Then the results of
STRING were imported into Cytoscape, and the hub genes were
extracted by MCODE plug-in and cytoHubba plug-in.

FIGURE 1
Flowchart of the study.
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2.5 Collection of tissue specimens

We collected 5 GIM and 5 healthy gastric tissue samples from
patients in the Second Affiliated Hospital of Anhui University of
Chinese Medicine. All patients understood the nature of the study
and signed the informed consent form before participating in the
study. The Ethics Committee of the Second Affiliated Hospital of
Anhui University of Chinese Medicine reviewed and approved this
study.

2.6 Real-time quantitative reverse
transcription PCR

Total RNA was extracted from each sample by using Trizol
reagent (Life technogies, Shanghai, China). Reverse transcription
was performed with gDNA Eraser kit (TaKaRa, Beijing, China).

qRT-PCR primers were provided by Sangon Biotech (China). The
primer sequences were described by Table 1. β-Actin gene was used
as an internal control. 2−ΔΔCt comparison method was used for
relative quantification.

2.7 Immune infiltration analysis

To evaluate the function of immune microenvironment in IM
formation, we used CIBERSORT algorithm (Newman et al., 2015) to
quantify the relative abundance of 22 types of infiltrating immune
cells in IM and normal samples. Wilcoxon rank sum test was used to
compare the difference of immune infiltration between IM patients
and normal samples. Spearman correlation analysis was performed
to show the association between hub gene and differential
infiltrating immune cells.

3 Results

3.1 Detection of DEFRGs

The total mRNA of GSE60427 was 46,204. The “limma” package
in R software was used to analyze the differential expression of IM
and normal controls. According to the predetermined threshold (|
log2FC| ≥ 1 and adjusted p < 0.05), we identified 833 DEGs from
GSE60427 (Figure 2A), including 517 upregulated genes and
316 downregulated genes. In order to identify DEGs related to
ferroptosis, 378 data sets of ferroptosis-related gene were obtained
from FerrDb database. Finally, 17 DEFRGs (Figure 2B) were selected

TABLE 1 PCR primer sequences.

Gene Forward primer Reverse primer

(5′→3′) (5′→3′)

β-Actin CCCTGGAGAAGAGCT
ACGAG

GGAAGGAAGGCTGGA
AGAGT

HMOX1 TCTCTGGAAAGGAGG
AAGGA

AGGAACTGAGGATGC
TGAAG

NOS2 TGTAGCGAGTCGAAAACTGA GGGTAAGGACAGTCA
AACCA

FIGURE 2
Identification differentially expressed ferroptosis-associated genes. (A) Volcano plot of DEGs of GSE60427 (red: upregulated DEGs. green:
downregulated DEGs.) (B) After the intersection, 17 DEFRGs were identified based on the Venn diagram. (C)Heatmap of final DEFRGs (red: high
expression; blue: low expression).
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according to Venn diagram. The clustering heat map shows the
expression pattern of DEFRGs between samples (Figure 2C).

3.2 Functional enrichment analysis

In order to further understand the function of DEFRGs, GO
and KEGG Pathway enrichment analysis were performed. Go
analysis showed that the biological process (BP) was mainly
concentrated in: regulation of cell proliferation, regulation of
transcription from RNA polymerase II promoter in response to
stress, negative regulation of nitrogen compound metabolic
process, reactive oxygen species metabolic process, regulation
of DNA-emplated transcription in response to stress, negative
regulation of cellular metabolic process, cellular response to
external stimulus, negative regulation of metabolic process,
cell proliferation, response to hypoxia (Figure 3A). The main
CC included: membrane raft, membrane raft, membrane
microdomain, membrane region, plasma membrane region,
caveola, plasma membrane raft, senescence-associated
heterochromatin focus, intercellular canaliculus,

invadopodium membrane, nucleotide-activated protein kinase
complex (Figure 3B). The main MF included: protein
homodimerization activity, heme binding, tetrapyrrole
binding, oxidoreductase activity, acting on paired donors, with
incorporation or reduction of molecular oxygen, protein
dimerization activity, oxidoreductase activity, acting on
peroxide as acceptor, amino acid binding, antioxidant activity,
identical protein binding and oxidoreductase activity
(Figure 3C). The KEGG pathways were mainly concentrated
in: Leishmaniasis, Pathways in cancer, HIF-1 signaling
pathway, p53 signaling pathway, Salmonella infection, Small
cell lung cancer, IL-17 signaling pathway, MicroRNAs in
cancer, Chagas disease (American trypanosomiasis) and
Amoebiasis (Figure 3D).

3.3 Identification of key DEFRGs

To determine the interaction between DEFRGs, we used the
STRING database to build a PPI network with 14 nodes and 12 edges
(Figure 4A). And Cytoscape was used for the subsequent analysis of

FIGURE 3
GO and KEGG pathway enrichment analyses of DEFRGs. (A) Top 10 GO (gene ontology) biological processes pathway. (B) Top 10 GO cellular
component pathway. (C) Top 10 GO molecular function pathway. (D) Top 10 KEGG pathway.
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FIGURE 4
PPI network of ferroptosis DEFRGs. (A) The PPI among 17 differentially expressed ferroptosis-related genes. (B) Key module of the PPI network
screened by MCODE plugin. (C) Hub genes screened by cytoHubba plugin.

FIGURE 5
(A) Relative expression of PTGS2, HMOX1, IFNG, and NOS2 in GSE60427 dataset. (B) The receiver operating characteristic (ROC) curve of PTGS2,
HMOX1, IFNG and NOS2 in GSE60427 dataset. *p < 0.05; **p < 0.01; ***p < 0.001.
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PPI network. The MCODE plug-in identified a key module
(Figure 4B) with 4 nodes and 6 edges, including PTGS2,
HMOX1, IFNG, and NOS2. Then nine central genes (Figure 4C)
were analyzed and identified by MCC algorithm in cytoHubba plug-
in, including PTGS2, HMOX1, IFNG, NOS2, ATF3, CDKN2A,
DPP4, CA9, GJA1. The overlapping genes were considered as
hub genes: PTGS2, HMOX1, IFNG, and NOS2.

3.4 Performance of hub genes to
diagnose IM

In the training set (GSE60427), four hub genes related to
ferroptosis are significantly overexpressed in IM patients
compared with normal patients (Figure 5A). Figure 5B shows the
receiver operating characteristic (ROC) curve of PTGS2, HMOX1,
IFNG and NOS2 diagnosis of IM. The area under the ROC curve of
IM diagnosed by PTGS2 is 0.88 (95% CI 0.73–1.0), the area under
ROC curve of IM diagnosed by HMOX1 is 0.92 (95% CI 0.80–1.0),
the area under ROC curve of IFNG diagnosis of IM is 0.86 (95% CI
0.70–1.0), and the area under ROC curve of NOS2 diagnosis of IM is
0.87 (95% CI 0.71–1.0).

The verification set (GSE78523) included 15 normal subjects
and 30 IM patients, which were used to verify the above four hub
genes. The results show that the differential expression of
HMOX1 and NOS2 in GSE78523 dataset is statistically
significant (Figure 6A). The areas under the ROC curve of
PTGS2, HMOX1, IFNG, and NOS2 are 0.62, 0.94, 0.60, 0.79,
respectively (Figure 6B). The results of external verification
dataset show the validity and robustness of HMOX1 and
NOS2 genes.

3.5 qRT-PCR experiment

In order to further confirm the results of bioinformatics analysis,
we collected 5 normal gastric mucosa samples and 5 IM gastric
mucosa samples. Figure 7 shows that there are significant changes in
the expression levels of HMOX1 in normal gastric mucosa and IM
gastric mucosa (p < 0.05).

3.6 Survival analysis of HMOX1 gene

As we described earlier, IM is a key link in gastric precancerous
lesions, so we have reason to suspect that HMOX1 also plays a key
role in gastric cancer. In order to verify our conjecture, we used
Kaplan-Meier Plotter database to explore the effects of high and low
expression of HMOX1 gene on overall survival (OS) of patients with
gastric cancer. The results (Figure 8) shows that the patients with
high expression levels of HMOX1 gene have shorter OS (p < 0.05).

3.7 Immune infiltration landscapes

We used the CIBERSORT algorithm to analyze the difference of
immune cells between the IM group and the control group. Figures
9A, B shows 22 types of infiltrating immune cells. Compared with
the control group, the proportion of T cells regulatory (Tregs) and
macrophages M0 in the IM group are relatively high. On the
contrary, T cells CD4 memory activated and dendritic cells
activated are significantly lower in IM. The correlation between
central gene expression and differentially infiltrated immune cells is
shown in Figure 9C, in which B cells naive has a significantly positive

FIGURE 6
(A) Relative expression of PTGS2, HMOX1, IFNG, and NOS2 in GSE78523 dataset. (B) The receiver operating characteristic (ROC) curve of PTGS2,
HMOX1, IFNG, and NOS2 in GSE78523 dataset. *p < 0.05; ****p < 0.0001.

Frontiers in Genetics frontiersin.org06

Song et al. 10.3389/fgene.2023.1152414

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1152414


correlation with PTGS2 (r = 0.58) and IFNG (r = 0.72). T cells
CD4 memory resting is negatively correlated with IFNG (r = 0.49)
and NOS2 (r = 0.48). Macrophages M0 is positively correlated with
PTGS2 and NOS2, and positively correlated with IFNG.
Macrophages M1 has a significantly positive correlation with
IFNG and a positive correlation with PTGS2. Dendritic cells
resting is negatively correlated with HMOX1 and NOS2.

4 Discussion

Although IM is considered as an important inducer for the
development of intestinal GC (Kinoshita et al., 2017), the specific
mechanism of the occurrence and development of IM is not clear.
The occurrence of IM involves cell structural degeneration, activation of
progenitor cell-related genes and re-entry into the cell cycle (Willet et al.,
2018). Most people’s IM occurs in the context of chronic gastritis.
H.pylori (HP) infection is generally considered to be a major
influencing factor, which activates immune cells and causes DNA
damage and elevated levels of reactive oxygen species (ROS) (Kang
et al., 2022). Ferroptosis is a new form of non-apoptotic cell death,
which is iron-dependent and non-apoptotic cell death, characterized by
the accumulation of lipid-based ROS. Several studies (Sun et al., 2020;
Shao et al., 2021; Zhao et al., 2021) have proved that FRGs play a key
role in the occurrence and development of gastric cancer and can be
used to predict the prognosis and clinical status of gastric cancer
patients. However, the research on the role of ferroptosis in
precancerous lesions of gastric cancer, especially in IM is still blank.

This study explored the molecular characteristics of ferroptosis
associated with IM by analyzing the DEGs of IM cases compared with
healthy subjects. A total of 17 DEFRGs were obtained from
GSE60427 and FerrDb dataset. In addition, the GO terms and
pathway of the 17 DEFRGs were studied by GO and KEGG
analysis. GO analysis showed that these DEFRGs were significantly
enriched in reactive oxygen species metabolic process response to
hypoxia and oxidoreductase activity. It is suggested that these
DEFRGs are related to reactive oxygen species. Through KEGG
Pathway enrichment analysis, we observed that these genes were
enriched in Pathways in cancer, HIF-1 signaling pathway,

p53 signaling pathway and other signal pathways. HIF1A (Hypoxia
Inducible Factor 1 Subunit Alpha) is a transcription factor thatmediates
homeostatic responses to reduced oxygen availability in the
microenvironment. Studies have shown that (Yang et al., 2019) the
expression of HIF1A can limit the occurrence of ferroptosis. Ferroptosis
induced by targeting HIF1A in osteoclasts may be a newmethod for the
treatment of osteoporosis (Ni et al., 2021). P53 is the most widely
studied tumor suppressor gene and is considered to be involved in the
occurrence of cancer (Levine, 2020). Many studies have shown that
p53 is closely related to ferroptosis (Gnanapradeepan et al., 2018).
P53 has been demonstrated to promote cancer ferroptosis
predominantly via regulating SLC7A11 expression and cystine
uptake (Jiang et al., 2015). In addition, p53 gene mutation is an
important initiating factor in the occurrence and development of
GC (Lei et al., 2022). In the progression of gastric precancerous
lesions, the expression level of p53 increases gradually with the
progress of the disease from normal mucosa. P53 mutation is a key
event in the transition from IM to GC (Busuttil et al., 2014). The above
results are helpful to describe the pathways related to ferroptosis and
IM, which may increase our understanding of the IM mechanism.

After that, we analyzed 17 DEFRGs-built PPI networks by
Cytoscape. MCODE and cytoHubba plug-ins screened out a key
clustering module, and four genes (PTGS2, HMOX1, IFNG, NOS2)
may be closely related to the occurrence of IM. Among them, the area
under ROC curve and differential expression of HMOX1 and
NOS2 genes in training and verification set are significant.
HMOX1 is an essential enzyme in heme catabolism. The carbon
monoxide (CO) produced by it can protect the damaged gastric
mucosa (Bakalarz et al., 2021). In gastric cancer, low
HMOX1 expression promotes gastric cancer cell apoptosis, inhibits
proliferation and invasion, and correlates with increased overall survival
in gastric cancer patients (Ren et al., 2017). NOS2 encodes nitric oxide
synthase. NO plays an important role in normal gastric function by
controlling gastric blood flow and maintaining the integrity of gastric

FIGURE 8
The survival analysis of HMOX1 (p < 0.05; HR = 1.61).

FIGURE 7
The expression levels of the three FRGs between healthy control
group (n = 5) and IM group (n = 5). ****p < 0.0001.
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mucosal barrier (Magierowski et al., 2015). The change of NO
formation is related to the occurrence and progression of gastric
cancer. NO can induce DNA damage by inhibiting DNA repair

activity or directly modifying DNA structure (Tamir et al., 1996).
Exposure to exogenous NO donors or increased expression of
NOS2 can lead to the accumulation of p53 mutation (Forrester

FIGURE 9
Immune landscape analysis. (A) Bar charts of 22 immune cell proportions. (B)Differential immune cell infiltration between IM and control groups. (C)
Correlation between differentially infiltrated immune cells and hub genes.
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et al., 1996). At the same time, p53 can also negatively regulate
NOS2 expression. The loss of p53 function has been shown to
increase the expression of HMOX1 and help to increase tumor
growth (Wada et al., 2015). In gastric cancer, the increase of
NOS2 expression correlates with the decrease of survival rate
(Zhang et al., 2011) and disease stage (Wang et al., 2005).What’s
more, the expression of NOS2 is associated with metastasis of
gastric cancer and the increase of angiogenesis (de Oliveira et al.,
2017). These results suggest that HMOX1 and NOS2 play an
important role in the formation of IM.

The induction of the innate immune response of gastric epithelial
cells and myeloid cells by HP effectors plays a critical role in the
outcome of the infection (Gobert and Wilson, 2022). However, no
research has focused on the role of immune microenvironment in IM.
Therefore, we studied the infiltration of immune cells in IM by
CIBERSORT algorithm. The results showed that some immune cells
in IM were significantly different from those in normal gastric tissue.
Compared with normal stomach, the proportion of T cells regulatory
(Tregs) and macrophages M0 was relatively higher, while the
proportion of T cells CD4 memory activated and dendritic cells
activated was lower. At the same time, there was a correlation
between hub gene expression and differentiated infiltrating immune
cells. However, the exact mechanism of their interaction remains to be
further studied.

As far as we know, this is the first study to focus on the role of
ferroptosis in IM. However, this study still has its limitations. The
data we analyzed were downloaded from the GEO dataset, and
further prospective clinical studies are necessary to validate the
observations. For now, our study can provide a theoretical basis for
further exploration of ferroptosis-related phenotypes in IM studies.

5 Conclusion

In this study, we identified four bub genes (PTGS2, HMOX1, IFNG,
NOS2) related to ferroptosis in IM. Among them, HMOX1 has
diagnostic value and may be biomarkers and therapeutic targets for
the diagnosis of IM. This studymay help to understand the pathogenesis
of IM and to study the best treatment strategy for IM patients.
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