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Iron-sulfur (Fe-S) clusters are unique, redox-active co-factors ubiquitous
throughout cellular metabolism. Fe-S cluster synthesis, trafficking, and
coordination result from highly coordinated, evolutionarily conserved
biosynthetic processes. The initial Fe-S cluster synthesis occurs within the
mitochondria; however, the maturation of Fe-S clusters culminating in their
ultimate insertion into appropriate cytosolic/nuclear proteins is coordinated by
a late-acting cytosolic iron-sulfur assembly (CIA) complex in the cytosol. Several
nuclear proteins involved in DNA replication and repair interact with the CIA
complex and contain Fe-S clusters necessary for proper enzymatic activity.
Moreover, it is currently hypothesized that the late-acting CIA complex
regulates the maintenance of genome integrity and is an integral feature of
DNA metabolism. This review describes the late-acting CIA complex and
several [4Fe-4S] DNA metabolic enzymes associated with maintaining genome
stability.
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Introduction

Iron-sulfur (Fe-S) clusters are evolutionarily conserved co-factors ubiquitous throughout
biology. Fe-S clusters and Fe-S biogenesis are largely conserved throughout prokaryotic and
eukaryotic systems as mammalian Fe-S biogenesis enzymes have many shared features with
bacteria that have been proposed to be a central cellular feature passed down from
alphaproteobacterium (Freibert et al., 2017). Fe-S clusters exist inside proteins as either
a [2Fe-2S]+, [4Fe-4S]2+, or [3Fe-4S]+ clusters. Each cluster type is typically specific to the
enzymatic function of either 1) electron transfer, 2) enzyme catalysis, or 3) regulation of
biological processes (Saha et al., 2018). Fe-S cluster-containing enzymes control a wide array
of cellular functions, most notably mitochondrial respiration by the electron transport chain
(complex I, II, and II) (Read et al., 2021). However, Fe-S cluster enzymes and Fe-S
metabolism are involved in several other cellular processes including lipid metabolism,
protein translation, and DNA replication (Fuss et al., 2015; Mettert and Kiley, 2015; Braymer
and Lill, 2017; Crooks et al., 2018; Shi et al., 2021). Thus, synthesizing Fe-S clusters is critical
in maintaining global cellular homeostasis, underscored by the number of Fe-S-containing
enzymes involved in maintaining genome integrity.

The maintenance of genomic integrity is a critical feature of cellular homeostasis by
facilitating stable DNA replication with a low mutational burden and cell survival under
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stressed conditions. Due to its importance, there exists a highly
coordinated DNA metabolic network consisting of multi-faceted
DNA polymerases that not only replicate DNA during the S-phase
of the cell cycle but also facilitate DNA repair (Fuss et al., 2015; Shi
et al., 2021). At each level, these DNA metabolic features can be
altered by iron either chemically or metabolically. Thus, iron
metabolism should be considered an integral component of DNA
metabolism.

Due to its ability to catalyze oxidation reactions through either
Fenton chemistry or reactions with molecular oxygen, iron is
considered a chemical catalyst for site-specific DNA damage
(Wardman and Candeias, 1996; Qian and Buettner, 1999;
Kruszewski, 2003). For example, ferrous and ferric iron can
enhance both single and double-stranded DNA damage
associated with the radiolysis of H2O (Ambroz et al., 2001).
However, there are a large number of Fe-S-containing enzymes
within the DNA metabolic system (Fuss et al., 2015). Since the
discovery that MMS19 coordinates with DNA metabolic enzymes, a
foundational and mechanistic link between the late-acting CIA
complex and DNA metabolism has been established (Gari et al.,
2012; Stehling et al., 2012). Therefore, it can be postulated that Fe-S
biogenesis in total plays a critical role in DNA metabolism and the
maintenance of genome integrity. In this review, we provide an
overview of the insertion of a [4Fe-4S]2+cluster into cytosolic and
nuclear apo-proteins via the late-acting CIA complex, describe the
role of [4Fe-4S] cluster-containing enzymes in DNA metabolism,
and discuss the possible implications of this connection from the
systems biology of disease perspective.

Components of the late-acting
cytoplasmic iron-sulfur assembly (CIA)
complex

The first step of Fe-S biogenesis is de novo [2Fe-2S]+ synthesis
that occurs on the inner mitochondrial membrane using ISCU as a
scaffold. Following the completion of the [2Fe-2S]+ cluster synthesis
on the ISCU scaffold, the co-factor is trafficked to the late-acting
CIA complex for insertion into the appropriate apo-proteins. This is
a highly coordinated process that encompasses enzymes required for
[2Fe-2S]+ synthesis on ISCU (e.g., NFS1) along with [2Fe-2S]+

trafficking/ISCU recycling (e.g., HSC20/HSPA9). Following the
formation and trafficking of [4Fe-4S]2+ clusters, insertion into
appropriate intra- and extramitochondrial apo-proteins occur in
multiple distinct pathways. The primary focus of this review is on
the late-acting CIA complex. More extensive detail regarding de
novo Fe-S biogenesis can be found in (Petronek et al., 2021).

Extramitochondrial [4Fe-4S]2+ formation
and insertion into apo-proteins

Following completion of the de novo [2Fe-2S]+ cluster synthesis
on the ISCU scaffold, [4Fe-4S]2+ formation and trafficking are
required for insertion into DNA metabolic enzymes. Currently,
the formation and trafficking of [4Fe-4S]2+ clusters and their
biological implications are an active area of research and many
of the connection points require further investigation. Trafficking of

[4Fe-4S] clusters to cytosolic and nuclear apo-proteins are carried
out by the cytosolic iron-sulfur assembly (CIA) pathway (Figure 1).
This process begins with a necessary transfer of a [2Fe-2S]+ cluster
from the mitochondria to the cytosol. This initial transfer is
facilitated by ABCB7, a transmembrane protein that facilitates
the transfer of the cluster out of the mitochondria (Stehling and
Lill, 2013). Consistent with its proposed, exclusive role in the
maturation of [4Fe-4S] clusters, ABCB7 deletion has little effect
on mitochondrial [2Fe-2S]+ protein activity but results in
functionally deficient cytosolic and nuclear [4Fe-4S]2+ proteins
(Kispal et al., 1999; Pondarré et al., 2006; Miao et al., 2009). It
has been proposed that a glutathione-coordinated [2Fe-2S]+ cluster
([2Fe-2S](SG)4) is the natural substrate for ABCB7, and is thus,
represents the [2Fe-2S]+ cluster that is utilized by the CIAmachinery
(Qi et al., 2014; Li and Cowan, 2015) that allows for [4Fe-4S]2+

cluster formation to occur. However, there is still limited data
regarding the mechanism of Fe-S transfer out of the
mitochondria through ABCB7.

Cytosolic [4Fe-4S]2+ cluster biogenesis in eukaryotes is a
complex process that remains an active area of investigation.
This process is proposed to be initiated by the outer
mitochondrial membrane-bound NEET proteins, which transfer
the [2Fe-2S] cluster to the CIA assembly factors for MMS19-
mediated insertion into target apo-proteins, however, this
hypothesis remains an active area of research. MitoNEET
(CISD1) and NAF-1 (CISD2) are [2Fe-2S]+ proteins located on
the outer membrane of the mitochondria that aid in the maturation
of extramitochondrial Fe-S proteins (Mittler et al., 2019). Both
CISD1 and CISD2 can transfer their [2Fe-2S] cluster to
anamorsin (CIAPIN1) of the CIA complex; however, their
function has not been definitively elucidated (Lipper et al., 2015).
The CIAPIN1/NDOR1 complex directly interacts with mitoNEET
(CISD1) to reduce the [2Fe-2S]+ cluster (Camponeschi et al., 2017)
as the flavorprotein NDOR1 uses an electron from NADPH to
reduce the [2Fe-2S]+ cluster (Netz et al., 2010). This reduction step
makes the cluster labile and thus provides a [2Fe-2S]+ cluster
substrate is available for [4Fe-4S]2+ formation.

[4Fe-4S]2+ cluster formation occurs on the NUBP1-NUBP2 scaffold
(Roy et al., 2003; Hausmann et al., 2005; Netz et al., 2012a; Pallesen et al.,
2013) where the [2Fe-2S]+ cluster of the CIAPIN1/NDOR1 complex is
transferred via GLRX3 to NUBP1-NUBP2 (Camponeschi et al., 2020).
GLRX3 can bind two [2Fe-2S]+ clusters and thus, GLRX3-[2Fe-2S]2 can
utilize glutathione to transfer the cluster to NUBP1 for [4Fe-4S]2+ cluster
formation. NUBP1 and NUBP2 contain conserved cysteine residues at
their C-terminal domain to coordinate a bridging [4Fe-4S]2+ cluster
(Netz et al., 2012a). However, the [4Fe-4S]2+ cluster formed on the
NUBP1-NUBP2 complex is also CIAO3-dependent (Balk et al., 2005).
Similarly, CIAO3 is believed to be involved because it contains conserved
cysteine motifs at its N- and C-terminal domains for Fe-S binding
(Urzica et al., 2009).

Following the formation of a [4Fe-4S]2+ cluster on the NUBP1-
NUBP2-CIAO3 complex, it can be transferred to the appropriate
apo-proteins by the late-acting CIA complex. This process occurs
through MMS19. MMS19 is able to form a complex with CIOA1,
CIAO2B, AND CIAO3 to make up the CIA targeting complex (Gari
et al., 2012). The completed [4Fe-4S]2+ cluster is hypothesized to
transferred to the CIA targeting complex (CIAO1, CIAO2B, and
MMS19) by CIAO3 (Kassube and Thomä, 2020), but further data is
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required to illuminate the role of CIAO3 as a mediator of cluster
transfer. CIAO2B and CIAO1 associate with the C-terminus of
MMS19 to form a docking site for cytosolic and nuclear apo-
proteins, however XPD has been observed to directly interact
with MMS19 (Odermatt and Gari, 2017). Interestingly,
MMS19 binding prevents CIAO2B proteasomal degradation as
an apparent feedback regulatory mechanism to maintain CIA
stability (Seki et al., 2013).

When considering the regulation of DNA metabolism, MMS19 is
the main connection point asMMS19 serves as a scaffold for the transfer
of the completed [4Fe-4S] cluster to the appropriate apo-protein.
MMS19 has a docking site that allows it to directly interact with
[4Fe-4S]2+ containing DNA metabolic proteins necessary for
maintaining genomic stability (Gari et al., 2012). To underscore the
importance of MMS19 as a regulatory component of DNA metabolism,
MMS19 knockdown has been observed to result in decreased XPD,
FANCJ, and DNA polymerase expression. Furthermore,
MMS19 depletion strongly decreases the expression of the
POLD1 subunit of DNA polymerase δ (Stehling et al., 2012). Thus, it
appears that the late-acting CIA-complex, culminating in the insertion of
a [4Fe-4S]2+ cluster into nuclear apo-proteins usingMMS19 as a scaffold,
is a critical regulatory step in ensuring that [4Fe-4S]2+ cluster-containing
DNA metabolic enzymes are functional to aid in the maintenance of
genomic integrity through DNA replication.

Iron-sulfur clusters in DNA metabolism

For DNA to be efficiently and accurately passed to progeny cells,
high-fidelity DNA replication is required. At each level of

maintaining genome integrity, Fe-S-containing enzymes are
necessary for this process to occur (Table 1). Mechanistically, it
is hypothesized that the [4Fe-4S]2+ clusters serve as electrochemical
sensors that can detect electron transport along the DNA backbone.
DNA charge transfer occurs when electrons are passed through the
pi-stack of base pairs between redox partners (Boal et al., 2009;
Slinker et al., 2011). DNA charge transfer can occur in intact double-
stranded DNA, but any disruption to the base pair stacking (e.g.,
DNA base damage, DNA strand break) will disrupt this process.
Thus, intact double-stranded DNA can be theoretically considered a
wire that allows electrons tomove along the strand and impediments
to this electron movement will allow for the identification and
reparation of damage. When bound to DNA, the [4Fe-4S]2+

cluster contained within proteins have a redox potential of
≈ −200 mV, which allows it to serve as a redox switch by cycling
between a [4Fe-4S]2+/3+ oxidation state as electrons move along the
double-stranded DNA (Fuss et al., 2015). In this context, the [4Fe-
4S] cluster may be critical feature of key DNA metabolic enzymes
that can serve as both an electron donor or acceptor, allowing it to
function as a redox sensor of DNA damage via cluster oxidation
following electron transport along the DNA backbone (Fuss et al.,
2015; Arnold et al., 2016; Syed and Tainer, 2019). Furthermore, we
describe the function of the various [4Fe-4S] containing enzymes
and their role in DNA metabolism.

DNA helicases

For DNA to be replicated, the double-stranded DNA must first
be opened by helicases. Helicases are motor proteins that utilize ATP

FIGURE 1
Schematic overview of the late-acting, cytosolic iron-sulfur assembly machinery (CIA complex). This schematic represents the general, proposed
mechanism of [4Fe-4S]2+ cluster trafficking through the CIA complex for insertion into cytosolic and nuclear [4Fe-4S]2+ enzymes; however, not all factors
are required definitively, and the utilization of this pathway can be highly context-dependent. For example, ribonucleotide reductase, critical for S-phase
cell cycle entry to begin DNA replication, contains a di-ferric center whose formation is mediated by GLRX3 (Mühlenhoff et al., 2010).
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hydrolysis to translocate along and unwind the paired nucleic acids
that make up double-stranded DNA. Due to the complexities of
double-stranded DNA maintenance, helicases are largely
responsible for regulating several different processes of DNA
separation (e.g., DNA replication/repair and telomere regulation)
(Abdelhaleem, 2010). Thus, helicases are critical features of nucleic
acid metabolism and maintaining genome stability. Six
superfamilies of helicases are designated based on their amino
acid sequence with several containing [4Fe-4S] clusters that are
required for their functioning (Singleton et al., 2007). Each of these
helicases are linked to the CIA complex through interaction with
MMS19 that delivers the completed [4Fe-4S] cluster (Stehling et al.,
2012).

DNA2 is an Fe-S containing member of helicase superfamily
1 involved in DNA replication, telomere maintenance, and double-
strand break (DSB) repair. Thus, DNA2 serves a central role in
maintaining genome stability at multiple phases (Budd et al., 2005;
Zheng et al., 2020). Functionally, DNA2 has helicase and nuclease
activity, which depend on the presence of a [4Fe-4S] cluster
(Pokharel and Campbell, 2012). The [4Fe-4S] cluster of DNA2 is
bound to four cysteine residues contained within the nuclease
domain, suggesting that the cluster may serve to maintain the
structural integrity of the nuclease domain, thus, rendering it
essential for facilitating DNA2 binding of broken DNA (Yeeles
et al., 2009). A 2020 study by Mariotti et al. (2020) showed that loss
of the [4Fe-4S] cluster caused a conformational change in
DNA2 resulting in a distortion of the central DNA binding
tunnel. This study also showed that oxidation of DNA2 impaired

DNA binding in vitro that was reversible by reduction; however, this
effect was independent of the presence of the [4Fe-4S] cluster. Thus,
DNA2 represents an example of a nuclear enzyme where the [4Fe-
4S] protein plays a critical structural role.

Helicase superfamily 2 also encompasses several Fe-S containing
members. A commonly recognized Fe-S containing helicase is XPD.
XPD is a part of the TFIIH complex that is involved in DNA
transcription and unwinding dsDNA for damage verification and
initiation of nucleotide excision repair (Houten et al., 2016).
Interestingly, a 2014 study by Kuper, et al. showed that the
enzymatic activity of XPD within the TFIIH complex is mainly
dedicated to DNA damage recognition and resolution, while it
primarily functions to maintain the structural integrity of the
TFIIH complex during transcription initiation (Kuper et al.,
2014). XPD contains a [4Fe-4S] cluster within its catalytic
domain that is thought to play a structural role but may be
necessary in DNA damage recognition (Wolski et al., 2008;
White, 2009). XPD has been observed to interact with the CIA
complex and the TFIIH complex in a mutually exclusive fashion
suggesting that the [4Fe-4S] cluster of XPD is first inserted in the
cytoplasm by the CIA complex before translocation to the nucleus
for its association with the TFIIH complex (Vashisht et al., 2015).
XPD with deficient Fe-S binding or impaired CIA interaction was
unable to join the TFIIH complex and MMS19 deletion causes a
depletion of XPD (Kou et al., 2008; Vashisht et al., 2015). XPD can
be linked to three separate genetic disorders: xeroderma
pigmentosum, Cockayne syndrome, and trichothiodystrophy
which can be linked to various mutations in XPD (Taylor et al.,

TABLE 1 [4Fe-4S] cluster enzymes involved in DNA metabolism.

Enzyme Function [4Fe-4S] cluster (subunit) Involvement in DNA metabolism References

POLA Catalytic subunit of
DNA polymerase α

C-terminal domain (catalytic
subunit)

Replication fork extension Netz et al. (2012b),
Kilkenny et al. (2012)

POLD1 Catalytic subunit of
DNA polymerase δ

C-terminal domain (catalytic
subunit)

Replication fork extension Netz et al. (2012b),
Jozwiakowski et al. (2019)

POLE1 Catalytic subunit of
DNA polymerase ε

C-terminal domain (catalytic
subunit)

Replication fork extension Netz et al. (2012b), ter Beek
et al. (2019)

XPD Helicase N-terminal domain (catalytic
subunit)

Subunit of transcription initiation factor TFIIH; nucleotide
excision repair, DNA damage recognition

Rudolf et al. (2006)

FANCJ Helicase N-terminal domain (catalytic
subunit)

DNA secondary structure resolution (e.g., G-quadruplex, G4) Rudolf et al. (2006)

RTEL1 Helicase Crystal structure unresolved Telomere maintenance, DNA secondary structure resolution
(e.g., G-quadruplex, G4); Homologous recombination, D-loop

resolution

Uringa et al. (2010)

DNA2 Helicase Nuclease active site DNA replication; dsDNA break repair Pokharel and Campbell
(2012)

DDX11/
CHLR1

Helicase Helicase domain Sister chromatid cohesion; DNA secondary structure resolution
(e.g., G-quadruplex, G2′)

Simon et al. (2020)

PRIM2 DNA primase p58C domain DNA replication initiation; DNA synthesis; dsDNA damage
repair

O’Brien et al. (2017)

MUTYH DNA glycosylase Fe-S loop adjacent to
N-terminal—C-terminal

connection

Base excision repair Guan et al. (1998)

NTHL1 DNA glycosylase N-terminal—C-terminal
connection

Base excision repair Carroll et al. (2021)
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1997). Xeroderma pigmentosum and Cockayne syndrome
mutations impair the Fe-S binding domain and impair helicase
activity, while trichothiodystrophy mutants have been observed in
all four XPD domains to impair the XPD secondary structure likely
leading to impaired TFIIH integrity (Fan et al., 2008). Thus,
xeroderma pigmentosum and Cockayne syndrome are considered
DNA repair related disorders while trichothiodystrophy is due to
impaired transcription. Overall, it appears that the insertion of a
[4Fe-4S] cluster into XPD is essential for its ability to function
within the TFIIH complex to promote efficient DNA damage repair.

Another Fe-S containing superfamily 2 helicase is FANCJ
(Brosh and Cantor, 2014). FANCJ is a helicase that functions in
double-stranded DNA damage repair through homologous
recombination and can resolve DNA secondary structures to
promote smooth DNA replication and the avoidance of
replication stress (Datta and Brosh, 2019). FANCJ was initially
discovered as a result of a physical interaction with the renowned
tumor suppressor gene, BRCA1, as it binds at the BRCT motifs of
BRCA1 (Cantor et al., 2001). In this seminal report, the FANCJ/
BRCA1 complex (initially referred to as BRCA1 interacting
C-terminal helicase, BACH1), was shown to be important for the
DNA damage response function of BRCA1. In addition to FANCJ,
BRCA1 can also associate with a non-Fe-S helicase FANCM, that
has been shown to be essential to mitigate replication fork stalling
and mediate D-loop dissociations (Gari et al., 2008; Panday et al.,
2021). This underscores the importance of the interaction of
BRCA1 and the Fancomi family of helicases in the maintenance
of genome integrity. Beyond its interaction with BRCA1, FANCJ
functions as an ATP-dependent helicase with 5′-3′ specificity that
requires an intact [4Fe-4S] cluster, similar to XPD (Rudolf et al.,
2006). More specifically, FANCJ is a helicase that can unwind DNA
G-quadruplexes ahead of DNA polymerase, which are guanine-rich
DNA secondary structures that cause DNA replication stalling and
are prone to oxidative damage (London et al., 2008; Wu and Spies,
2016; Lerner and Sale, 2019; Fleming and Burrows, 2021). Also, like
XPD, FANCJ has been shown to directly interact with that late
acting CIA complex through MMS19 (Wietmarschen et al., 2012) as
MMS19 knockdown significantly impairs FANCJ iron insertion to
promote genomic instability and sensitivity to DNA damaging
agents (Weon et al., 2017). Thus, the insertion of the [4Fe-4S]
cluster into FANCJ is a critical step in its ability to preserve genomic
integrity through its helicase function.

The third Fe-S containing member of the helicase superfamily
2 is DDX11/CHLR1. Similar to both XPD and FANCJ, DDX11 is an
ATP-dependent helicase with 5′-3′ directionality with a preferred
single stranded 5′ tail (Hirota and Lahti, 2000; Farina et al., 2008).
The helicase function of DDX11 allows it to serve a similar role to
FANCJ in the resolution of G-quadruplexes to prevent replication
stress (Wu et al., 2012; Bharti et al., 2013; van Schie JJMFaramarz
et al., 2020). However, unlike FANCJ, which can efficiently resolve
unimolecular (G4) G-quadruplexes (Wu and Spies, 2016),
DDX11 efficiently unwinds two stranded anti-parallel (G2′)
G-quadruplexes to a much greater extent than G4 structures (Wu
et al., 2012). Consistent with its role in maintaining genome
integrity, DDX11 depletion has been shown to decrease the
amount of single-stranded DNA leading to impaired
CHK1 phosphorylation (Simon et al., 2020), a critical step in the
DNA damage response pathway, promoting DNA replication stress

(Patil et al., 2013; Jegadesan and Branzei, 2021). Importantly, the
[4Fe-4S] cluster of DDX11 is indispensable for its functionality in
the resolution of DNA secondary structures to prevent replication
stress (Simon et al., 2020). DDX11 is primarily recognized for its role
in maintaining sister chromatid cohesion as an inactivating
mutation results in the cohesinopathy called Warsaw Breakage
Syndrome (van der Lelij et al., 2010; Capo-Chichi et al., 2013;
Bharti et al., 2014). The DDX11 variant associated with Warsaw
Breakage Syndrome (R263Q) cannot bind an Fe-S cluster (Simon
et al., 2020). Thus, DDX11 represents a helicase where the [4Fe-4S]
cluster is critical to its enzymatic activity.

The final Fe-S containing member of the helicase superfamily
2 is RTEL. RTEL is a [4Fe-4S] cluster critical for maintaining
genome stability through telomere maintenance and double-
stranded DNA damage repair (Uringa et al., 2010). RTEL has
been shown to play a critical role in setting telomere length in
mice (Ding et al., 2004) and suppression of RTEL in mouse
embryonic fibroblasts results in increased telomere fragility (Sfeir
et al., 2009). Moreover, it has been shown that RTEL is required for
telomere replication in mouse embryonic fibroblasts. RTEL
depletion increases G4 stability at telomeres to prevent telomere
replication (Uringa et al., 2012). This is consistent with biochemical
data showing that RTEL can resolve G-quadruplexes to prevent
replication and promote telomere lengthening throughout the
human genome (Wu et al., 2020). Beyond telomere maintenance,
RTEL has been shown to play an important role in DNA damage
repair (Uringa et al., 2010). RTEL has been shown in C. elegans to
regulate homologous recombination and promote genomic stability
by resolving D-loops where RTEL mutants showed an increased
propensity to accumulate DNA damage (Barber et al., 2008).
Currently, the role of the [4Fe-4S] cluster in RTEL
(i.e., structural versus functional) remains unclear; however,
similar to the other Fe-S containing helicases, RTEL does interact
directly with MMS19 (Stehling et al., 2012).

DNA primase and polymerases

Following the opening of a double stranded DNA helix by
helicases, replication can occur by DNA polymerases. However,
DNA polymerases are unable to initiate the synthesis of a new DNA
strand during replication, rather they only extend existing strands
and thus, require a primer. DNA primase is the enzyme responsible
for synthesizing a short primer for DNA polymerase to use as a
template (Frick and Richardson, 2001). Similar to the Fe-S
containing helicases, DNA primase acquires a [4Fe-4S] cluster
from MMS19 and the functionality of DNA primase is
dependent on an intact [4Fe-4S] cluster (Klinge et al., 2007;
Stehling et al., 2012). It has been observed that the [4Fe-4S]
cluster of DNA primase serves as a redox switch that modulates
its DNA binding capacity (Holt et al., 2017). DNA primase is a
heterodimer with a small and large subunit with the small subunit
being responsible for RNA polymerase activity and the large [4Fe-
4S] subunit (PRIM2) being responsible for DNA binding (Agarkar
et al., 2011). The Fe-S cluster has a [4Fe-4S]2+ resting state where it is
loosely bound to DNA, however, an oxidation of the cluster to a
[4Fe-4S]3+ state results in tight DNA binding (O’Brien et al., 2017;
O’Brien et al., 2018a; O’Brien et al., 2018b). Thus, it appears that Fe-
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S mediated DNA charge transfer is an essential feature of DNA
replication initiation mediated by PRIM2.

Following the generation of a short primer by DNA primase,
DNA is replicated by [4Fe-4S] containing DNA polymerases. In
eukaryotic cells, class B family DNA polymerases α, δ, ε, and ζ

mediate DNA replication. All three of these polymerases contain a
[4Fe-4S] within their C-terminal catalytic subunits (POLA, POLD1,
and POLE1, respectively) (Garcia-Diaz and Bebenek, 2007; Shi et al.,
2021). It was believed that Zn2+ was the necessary inorganic co-factor
for polymerase activity due to the two conserved cysteine residues
acting as metal binding motifs in POLA (Evanics et al., 2003; Klinge
et al., 2009). However, later structural experiments revealed that all
four polymerases coordinate a [4Fe-4S] cluster within the catalytic
subunit (Netz et al., 2012b; ter Beek et al., 2019; Suwa et al., 2015;
Baranovskiy et al., 2018). Loss of the [4Fe-4S] cluster in POLD1 causes
a destabilization of all four enzyme subunits resulting in defective
DNA binding and impaired polymerase and exonuclease activities
(Jozwiakowski et al., 2019). In yeast, the [4Fe-4S] cluster of DNA
polymerase ε is redox active and its polymerase function may be
mediated by DNA charge transfer similar to PRIM2 (Jain et al., 2013;
Pinto et al., 2021). Consistent with otherDNAmetabolic enzymes, the
assembly of the [4Fe-4S] cluster in the catalytic subunit of DNA
polymerases and ultimately their enzymatic activity are mediated by
MMS19 of the CIA complex (Gari et al., 2012; Stehling et al., 2012;
Han et al., 2015). Therefore, it is apparent that maintenance of high-
fidelity DNA replication is largely dependent on the insertion of
completed [4Fe-4S] clusters into the appropriate DNA metabolic
enzymes by the late acting CIA complex.

DNA glycosylases

While DNAhelicases and polymerases aim to performhigh-fidelity
DNA replication to avoid replication stress, damage to DNA bases can
occur through several different chemical modifications including
oxidation, alkylation, deamination, and spontaneous hydrolysis
(Bauer et al., 2015). The primary enzymatic pathway for the repair
of damaged DNA bases is base excision repair (BER), which can occur
throughout the cell cycle (Krokan and Bjoras, 2013). BER is initiated by
damage recognition by DNA glycosylases which then form AP sites to
remove the damaged bases (Jacobs and Schär, 2012; Wallace, 2013).
Short patch or long patch base excision repair can occur based on the
number of damaged bases. Two DNA glycosylases with [4Fe-4S]
clusters have been identified, MUTYH and NTHL1 (Parker et al.,
2000; Carroll et al., 2021). Both MUTYH and NTHL1 are mammalian
MutY and endonuclease III homologs, E. coli DNA glycosylases that
were initially observed coordinate a [4Fe-4S] cluster that mediates their
DNA binding and substrate recognition (Kuo et al., 1992; Guan et al.,
1998). MUTYH is an adenine-specific glycosylase that removes
mismatched adenines from A-G/A-C pairs and can also remove 8-
dihydro-8-oxodeoxyguanine (8-oxoG) (McGoldrick et al., 1995).
Meanwhile, NTHL1 can excise thymine glycol and oxidize urea
lesions (Aspinwall et al., 1997). The [4Fe-4S] cluster of MutY and
endonuclease are redox active and serve as an electrochemical sensor to
recognize DNA damage through DNA charge transfer (Boal et al.,
2005). Thus, it furthers the hypothesis that the [4Fe-4S] clusters of
DNA regulatory enzymes serve as conserved sensors of DNA charge
transfer to efficiently maintain genomic integrity.

Conclusion and future perspectives

With the current understanding that several [4Fe-4S] cluster
enzymes interact with the late-acting CIA complex and play a critical
role in DNA metabolism, there is a window of opportunity to
accelerate our understanding of how Fe-S biogenesis can regulate
metabolic processes (e.g., maintain genomic integrity). As the
biomedical community works to understand the various systems
that play a role in regulating health and disease, the regulatory role of
Fe-S biogenesis remains unclear. However, a wide array of literature
suggests that Fe-S biogenesis plays a role in numerous diseases
which may result from the dysregulated global metabolic issues that
arise from disrupted Fe-S containing enzymes such as those
described in this review. For example, mutations associated with
the [4Fe-4S] containing helicases have been implicated in the onset
of disease as XPD mutations present as xeroderma pigmentosum,
Cockayne syndrome, and trichothiodystrophy (Taylor et al., 1997);
FANCJ as Fancomi Anemia (London et al., 2008); DDX11 as
Warsaw Breakage Syndrome (van der Lelij et al., 2010; van Schie
JJMFaramarz et al., 2020); DNA2 as mitochondrial DNA depletion
syndrome (Sun et al., 2022); and RTEL mutations have been
associated with familial pulmonary fibrosis (Kannengiesser et al.,
2015). Additionally, a majority of these enzymes are associated with
cancer development including XPD, FANCJ, DDX11, RTEL,
MUTYH, and NTHL1 (Benhamou and Sarasin, 2002; Nicolo
et al., 2008; Lubbe et al., 2009; Cantor and Guillemette, 2011;
Mazzei et al., 2013; Weren et al., 2015; Yan et al., 2016; Das
et al., 2020; Hutchcraft et al., 2021; Magrin et al., 2021; Mahtab
et al., 2021).

Following the discovery that MMS19 directly interacts with
enzymes that regulate the maintenance of genome integrity and
high-fidelity transfer of genetic information including helicases,
primase, polymerases, and glycosylases, there is a very clear
connection between Fe-S biogenesis through the late-acting CIA
complex and DNA metabolism (Gari et al., 2012; Stehling et al.,
2012). While the insertion of a complete [4Fe-4S] cluster by
MMS19 into these DNA metabolic enzymes represents a critical
regulatory step for the maintenance of genomic integrity; it is
important to acknowledge the several steps leading to the
formation of the completed [4Fe-4S]2+ cluster on MMS19 before
the insertion into nuclear enzymes (Petronek et al., 2021). Thus, the
transfer of the cluster from the CIA complex through MMS19 to
nuclear enzymes represents the penultimate step in a larger process
that, if impaired, likely results in genome instability. For example,
frataxin loss from de novo [2Fe-2S] cluster synthesis results in
Friedrich’s Ataxia and predisposes cells to DNA damage
associated with impaired BER, a process that is initiated by [4Fe-
4S] containing DNA glycosylases (Haugen et al., 2010; Thierbach
et al., 2010; Shen et al., 2016). Thus, it may be imperative to consider
the implications of changes in Fe-S biogenesis in totality when
investigating global, cellular metabolic alterations in various
pathologies associated with genomic instability.
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