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The exploration of important biomarkers associated with cancer development is
crucial for diagnosing cancer, designing therapeutic interventions, and predicting
prognoses. The analysis of gene co-expression provides a systemic perspective on
gene networks and can be a valuable tool for mining biomarkers. The main
objective of co-expression network analysis is to discover highly synergistic
sets of genes, and the most widely used method is weighted gene co-
expression network analysis (WGCNA). With the Pearson correlation
coefficient, WGCNA measures gene correlation, and uses hierarchical
clustering to identify gene modules. The Pearson correlation coefficient
reflects only the linear dependence between variables, and the main drawback
of hierarchical clustering is that once two objects are clustered together, the
process cannot be reversed. Hence, readjusting inappropriate cluster divisions is
not possible. Existing co-expression network analysis methods rely on
unsupervised methods that do not utilize prior biological knowledge for
module delineation. Here we present a method for identification of
outstanding modules in a co-expression network using a knowledge-injected
semi-supervised learning approach (KISL), which utilizes apriori biological
knowledge and a semi-supervised clustering method to address the issue
existing in the current GCN-based clustering methods. To measure the linear
and non-linear dependence between genes, we introduce a distance correlation
due to the complexity of the gene-gene relationship. Eight RNA-seq datasets of
cancer samples are used to validate its effectiveness. In all eight datasets, the KISL
algorithm outperformed WGCNA when comparing the silhouette coefficient,
Calinski-Harabasz index and Davies-Bouldin index evaluation metrics.
According to the results, KISL clusters had better cluster evaluation values and
better gene module aggregation. Enrichment analysis of the recognition modules
demonstrated their effectiveness in discovering modular structures in biological
co-expression networks. In addition, as a general method, KISL can be applied to
various co-expression network analyses based on similarity metrics. Source codes
for the KISL and the related scripts are available online at https://github.com/
Mowonhoo/KISL.git.
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1 Introduction

To study the functions of genes at a system level, a key is to
understand how genes work together. A basic assumption is that co-
expressed genes tend to work in the same subsystem. Co-expression
networks (GCN) (Yip and Horvath, 2007a) are commonly used to
describe such subsystems based on statistical correlations among the
expressions of the relevant genes. Typically, each node in such an
undirected network represents a distinct gene and a weighted edge
between two nodes denotes the two genes with correlated
expressions while the edge weight represents the correlation level.

One goal when studying such a network is to discover densely
connected subnetworks, also referred to as functional modules or
clusters, as co-expressed genes tend to be transcriptionally
coregulated. WGCNA (Zhang and Horvath, 2005) is a most
widely used software for GCN construction, and can be used to
identify modules of highly co-expressed genes. Briefly, WGCNA
constructs a weighted co-expression network based on the Pearson
correlation coefficients among provided gene expressions; uses a
topological overlap structure measure (TOM) (Ravasz et al., 2002) of
nodes to identify modules; and utilizes eigengene and intramodule
hub genes to summarize such modules (Langfelder and Horvath,
2008). WGCNA identifies gene modules by using hierarchical
clustering, giving rise to a tree-like structure. The advantage of
the hierarchical clustering method is its simplicity, but the process
for generating a hierarchical clustering tree is irreversible.

Multiple developments have been made aiming to improve the
TOM measure. Among them, Li et al. proposed a bottom-up multi-
node topological overlap measure (MTOM) that selects nodes with
the highest neighborhood size to form modules based on multiple
nodes. (Yip and Horvath, 2007b) developed a generalized
topological overlap measure, called GTOM. Compared to TOM
that considers only the nodes directly adjacent to the target gene
pair, GTOM considers neighboring nodes that are within K steps
away from the target gene pair, where K is a parameter to be selected
by the user. Thus, GTOM is more sensitive to higher-order
connections. Hou et al. (2021) introduced the K-means method
to WGCNA to add additional steps to improve the module-
identification results of WGCNA. A few other algorithms have
been deployed to analyze gene co-expression networks, such as
the flow simulation-based module discovery method (MCL)
(Hwang et al., 2006), the graph partitioning-based method (Qcut)
(Ruan and Zhang, 2008), and the density model-based method
(MCODE) (Bader and Hogue, 2003).

One common issue with all these methods is: they use only
unsupervised methods for clustering or module identification, but
do not make effective use of prior biological knowledge. In addition,
WGCNA uses hierarchical clustering to identify gene modules. One
drawback of hierarchical clustering is that once two objects are
clustered together, the process cannot be reversed. Therefore,
regrouping of inappropriately clustered items is not doable.
Analyses of the improved methods of WGCNA for refining its
module identification results shows that the methods could not solve
the problem of generating an unreasonable number of clusters. The
purpose of this paper is to develop an effective method for module
identification in a co-expression network to improve the of these two
issues in existing methods.

Here we present a method for identification of outstanding
modules in a co-expression network using a knowledge-injected
semi-supervised learning approach (KISL), which utilizes apriori
biological knowledge and a semi-supervised clustering (Basu et al.,
2004) method to address the issue existing in the current GCN-
based clustering methods. A comparative analysis of our algorithm
with the WGCNA method on eight human cancer datasets has
revealed the effectiveness of our algorithm in discovering modular
structures in co-expression networks, paving the way for more
accurate and useful GCN analysis.

2 Methods

2.1 WGCNA and KISL algorithms

We sought to identify modules consisting of highly functionally
related genes. The structure of our algorithm is shown in Figure 1,
consisting of three main stages. The first stage covers data
preprocessing, variance analysis and feature selection to generate
a gene expression profile matrix. The second stage is to construct
clustering constraints by using factor analysis, to perform Gene
Ontology (GO) enrichment analysis, and to perform factor analysis
based on gene expression profiles for the set of genes covered by
enriched GO/BP pathways. The result is a factor-loading matrix.
The factor coefficients are binarized through thresholding, a subset
of genes affected by a single factor is screened to form the “must-
link” gene clusters, and all gene clusters from the pathway screening
together form the apriori constraints for module identification in the
co-expression network. The third stage is to construct the GCN and
then use a semi-supervised algorithm in combination with the
apriori constraints for identification of the GCN functional modules.

The inputs to the semi-supervised algorithm are the GCN
network, the apriori constraints and the number of clusters k
(the value of k is set according to the learning curve by the user
given a value interval for k). The main purpose of the algorithm is to
calculate the connectivity of genes to the module mean vector in
each module and to assign genes to the modules that are most highly
connected to them. Here, the mean vector μj of module j is defined
as in Eq. (1).

μj �
1

Cj

∣∣∣∣ ∣∣∣∣∑xϵCj
xi (1)

where xi is the expression profile of gene i,Cj is the set of all genes in
module j, and |Cj| denotes the number of genes in module j. We
calculate the distance dij � ‖xi − μj‖2 between the sample xi and
each mean vector μj(1≤ j≤ k). We count countj(j � 1, 2, . . . , k) of
other samples in the constraint set containing sample xi in each
clustering cluster. The distance dij � dij + countj between sample xi

and module j is adjusted according to the constraint. For each gene i
we set its module label to the label of the mean vector that minimizes
dij. We then recalculate the mean vector of genes in each module
and repeat the previous steps until no cluster assignment changes or
the preset maximum number of iterations is reached. Additionally,
tool KISL includes several additional functions designed to aid the
user in visualizing input data and results. These functions rely on
basic plotting functions provided in python and the R packages
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WGCNA (Langfelder and Horvath, 2008). The code of the KISL
algorithm are available online at https://github.com/Mowonhoo/
KISL.git.

2.2 Construction of the gene co-expression
network

Measuring the co-expression relationship between genes is a key
issue in the construction of gene co-expression networks. However,
commonly used correlation measures, including linear (e.g., Pearson
correlation) and monotonic (e.g., Spearman correlation)
dependence measures, are not sufficient to observe the nature of
real biological systems. Szekely et al. (Székely et al., 2007; Székely and
Rizzo, 2009) proposed distance correlation for both linear and non-
linear dependencies. Distance correlation reveals more about the
complex biological relationships between gene profiles than other
correlation metrics, which helps to provide more meaningful
modules in the analysis of gene co-expression networks.
However, the time complexity associated with computing the
distance is high and requires more computational resources (Hou
et al., 2022). However, for biological analysis we seek higher
reliability and completeness of information mining, therefore, in
this study, we use distance correlation to measure the relationship
between genes. To optimize the time spent by the algorithm, the

features can be optionally downscaled by using the principal
component analysis (PCA) method before calculating the
correlation coefficients between genes, and feature retention is
filtered by setting a threshold based on the PCA variance
interpretation rate.

The distance correlation coefficient can reveal an arbitrary
relationship between the variables. When the Pearson correlation
coefficient is 0, we cannot determine whether the two variables are
independent, but if the distance correlation coefficient is 0, then we
can conclude that the two variables are independent of each other
(Pearson and Galton, 1895; Székely et al., 2007; Székely and Rizzo,
2009). The distance correlation coefficient of two variables u and v is
denoted as d̂corr(u, v). When d̂corr(u, v) � 0, the two variables are
independent of each other. The larger d̂corr(u, v) is, the stronger the
correlation between u and v. Let the random sample of the overall
(u, v) be (u, v), i � 1, 2, . . . , n{ } and Szekely et al. (Székely et al.,
2007; Székely and Rizzo, 2009) defined the sample estimate of the
distance correlation coefficient between two random variables u and
v as Eq. 2.

d̂corr u, v( ) � d̂cov u, v( )�����������������
d̂cov u, u( )d̂cov v, v( )

√ (2)

where d̂cov2(u, v) � Ŝ1 + Ŝ2 − 2Ŝ3 , Ŝ1, Ŝ2 and Ŝ3 are shown in Eqs 3,
4, 5, respectively.

Ŝ1 � 1
n2

∑n

i�1∑n

j�1 ui − uj

���� ����du vi − vj
���� ����dv (3)

Ŝ2 � 1
n2

∑n

i�1∑n

j�1 ui − uj

���� ����du 1n2 ∑n

i�1∑n

j�1 vi − vj
���� ����dv (4)

Ŝ3 � 1
n3

∑n

i�1∑n

j�1∑n

l�1 ui − ul‖ ‖du vi − vl‖ ‖dv (5)

Similarly, d̂cov(u, u) and d̂cov(v, v) can be calculated.
The gene adjacency matrix is obtained by power-lawing the gene

correlation matrix with a “soft” threshold power, and then the TOM
of the adjacency network is calculated to construct the gene co-
expression network. The construction of gene co-expression
networks based on the TOM metric has been shown to have
better results than direct module identification based on the
adjacency graph (Langfelder et al., 2008).

We have kept the Pearson correlation coefficient for measuring
the interrelationship between genes among the optional parameters
of the functional function used to construct the co-expression
network in order to increase the applicability and scalability of
our algorithm and to meet the various needs of users. We have also
given the mutual information method (MI) as an optional
parameter, so that users can choose the parameters according to
their needs. A MI measures the entropy of gene interactions to
evaluate their relationship. In comparing linear and non-linear
methods for measuring gene dependence, Zhang et al. found that
the mutual information method combined linear and non-linear
interactions has some advantages over linear or non-linear methods
(Jiang and Zhang, 2022). Moreover, the MI between two variables is
symmetric, which means that MI-based methods infer undirected
interactions (Jia and Zhang, 2022). Additionally, we simulated and
generated 10 pairs of high-dimensional variables with different
dependencies, and then used them to measure the relationship
between these variable pairs in order to compare the

FIGURE 1
Overview of the algorithm. This flowchart briefly describes the
main. steps of the KISL algorithm.
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characteristics of distance correlation, mutual information, and
Pearson correlation coefficient to capture the complex relationship
between variables. Calculations are performed using Python packages
sklearn (Pedregosa et al., 2011), dcor (Ramos-Carreño and Torrecilla,
2022), and scipy (Virtanen et al., 2020). The supplementaryMaterial 6
(Supplementary Figure S1) contains the pertinent results.

2.3 Topological characteristics of GCN

Network topology analysis is an important tool for
understanding network characteristics at the system level.
Network centrality analysis and global network topology analysis
are two levels used to analyze the network from the system level. A
key concept in network analysis is node connectivity (centrality). A
central node (called a hub) is a node that is densely connected to
other nodes. Co-expression networks have global topological
properties of scale-free distributions, functional modular
networks, and small-world properties. For weighted networks,
Zhang and Horvath et al. (Zhang and Horvath, 2005) also
defined the corresponding connectivity, intramodule connectivity
metric and generalized scale-free topology for weighted networks.

1) Connectivity in weighted networks

The connectivity metric based on the weighted adjacency
network is defined as Eq. 6.

Wi � ∑n

j�1wij (6)
wherewij is the adjacency between two nodes i and j. Thus, if a node
has high adjacency with many other nodes, then it has high
connectivity Wi based on the weighted adjacency network.

A network connectivity metric is defined for a specific module’s
genes (intramodule connectivity). The intramodule connectivity
(unweighted network node connectivity also commonly referred
to as “degree”) of gene i within module q is calculated as in Eq. 7.

within(k(q)i ) � ∑
j
wij (j � 1, 2, . . . , n q( )) (7)

where n(q) denotes the number of genes within module q.

2) Module density

The dense connectivity property between genes within module q
can bemeasured by the average neighboring degree of module genes,
defined as the module density, as shown in Eq. 8.

Density A q( )( ) � ∑i∑j≠iw
q( )

ij

n q( ) n q( ) − 1( ) (8)

where A(q) denotes the n(q) × n(q) adjacency matrix corresponding
to the subnetwork formed by the genes of module q.

3) Generalized scale-free topology

The frequency distribution p(k) of node connectivity in a gene
neighborhood network follows the power law p(k) ~ k−γ. where k is the
node connectivity (Langfelder et al., 2008). The square of the correlation

between log10p(k) and log10k can be used to measure the degree to
which the network satisfies the scale-free topology, i.e., themodelfit index
R2 for a linear model regressing log10p(k) on log10k. If the R

2 value is
close to 1, there is a linear relationship between log10p(k) and log10k.

2.4 Construction methods for a priori
constraints

Thanks to the results of work in related fields of research it has been
possible to obtain many biological explanations of the relationships
between genes. The Gene Ontology (GO) database is one of the
common gene annotation systems used in bioinformatics research,
and it defines a structured standard biological model that allows the
description of gene and protein functions in various organisms in terms
of cellular components, biological processes and molecular functions.

The enrichment analysis enables the annotation and
classification of genes to obtain a subset of genes grouped
according to different gene functions, and the annotated results
can be transformed to constitute a priori constraints for module
identification algorithms to improve the modular biological
interpretation of functional module identification of co-
expression networks. We introduced factor analysis (Swisher
et al., 2004; Ferrando, 2021), a statistical method for extracting
common factors from groups of variables, to construct intergenic
correlation constraints. The British psychologist C.E. Spearman first
proposed it. Factor analysis can identify the common influences
embedded in multiple variables. By grouping variables of the same
nature into a common factor, the number of variables can be
reduced. as shown in Eq. 9 below.

X1 � a11F1 + a12F2 + . . . + a1mFm + ϵ1
X2 � a21F1 + a22F2 + . . . + a2mFm + ϵ2

/
XP � ap1F1 + ap2F2 + . . . + apmFm + ϵp

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (9)

where F denotes the common factor,X denotes the original variable,
and ϵ denotes the part of the original variable that cannot be
represented by the common factor. The number of original
variables is generally satisfied as greater than or equal to the
number of factors (i.e., m≤p). The factors F are independent of
each other and have a variance of 1. The correlation between the
common factor and ϵ is 0 and the correlation between ϵ is 0.

Before performing factor analysis, the Kaiser-Meyer-Olkin test
(KMO test) and Bartlett’s test of sphericity were performed on the
features to determine whether the gene expression profile was
suitable for factor analysis. Then, by calculating the eigenvalues
of the gene correlation matrix and ranking them, the common
factors with eigenvalues greater than 1 were extracted according to
Kaiser’s principle, and the cumulative total variance contribution
rate was ensured to be greater than 0.85 according to the variance
contribution rate accumulation principle. This process ensures that
the extracted common factors cover enough information contained
in the original gene expression profile and better replace the original
gene characteristics. The factor loading coefficients are then derived
and transformed by orthogonal rotation of the loading coefficients
to obtain the factor loading matrix and then to analyze the
characteristics of the factor coefficients for each gene. The factor
loading coefficient matrix is then binarized to filter out the subset of
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genes that depend on a certain common factor in the same pathway,
and these genes are only highest correlated with this main factor.
The constrained gene set is obtained by performing factor analysis
on all GO terms enriched in the gene expression profile and then by
merging the subsets with common overlapping genes.

2.5 Clustering evaluation metrics

The silhouette coefficient (RousseeuwSilhouettes, 1987), the
Calinski-Harabasz index (Caliński and Harabasz, 1974) and the
Davies-Bouldin index (Davies and Bouldin, 1979) are common and
valid internal measures to evaluate the validity of clustering. The
silhouette coefficient is a measure of how similar an observation is to
its own cluster compared to other clusters, and it takes values
from −1 to 1. A value of 1 indicates that the clusters are far from
each other and clearly distinguished, a value of 0 indicates that the
distance between clusters is non-significant, and a value
of −1 indicates that the clusters are incorrectly assigned. The
Calinski-Harabasz index is also known as the variance ratio
criterion. For cluster q, the Calinski-Harabasz index is given by
the ratio of the between-cluster dispersion mean to the within-
cluster dispersion, and a higher Calinski-Harabaz index indicates
better clustering. The physical meaning of the Davies-Bouldin index
is the ratio of the sum of the mean sample distance (i.e., intracluster
sample distance) of each cluster to the distance between the
centroids of the two clusters (i.e., intercluster sample distance);
given two clusters, the smaller the value is, the better.

2.6 Gene function annotation tools

The database for annotation, visualization and integrated
discovery (DAVID) provides researchers with a comprehensive
set of functional annotation tools to understand the biological
significance behind large lists of genes (Huang et al., 2009).
DAVID integrates biological data and analysis tools to provide
systematic, integrated biofunctional annotation information for
large-scale gene and protein lists to help users extract biological
information. Here, we used the rich scores from the DAVID
functional annotation clustering tool—the geometric mean
(logarithmic scale) of the p values of the members of the
corresponding annotation clusters for ranking their biological
significance. The clusterProfiler R package was used to obtain the
Gene Ontology terms of all differentially expressed genes (Yu et al.,
2012).

2.7 Datasets

The tumor sample dataset used in this experiment was
obtained from The Cancer Genome Atlas (TCGA, http://
cancergenome.nih.gov/) database, including BLCA (bladder
urothelial carcinoma), BRCA (breast invasive carcinoma),
COAD (colon adenocarcinoma), KIRC (kidney renal clear cell
carcinoma), LUAD (lung adenocarcinoma), LUSC (lung
squamous cell carcinoma), PAAD (pancreatic
adenocarcinoma) and STAD (stomach adenocarcinoma) RNA-

Seq data for eight tumors, and normal samples for each tumor
were obtained from the Genotype-Tissue Expression (GTEx)
database. The GTEx project aims to establish a repository of
samples and data for studying the relationships between genetic
variants, gene expression and other molecular phenotypes in a
wide range of human tissues (GTEx Consortium, 2013; GTEx
Consortium, 2015). First, the eight cancer datasets obtained from
TCGA and GTEx databases were analyzed for differences by
using the R package DESeq2 (Gentleman et al., 2004; Love et al.,
2014). We set the screening criteria for differential genes as
padj< 0.05, |log2FoldChange|> 1, followed by variance filtering
to screen out genes with variance less than or equal to 0,
i.e., consistent expression activity on all samples. The selection
of features is then done using the mutual information method.
The sample type is the phenotype (clinical trait) that we employ
for gene screening. After feature selection filtering, the final
retained samples and gene counts are provided in
Supplementary Material 1 (Supplementary Table S1). Source
codes for the KISL and the related scripts are available online
at https://github.com/Mowonhoo/KISL.git. The datasets from
Gene expression RNA-seq were performed using TCGA:
https://www.cancer.gov/tcga.

3 Results and DISCUSSION

3.1 Effect of distance correlation on various
datasets

(Székely and Rizzo, 2009) verified that the value of the
distance correlation is always smaller than the absolute value
of the Pearson correlation for bivariate normal data. Therefore,
if the distance correlation coefficient between two random
variables is greater than the Pearson correlation coefficient
then a complex relationship exists between them - non-binary
normal data and non-linear nonmonotonic relationship. In general,
correlation values greater than 0.8 are described as strong correlation,
while values less than 0.5 are described as weak correlation
(Castro Sotos et al., 2009). To measure the proportion of
complex relationships in the dataset, we selected gene pairs
with distance correlation coefficients greater than 0.5 from
eight datasets. Next, we analyzed the distribution of Pearson
correlation coefficients for the retained gene pairs. In the PAAD
dataset, 70.88% of the gene pairs had Pearson correlation
coefficients less than 0.5 (Figure 2G). In addition, the ratios
in the LUSC dataset (Figure 2F), LUAD dataset (Figure 2E) and
STAD dataset (Figure 2H) were 66.37%, 61.04% and 50.62%,
respectively, as shown in Supplementary Material 2
(Supplementary Table S2). Both our algorithm and the
standard WGCNA method use a ‘soft’ threshold power in the
construction of the GCN, which amplifies the difference between
strong and weak correlations. When using Pearson correlation
coefficients, gene pairs with complex relationships have small
correlation coefficient values, and the presence of the soft
threshold further leads to a smaller weight of the two genes
and increases the error, making the clustering results inaccurate.

It has been reported that biological networks show scale-free
topology (STF) (Langfelder and Horvath, 2008; Barabási et al.,
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2011). It is important in SFT networks to identify the dominant
hub nodes because they usually have significant influence on the
network. In the case of biological networks it may mean that the
genes, proteins or metabolites represented by these nodes are
biologically important (Albert, 2005; Andrecut et al., 2008;
Nafis et al., 2015; Atiia et al., 2020). Therefore, we
investigate the SFT of the two correlation coefficients for the
eight datasets. The closer the SFT fit index is to 1, the better. In
Figure 3 the left panel shows the histogram of network
connectivity and the right panel shows the logarithmic plot
of the corresponding histogram. The approximate linear
relationship (high R2 values) indicates the approximate scale-
free topology. We find that for eight datasets, both Pearson
correlation coefficients and distance correlation coefficients
achieve SFT when a suitable “soft” threshold power is chosen
to define the adjacency matrix, and in five of them (Figures
3A–E), distance correlation shows an advantage in the scale-
free fit index.

3.2 Constructing clustering constraints

The KMO test and Bartlett’s test of Sphericity were used to
determine whether a gene expression profile was suitable for factor
analysis before all GO terms enriched in the gene expression profile
were subjected to factor analysis. In this paper, the number of
contained genes is greater than 5, the threshold value set by KMO
test is greater than 0.6, and the p-value of Bartlett’s test of
sphericity is set to less than 0.05 (p-value is less than the
significance level value of 0.05, indicating a high correlation
between genes in the expression profile data) of GO term for
factor analysis to construct constrained gene sets. From Figure 4,
we can see that the percentage of GO terms enriched in each gene
expression profile data that were evaluated to be suitable for factor
analysis ranged from approximately 40%–72%, which indicates
that we can effectively extract a priori biological knowledge by
introducing factor analysis methods. The factor loading matrix is
binarized by setting an appropriate factor screening threshold (we

FIGURE 2
Histogram of correlation coefficients for interactions with high distance correlation scores (>0.5). The bright blue borders in each panel represents
the Pearson correlations, and the dark blue borders represents the distance correlations. When using the criterion that the Pearson correlation coefficient
must be greater than 0.5, more than 50% of the complex correlated data information on four of the datasets (Figures 2E–H) would be lost.
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set the threshold to 0.2, then each gene factor coefficient greater
than 0.2 is set to 1, and less than that is set to 0). Finally, the set of
constrained genes that significantly depend on a single common
factor in the same pathway is obtained from the binarized factor
loading matrix. All subsets of genes in all GO terms that depend on
a single principal factor are filtered out, and the subsets with
common overlapping genes are merged to obtain the constrained
gene set. According to the clustering constraint construction
process described above, the final constrained gene sets based
on a priori biological knowledge are obtained on each dataset, and

the constrained gene sets are summarized as shown in
(Supplementary Table S3).

3.3 Evaluation based on internal metrics of
clustering algorithms

In this section, we use the silhouette coefficient, the Calinski-
Harabasz index and the Davies-Bouldin index to evaluate the quality
of the WGCNA and KISL clustering results. As shown in Figure 5, the

FIGURE 3
shows the scale-free topological properties of the co-expression network. The left panel shows the histogram of the network connectivity, and the
right panel shows the logarithmic plot of the corresponding histogram. The approximate linear relationship (high R̂2 values) represents the approximate
scale-free topology. The scale-free topology is at least approximately satisfied when a suitable “soft” threshold is chosen to define the adjacency matrix
for the eight selected real datasets.
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KISL algorithm obtained the highest silhouette coefficient and Calinski-
Harabasz index evaluation values in all eight datasets, while obtaining
the lowest Davies-Bouldin index evaluation value. Taking the silhouette
coefficient evaluation metric as an example, three of the datasets,
COAD, LUAD, and LUSC, obtained a boost of more than 0.3 on
the dataset, and two datasets, BRCA and STAD, obtained a boost of
more than 0.15 with the smallest evaluation value on the BLCA dataset
but also slightly improved. It is also important to note that the silhouette
coefficient value obtained by the base method is negative onmost of the
datasets, especially on the LUAD dataset, where it is the worst and even
reaches−0.17, whichmeans thatmany sample points are assigned to the
wrong cluster. Our algorithm also obtained the best evaluation values
for both the Calinski-Harabasz index and Davies-Bouldin index
evaluation metrics. The clusters obtained by KISL have better
clustering evaluation values and better aggregation of the obtained
gene modules. The details of the three evaluation values of the clusters
are shown in (Supplementary Table S4). In Figure 6, we plot the results

of the silhouette coefficient analysis for the KISL algorithm (the left side)
and the Pearson-based WGCNA (the right side) corresponding to the
eight datasets. The closer the silhouette coefficient to 1, the better the
clustering result. The evaluation value obtained by the KISL algorithm
was the highest in all the datasets.

3.4 Analysis of the nature of the recognition
module

The module significance measure was defined as the average
gene significance of all genes in the module. We used absolute
values to define the relevance-based gene module significance
metric. The results of the significance of each module identified
on the eight datasets are shown in Figure 7. We use a gene module
significance of 0.4 (the red dashed line) as the threshold, and we
find that our algorithm obtains more high gene significance

FIGURE 4
KMO and Bartlett’s test. The blue bars below the figure indicate the proportion of gene expression profiles of GO Term suitable for factor analysis
after the KMO test and Bartlett‘s test of sphericity.

FIGURE 5
Silhouette coefficient, Calinski‒Harabasz score and Davies‒Bouldin index for theWGCNA and KISL algorithms. The evaluation value obtained by the
KISL algorithm was the best in all the datasets.

Frontiers in Genetics frontiersin.org08

Xiao et al. 10.3389/fgene.2023.1151962

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1151962


modules on five of the datasets BLCA, BRCA, KIRC, LUAD, and
STAD (Figures 7A, B, D, E, H), while on the other three datasets
our method obtains the same number of high significance modules
as the base method.

A network connectivity metric is defined for module-specific
genes (intramodule connectivity). The intramodular connectivity of

genes within a module is calculated, and the dense connectivity
property between genes within a module is measured by the average
adjacency of the module genes, defined as the module density.
Figure 8 shows the comparison between the density of each
module obtained by the KISL algorithm and the base method,
where a larger average module density is obtained on seven of

FIGURE 6
Silhouette coefficient analysis for the WGCNA and KISL algorithms. The left panel shows the results of silhouette coefficient analysis of the clusters
obtained by the KISL. The right panel shows the results obtained by the basemethodWGCNA on the corresponding dataset. The evaluation value (the red
dashed line) obtained by the KISL algorithm was the highest in all the datasets. In each panel, the left part represents the silhouette coefficient value of
each sample, the y-axis represents the sample sequence, and the x-axis represents the silhouette coefficient size. UMAP visualization results are
displayed on the right side of each panel.

Frontiers in Genetics frontiersin.org09

Xiao et al. 10.3389/fgene.2023.1151962

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1151962


the datasets and a larger number of modules with greater density are
possessed. In addition, the top 3 modules with the highest module
density on all eight datasets are found by our algorithm.

3.5 Comparison of module gene enrichment
analysis

Co-expressed genes often act synergistically and participate in the
same biological processes (van Dam et al., 2012). Therefore, algorithms
that identify modules that are highly enriched for specific gene classes
are more reasonable (Rau et al., 2013). To compare the average
enrichment scores and stability of the algorithms, we use the
recommended parameters of the WGCNA package for module
identification, and to keep the number of modules identified by the
two algorithms equal, the number ofmodules obtained by theWGCNA
method is used to initialize the K values of our algorithms.

In the current analysis, we obtained the enrichment scores of each
cluster in the functional annotation clustering of DAVID. The higher the
enrichment score, the lower the p-value and therefore the more
significant the enrichment. The module enrichment score is an
important indicator to evaluate the rationality of a module. We
discuss the average enrichment scores of modules from gene co-
expression networks constructed by two different algorithms to
measure the degree of enrichment of co-expression networks. As
shown in Table 1, the modules from KISL have higher DAVID
average enrichment scores in the six data sets, indicating that the

division of their modules is more reasonable. Higher DAVID
enrichment scores for each module can be viewed in (Supplementary
Table S5), where the modules identified by KISL have the highest top
3 enrichment scores in the five datasets, and the top 3modules have one
or two enrichment scores in the other three datasets.

To verify whether the identification modules obtained by KISL
are biologically meaningful, the highly enriched (Top 5) biological
process (BP) terms of the network modules in GO terms were
summarized for the LUSC sample, as shown in Table 2. Overall, the
enrichment of GO terms shows the biological significance of the
modules obtained by KISL.

4 Conclusion

Co-expression analysis is useful for exploring patterns of gene
networks, identifying gene functional modules, and mining cancer-
associated markers at the system level. By using the enriched
information of the current sample as a constraint, we aim to perform
semi-supervised clustering. Other clustering methods only take into
account the algorithm parameters, not the sample itself. Therefore, we
propose the KISL method to try to improve these methods. KISL
algorithm measures linear and non-linear dependencies between
genes by using distance correlation, which is appropriate for the
complexity of the relationship between genes. In cases where outliers
significantly influence the correlation coefficient value, distance
correlation is a better alternative because it is distribution-free and

FIGURE 7
Module significance metric. The gene module significance threshold is set to 0.4 (the red dashed line), and our algorithm obtains more high gene
significance modules on five of the datasets, BLCA, BRCA, KIRC, LUAD and STAD (Figures 7A,B,D,E,H), while on the other three datasets our method
obtains the same number of high significance modules as the base method.
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FIGURE 8
Module density. The brown bar plot indicates the module density obtained by the KISL algorithm on each dataset, and the blue bar plot indicates the
results of the widely used method WGCNA. Our method obtains a larger average module density on seven of the datasets and has a larger number of
modules with a larger density. In addition, the top 3 modules with the highest module density on all eight datasets are obtained by our algorithm.

TABLE 1 Average DAVID enrichment score for each dataset.

BLCA BRCA COAD KIRC LUAD LUSC STAD PAAD

WGCNA 5.20 9.53 3.88 4.29 6.25 2.82 3.64 5.98

KISL 6.11 8.44 4.12 5.64 7.36 6.55 4.63 5.58

The bold words in Table 1 indicate the maximum value of the column, and the KISL algorithm obtains the maximum value on most data sets.

TABLE 2 GOTERM BP on LUSC dataset.

Module GOTERM BP

module0 O-glycan processing; innate immune response in mucosa; antibacterial humoral response; antimicrobial humoral immune response mediated by
antimicrobial peptide; protein O-linked glycosylation

module1 DNA replication; DNA unwinding involved in DNA replication; spliceosomal snRNP assembly; mitochondrial translation; DNA-dependent DNA
replication

module2 epithelial cell differentiation; epidermis development; intermediate filament organization; immunoglobulin production; keratinization

module3 cilium movement; flagellated sperm motility; microtubule-based movement; cilium assembly; outer dynein arm assembly

module4 cell division; chromosome segregation; mitotic spindle assembly checkpoint; mitotic cell cycle; mitotic spindle organization

module5 immunoglobulin production; immune response; positive regulation of B-cell activation; phagocytosis, recognition; phagocytosis, engulfment

module6 signal transduction; vasculogenesis; angiogenesis; positive regulation of angiogenesis; cell adhesion
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better suited to complex relationships. Moreover, using biological
knowledge based on GO terms to construct clustering constraints, a
semi-supervised method is used to identify network modules, which can
more effectively partition the network.

After comparing the silhouette coefficient, the Calinski-Harabasz
index and the Davies-Bouldin index evaluation metric values of the
modules identified by KISL with the widely used WGCNA, our
algorithm obtained the best performance on eight real-world
cancer sample datasets. The clustering produced by the method in
this paper has a better clustering evaluation value, and the obtained
gene modules have better aggregation. Based on enrichment analysis,
the identified modules were effective in discovering modular
structures in biological co-expression networks. The KISL method
is a general method for analyzing biological co-expression networks
based on similarity metrics.

In addition, we plan to incorporate more useful biological
knowledge in the future, such as protein‒protein interaction
networks and gene regulatory networks, which could allow us to
better identify co-expressed gene modules. Genomics and
transcriptomics are increasingly being applied to aid in clinical
diagnosis and prognosis; thus, in addition to discussing module
identification in co-expression network analysis, it is also important
to develop effective methods for comparative network analysis. As
part of our future research, we plan to explore how co-expression
networks can be compared. It is our future goal to examine
comparative methods of co-expression networks.
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