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Understanding adaptive genetic variation of plant populations and their
vulnerabilities to climate change are critical to preserve biodiversity and
subsequent management interventions. To this end, landscape genomics may
represent a cost-efficient approach for investigating molecular signatures
underlying local adaptation. Tetrastigma hemsleyanum is, in its native habitat, a
widespread perennial herb of warm-temperate evergreen forest in subtropical
China. Its ecological andmedicinal values constitute a significant revenue for local
human populations and ecosystem. Using 30,252 single nucleotide
polymorphisms (SNPs) derived from reduced-representation genome
sequencing in 156 samples from 24 sites, we conducted a landscape genomics
study of the T. hemsleyanum to elucidate its genomic variation across multiple
climate gradients and genomic vulnerability to future climate change. Multivariate
methods identified that climatic variation explained more genomic variation than
that of geographical distance, which implied that local adaptation to
heterogeneous environment might represent an important source of genomic
variation. Among these climate variables, winter precipitation was the strongest
predictor of the contemporary genetic structure. FST outlier tests and environment
association analysis totally identified 275 candidate adaptive SNPs along the
genetic and environmental gradients. SNP annotations of these putatively
adaptive loci uncovered gene functions associated with modulating flowering
time and regulating plant response to abiotic stresses, which have implications for
breeding and other special agricultural aims on the basis of these selection
signatures. Critically, modelling revealed that the high genomic vulnerability of
our focal species via a mismatch between current and future genotype-
environment relationships located in central-northern region of the T.
hemsleyanum’s range, where populations require proactive management
efforts such as assistant adaptation to cope with ongoing climate change.
Taken together, our results provide robust evidence of local climate adaption
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for T. hemsleyanum and further deepen our understanding of adaptation basis of
herbs in subtropical China.
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1 Introduction

Local adaptation is ubiquitous in plants, which can result in the
genetic divergence of populations cross the landscape (Sork et al.,
2016; Cao et al., 2020; Shen et al., 2022). Climate is a major driver of
such variation (Rehfeldt et al., 2014; Jia et al., 2020; Capblancq et al.,
2022), whereas the primary climatic agents of selection and targets
remain unknown for many species. The widely distributed species
can span multiple climatic and topographic gradients whereby both
adaptive and neutral processes can both affect their genome-wide
variations (Savolainen et al., 2013; Wang et al., 2015; Nadeau et al.,
2016). Disentangling the relative effects of natural selection and
spatial isolation on genomic variation is important to quantify the
contribution of adaptation in shaping the diversification and to
unravel the specific climate selective agents underpinning its
appearance (Gibson and Moyle, 2020). This, however, remains
technically challenging mainly because selective climatic gradients
and spatial variables are often confounding in natural populations
(Wiens, 1989; Kissoudis et al., 2016; Nadeau et al., 2016). Advances
in evolutionary and landscape genomics approaches and the
increasing accessibility of large genomic and climate datasets
enabled the characterization of the independent contributions of
climate and space to explaining patterns of genetic variation (Feng
and Du, 2022). These strategies serve as a complement to traditional
approaches uncovering evidence for local adaptation (i.e., common
garden experiments and/or reciprocal transplant), and aid efforts to
identify agents of selection acting in natural populations and their
possible genetic targets (Lasky et al., 2012; Lu et al., 2019; Capblancq
et al., 2022).

Global climate change is a significant threat to biodiversity,
which is impacting biosphere and altering ecosystem functions
(Capblancq et al., 2020; Malhi et al., 2020). Numerous empirical
studies have demonstrated that many plant species are already
affected by rapid climate change and, as a result, displaying
various responses, including shifting their ranges, loss of genetic
diversity and fitness in nature populations as well as changes in
population genetic composition (Exposito-Alonso et al., 2019;
Exposito-Alonso et al., 2022; Sang et al., 2022). To date,
predicting impacts of climate change on plant species
traditionally depends on species distribution modelling (SDM)
(Peterson et al., 2012; Dyderski et al., 2018; Thuiller et al., 2019).
Although these methods can identify species vulnerable regions to
future climate changes and forecast global patterns of extinction risk
via integration of species occurrence records and fine-scale climate
data, the SDM assumes that all individuals within a species have
similar climate stress and ignores ecotypes and local adaptation
(Smith et al., 2019; Capblancq et al., 2020; Aguirre-Liguori et al.,
2021). Hence, it has been criticized for oversimplification and
gradually replaced by methodologies that integrated local
adaptation into projecting species responses to climate change

(Fitzpatrick and Keller, 2015; Exposito-Alonso et al., 2018;
Exposito-Alonso et al., 2019). In addition, the predominant
methods utilized for detecting putatively adaptive signatures in
natural systems are FST outlier analyses (OA) and environmental
association analysis (EAA). OA studies screen SNPs with higher
genetic divergence than expected among populations under a
neutral model (Hohenlohe et al., 2010; Lotterhos and Whitlock,
2015), while EAA integrates genetic variation or allele frequencies
and environmental variables and then detects adaptive signatures
through identifying associations between them (Frichot and
François, 2015; Rellstab et al., 2015). However, to identify loci
putatively under selection is but one part of the question,
additional efforts are needed to unravel how the selection stress
acts on associated loci along the climatic gradients, and to
understand functional significance of these loci. Keeping this in
mind, we utilized integrative methods, including three OAs and one
EAA, followed by SNP-specific generalized dissimilarity modelling
(GDM) to determine changes of adaptive allelic frequencies
throughout the species range (hereafter “allelic turnover”;
Fitzpatrick and Keller, 2015), supported by gene annotation (see
details in method sections). Once candidate adaptive loci have been
identified, it is possible to assess genomic offset/genomic
vulnerability that measures the change of the adaptive genetic
composition in need to track the future climate shifts (Fitzpatrick
and Keller, 2015; Bay et al., 2018; Rellstab et al., 2021). Furthermore,
recent landmark studies have incorporated migration and dispersal
into assessment of genomic vulnerability (Gougherty et al., 2021;
Sang et al., 2022), which provide critical and promising information
to guide adaptive management interventions for species keeping
pace with future climate change, but have not been tested in many
cases.

Here, we applied the above analytical methods to T.
hemsleyanum (Vitaceae), one of the widespread components of
China’s warm-temperate evergreen forest. This diploid, perennial
herb is endemic to subtropical China (also occurs in southern
Hainan and Taiwan Islands) with a distribution that spans 18° of
longitude, 13° of latitude and 1,000 m of elevation (Figure 1), which
makes it an ideal model species to investigate variation in local
adaptation to climate. In previous studies, substantial phenotypic
and genetic variations were observed within natural populations of
this species. Population germplasms of different geographic origin
vary substantially in morpho-agronomic traits (Zhu et al., 2015;
Yang et al., 2019) as well as in phytochemicals and pharmacological
activities (Jiang, 2015; Yin et al., 2021). Regarding the genetic
structure, our previous study indicated that T. hemsleyanum
populations were clustered into four genetically distinct groups
(Wang et al., 2015), inhabiting different floristic regions of
subtropical China that vary in climatic conditions (Wu and Wu,
1998; Wu et al., 2010). This result points to the potential importance
of climatic difference among flora in shaping patterns of
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intraspecific genetic variation. However, the amount of genomic
variation determined by climate factors, the key climatic drivers, and
the possible genetic targets (SNPs and genes) remain unknown.
Beyond that, T. hemsleyanum is also an endangered medicinal plant
in the official protection list of crop germplasm resources (Hu et al.,
2021). In recent decades, T. hemsleyanum experienced substantial
natural population declines as a result of human over-exploitation
coupled with its specific climatic requirement for growth (Wang
et al., 2018; Guo et al., 2019), which will undoubtedly increase the
risk of maladaptation of local populations in face of future climate
changes of subtropical China. As forecasted by robust climate
models, subtropical China will be subjected to a rise in
temperature, an enhancement of spatial heterogeneity in
precipitation and an enlargement of arid regions by the end of
the century (TCNARCC, 2011; Zhao and Wu, 2014). However, the
risks that this climate sensitive species may face from these future
climate challenges and where it is most effective in achieving
conservation goals are still unknown.

Here, we sampled twenty-four populations of T. hemsleyanum
across subtropical China and surveyed their genomic variation using
specific-locus amplified fragment sequencing (SLAF, Sun et al.,
2013). Our main objectives were to 1) evaluate the contributions
of climate and geography to explaining patterns of genomic
variation and characterize the key climate variables with the
largest influence, 2) identify signatures of climate adaptation
(i.e., via OA, EAA and annotation), and explore how locally
divergent selection shaped patterns of allele frequencies changes
of candidate adaptive SNP loci across species range, and 3) quantify
and map which populations might be vulnerable to future climate

change. Our study will facilitate a better understanding of the
adaptation basis of China’s warm evergreen forest species and
contribute to genetically informed measures for T. hemsleyanum
resources management under shifting climates.

2 Materials and methods

2.1 Plant materials and genotyping

In this study, we collected fresh foliar samples of
252 georeferenced individuals at 24 independent natural sites
(>50 km separation) (Supplementary Table S1; Figure 1). We
chose 156 individuals for sequencing, including 132 individuals
screened for variation previously using cpDNA and microsatellite
loci (Wang et al., 2015), and 24 newly collected samples from
Guangxi and Taiwan Island (Figure 1). Sampling locations were
chosen to 1) cover entire species geographic and climatic
distribution in mainland China and southern islands, including
South/East China (SC1, SC2; EC1–EC6), Central China (CC1–CC8),
Southwest China (SW1–SW6), Hainan (HN) and Taiwan (TW)
Island; 2) represent major intraspecific phylogeographic clades
identified in the previous study (Wang et al., 2015).

Total genomic DNA was isolated from the silica gel dried leaf
material using Plantzol Reagent (Invitrogen). SLAF sequencing
libraries were prepared using the HaeIII and RsaI restriction
enzymes. The resulting 314 to 414 bp fragments (with barcodes
and dual-index sequencing adaptors) were excised and purified with
the Qiagen Gel Extraction Kit. After the library quality inspection,

FIGURE 1
Genetic population structure of T. hemsleyanum as revealed by STRUCTURE (left panels) and DAPC analysis (top-right panel). (A) Geographic
distribution of 24 populations with pie charts representing the ancestral components inferred by STRUCTURE analysis at K = 4. (B) Histogram of
population assignment using STRUCTURE analysis with K = 4. The colored segment in each bar represents the individual ancestry coefficient of inferred
clusters (or “gene pool”). (C) Population assignment results inferred from DAPC (using the R package adegenet).
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paired-end sequencing (the read lengths were 126 bp) was
conducted on an Illumina HiSeq 2500 platform (Illumina, Inc.,
San Diego, CA, United States).

After trimming sequencing adapters, the raw reads were filtered
for low-quality bases with a quality score less than Q20. Trimmed
reads were demultiplexed using the Illumina bcl2fastq2 conversion
software (Illumina, CA, USA). We aligned the reads to the T.
voinierianum reference genome (Cai et al., 2021) using BWA-
MEM (Li, 2013). T. voinierianum is a close relative to T.
hemsleyanum with complete genome sequences available. SNP
calling for each aligned sample were performed using GATK
v.3.3 (DePristo et al., 2011) with HaplotypeCaller and
GenotypeGVCFs tools. The SNPs identified by both methods
were retained. Further SNP filters for subsequent analysis were
applied with VCFtools v.0.1.14 (Danecek et al., 2011) and the
“populations” program implemented in STACKS v.1.27 (Catchen
et al., 2011) with the following criteria: a Phred pass score of 30, a
mean maximum depth per locus of 100× across all sites (to avoid
SNPs from over-represented organelle reads or falsely aligned
paralogs), and a minimum read depth threshold of 6× for each
sample. Furthermore, the minor allele frequency (MAF) per locus
has to be greater than 5%, and only bi-allelic type of SNPs
informative in at least 75% of the samples and 70% of the sites
were retained. To reduce linkage, SNPs in strong linkage
disequilibrium were removed using PLINK v.1.9 (Purcell et al.,
2007), in a window size of 100 bp and a window step of 10 bp
and a pairwise genotype correlation r2 > 0.5.

2.2 Environmental data

We retrieved 35 bioclimatic variables (see Supplementary Table
S2) for each sampling site from theWorldClim v.1.4 (Hijmans et al.,
2005) and one derived set ENVIREM (Title and Bemmels, 2018).
WorldClim variables (BIO1–BIO19) are generated from
interpolation of mean monthly weather station climate data from
1960 to 1990 (centered on ~1975). ENVIREM includes an expanded
set of 16 bioclimatic variables to complement the WorldClim
dataset, most of which are relevant to the physiological and
ecological processes of plants (Title and Bemmels, 2018). For the
future predictions, this study used statistically downscaled, bias-
corrected CMIP6 general circulation models (GCMs) with high
resolution. To account for uncertainty in model projections, a
composite average of six GCM models (MRI-ESM2-0, BCC-
CSM2-MR, IPSL-CM6A-LR, CanESM5, CNRM-ESM2-1 and
MIROC-ES2L) with low amount of interdependence (Brunner
et al., 2020), was developed for the time period 2061–2080
(centered on 2070), and for two shared socioeconomic pathways
(SSPs)—SSP370 and SSP580. The raster files for future data
downloaded from WorldClim were further utilized to generate
ENVIREM variables for all GCMs and the SSP scenario using
online pipelines (http://envirem.github.io/ENVIREM_tutorial.
html). All variables for downstream analysis in this study were
obtained at 30-s resolution (~1 km2), and were scaled, centered, log-
transformed (if appropriate) and tested for normality. To reduce
multicollinearity, climatic cells with sampling records from all
35 variables were checked for Spearman’s correlation coefficient
in R. Ultimately, a subset of 11 variables (see Supplementary Table

S2) that lacked strong correlation (|r| < 0.75) were considered for
environmental association analysis.

2.3 Genetic diversity and population genetic
structure

Population genetic diversity parameters, including expected
heterozygosity (HE), percentage of polymorphic loci (P) and
Wright’s inbreeding coefficient (FIS) per population were
estimated using the “populations” module of STACKS v.1.27
(Catchen et al., 2011). We utilized an analysis of molecular
variance (AMOVA) to evaluate the genetic divergence among
populations and geographic regions in Arlequin v.3.5 (Excoffier
and Lischer, 2010), and the significance of FST values were assessed
with 1,000 permutations. We investigated population genetic
structure using STRUCTURE v.2.3.4 (Pritchard et al., 2009). For
each number of cluster (K) that varies from 2 to 10, we run
10 repetitions with a 10,000 burn-in steps of and
1,00,000 Markov chain Monte Carlo (MCMC) replications. The
programwas utilized applying independent allele frequencies and an
admixture model. The most probable values of K were determined
by ΔKmethod (Evanno et al., 2005) using HARVEST software (Earl
and vonHoldt, 2012). In addition, we also performed a discriminant
analysis of principal components (DAPC) to infer the number of
genetic clusters in the R package adegenet (Jombart, 2008; Jombart
and Ahmed, 2011).

2.4 Assessing the role of climate and
geography

We estimated the amount of genomic variation attributable to
climate and geography by two different variance partitioning
approaches—redundancy analysis (RDA) and generalized
dissimilarity modelling (GDM). All climate variables were scaled
and centered to account for difference in magnitude when
calculating environmental distance. To test for the presence of
regional climatic differences, the difference of each climate
variable among the four genetic clusters (identified in
STRUCTURE) were assessed using analysis of variance
(ANOVA), followed by post hoc Tukey’s test. As a form of
constrained ordination, RDA is applicable to genomic data
(Forester et al., 2018) and permits to evaluate the total
explanatory power of climate and geographical variables for
genotypes (Legendre and Legendre, 2012). Using partial RDA, it
enables the estimation of SNP variation independently attributed to
geography, climate and their colinear portion (climate + geography)
(Gibson and Moyle, 2020; Chang et al., 2022). We utilized the R
package VEGAN to perform RDAs using climate variables and
spatial variables (distance-based Moran eigenvector maps, dbMEM)
as independent predictors (Oksanen et al., 2019). We generated
dbMEMs based on geographic coordinates of sites using the
quickMEM function in the ADESPATIAL package detailed in
Borcard et al. (2018). Forward selection implemented in this
function was performed to select significant dbMEMs. These
dbMEM were finally included as predictors in our RDA models,
which generate canonical axes representing the spatially structured
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genetic variation across species’ distribution range. The bioclimate
variables, retained by Pearson correlation analysis, were further
tested by forward selection implemented in the R package
ADESPATIAL to find variables predictive for partitioning.
Forward selection was applied at the α = 0.05 level and a
maximum global adjR2 threshold equal to the adjusted R2 of the
RDA model including all initial variables (in this case adjR2 <0.318)
with 10,000 permutations. In partial RDA, variance partitioning was
carried out using population allele frequencies as the response
variable in the two partial models that utilized the selected
bioclimate variables as explanatory variables and the dbMEMs as
conditioning variables and vice versa.

We additionally performed GDM to estimate the total and
independent effects of environmental dissimilarity and
geographic distance on genomic divergence. While GDM is in
principle similar to RDA, it is based on a different statistical
method, which employs non-linear regression to estimate the
amount of population pairwise genetic distance attributed to
pairwise differences of climate and dbMEM variables (Fitzpatrick
and Keller, 2015). First, based on the same genomic data for variance
partitioning in RDA, a population pairwise FST matrix was
generated using the R package hierfstat (Goudet, 2005). Second, a
site-by-environment predictor matrix was created including
population IDs, geographic coordinates and the set of climate
variables. Then, we fit GDM models in R package GDM using
the matrix of genetic distance as the response variable and the
climate variables as explanatory variables. We test the significance of
each predictor variable by randomization tests (Shryock et al., 2021),
and only included the predictor variables that significantly increase
the explained deviance in the final fitted model (Manion et al., 2017).
The relative importance of climatic predictors with regard to allelic
turnover was estimated as the sum of I-spline basis functions
(maximum height of each response curve; Fitzpatrick and Keller,
2015). To test the model robustness, we simulated 1,000 replicates,
leaving out a random 10% of sites we sampled, and then performed
GDMs the same before at each replicate (Murray et al., 2019).

2.5 Outlier and environmental association
analysis

To identify genomic signatures of selection, we applied a
combined analysis approach integrating three OAs (BAYESCAN,
SELESTIM and BAYENV XT X) and EAA (BayPass). The three OAs
we adopted are based on different demographic assumptions.
BAYESCAN v. 2.1 (Foll and Gaggiotti, 2008) and SELESTIM
v.1.1.4 (Vitalis et al., 2014) both used simple island model with
migration. Specifically, BAYESCAN firstly generates population-
specific and locus-specific FST coefficients while accounting for
sample size variation, and then calculates the posterior
probabilities of models with or without selection for each locus
(Foll and Gaggiotti, 2008). In this study, three independent
BAYESCAN runs were performed with prior odds of
10,000 following Lotterhos and Whitlock (2015), with 20 pilot
runs of length 5,00,000, a thinning interval of 10, and a burn-in
of 50,000. SNPs have consistent low false discovery rate (FDR <
0.05) in all three runs were considered as outliers. SELESTIM
assumed that the study system followed a multinomial Dirichlet

distribution of allele frequencies between populations as
BAYESCAN, but relies on allelic frequencies instead of FST to
identify loci under strong selective pressures (Hoban et al., 2016).
This method uses Kullback-Leibler divergence (KLD) to estimate the
distance of locus-specific coefficients of selection from the genome-
wide effect of selection (Vitalis et al., 2014). The KLD was calibrated
by simulated observed data (Vitalis et al., 2014). We carried 50 pilot
runs with length of 5,000 to tune the model parameters, which is
followed by 10,00,000 iterations with a burn-in of 1,00,000 and a
thinning interval of 20. The threshold value of the empirical
distribution of the KLD based on a pod analysis was set to 0.01.

To account for more complex demographic histories, we
performed a third outliers test using BAYENV XT X (Günther
and Coop, 2013). This method uses a population covariance
matrix to accounts for neutral genetic structure. The matrix was
created using SNPs not significant in other OAs. To minimize the
stochasticity in null model estimation, the matrix was generated
from the mean covariance matrix across three replicated runs
produced from 5,00,000 iterations each. We then perform three
runs for 5,00,000 iterations with the covariance matrix, and calculate
XT X across replicates for each SNP. SNPs with top 5% of ranked XT

X values were deemed to be outliers.
To complement the OAmethod, we used BayPass v2.1 (Gautier,

2015) to detect signals of selection based on associations between
allele frequencies and climate variables, while accounting for
hierarchical structure of populations. BayPass is an elaboration
on the model of BayEnv2 and is wrapped under the script
Baypass_workflow.R implemented in pyRona v.0.3.7 (Pina-
Martins et al., 2017). Prior to runs, a covariance matrix was
generated with the full SNP data set using the similar algorithm
implemented in BayEnv2. Baypass was run under a standard
covariance model (STD) with default parameter settings.
Significant associations were defined as having an eBPis greater
than 3 and a Bayes Factor greater than 15 dB, which are thresholds
consistent with other studies (Ahrens et al., 2019; Seabra et al., 2021).

2.6 Landscape modelling

We test for spatially explicit selection processes for independent
candidate SNPs using the package GDM in R (Ferrier et al., 2007;
Manion et al., 2017).We adopted a “single-SNP” approach following
Dudaniec et al. (2018) and modelled each candidate SNP
independently, regardless of genomic contexts. The complete set
of candidate loci identified by OA (by at least two methods) and
EAA methods were used for GDM since each of the method adopt a
statistic approach that is uniquely valid to reveal signatures of
selection, and there is only minor overlap in the number and
identity of retained SNPs across approaches.

Given the strong interspecific genetic differentiation and
significant correlation between genetic structure and
environmental gradients in T. hemsleyanum (see results), false
positives were expected for the OA and EAA methods even with
a correction for population structure. As a result, we conducted two
additional steps to control for false positives by GDM. Firstly, we
randomly choose 200 SNPs from the full set of 30,252 SNPs, and
incorporate the random sample as a “reference” in the GDM to
investigate if explanatory power of a candidate SNP is higher than
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that of the reference group. Secondly, we integrated geographic
distance in the GDMs to reveal if spatial isolation better explained
the observed partial allelic turnover across climatic gradients. This
acts as a second screening for loci that predominantly respond to
neutral genetic processes (i.e., isolation by distance). Overall, we
tried to reduce false-positive rates, 1) by comparing the response of
SNP-specific partial allelic turnover to climate variables with the
response to geographic distance and 2) by comparing the response of
each candidate SNP with reference SNP group to test whether a
given locus explained a higher deviance within the GDM than a
random sample of genetic variation.

We created the population pairwise FST matrices using the
package HIERFSTAT in R (Goudet, 2005) and applied GDM to
each of the candidate SNPs identified by EAA and OA. To evaluate
the role of a specific SNP in selection processes, we ranked the SNP-
specific allelic turnover functions in relation to each climate variable
in two different ways as described in Dudaniec et al. (2018). Within
each SNP, the ranking per variable is based on the partial allelic
turnover magnitude relative to the other variables included in the
GDM model. Across SNPs, the ranking per SNP is based on the
explained deviance ranked relative to full candidate data set. After
filtering of SNPs that 1) had the highest magnitude of partial allelic
turnovers related to one of the climate variables rather than
geographic distance and 2) explained higher model deviance than
the reference SNP group (which had an explanatory power of
10.05%), 275 of 497 previous identified SNPs were retained.

2.7 Genomic contexts of candidate SNPs

The positions of candidate SNPs accompanying coding genes
were identified based on gene models on the T. voinierianum
genome (Cai et al., 2021) using BEDTools (Quinlan and Hall,
2010) and SnpEff (Cingolani et al., 2012). The gene models were
predicted based on the T. voinierianum transcriptome (Matasci
et al., 2014) and Vitis vinifera proteomes as described in Cai
et al. (2021). The genes that are 1,000 bp upstream or
downstream from the candidate SNPs were also presented (if
any) to catch possible regulatory sites located in intergenic
regions (Harris and Nielsen, 2014; Ahrens et al., 2019).

2.8 Genomic offset under future climates

For this threatened and endangered species, we are particularly
interested in identifying spatial regions or populations at highest risk
of future maladaptation, and where migration will be most effective
to maintain the current status of adaptation. To do so, we extended
the GDMs to estimate genomic offset, also called genomic
vulnerability (Bay et al., 2018), which represents the disruptive
effect of future climate change on contemporary genotype-
climate associations (Rellstab, 2021). In this study, we followed a
novel developed method in Gougherty et al. (2021) that incorporate
migration into predict genomic models and used GDMs to
calculated three metrics of genomic offsets that termed local,
forward and reverse offsets. We fit GDMs to FST of the
275 retained candidate SNPs under putative selection. The fitted
models were predicted to climate in 2070 and two shared

socioeconomic pathways (SSPs)—SSP370 and SSP580. As
described in Fitzpatrick and Keller (2015), local (classic) offset
was calculated by estimating in situ allele frequencies shift at the
robust set of climate-adaptive loci that a resident population
required to response to local climate changes in 2070 (assuming
no migration). Forward and reverse offsets were recently developed
by Gougherty et al. (2021). For forward offset estimates, we firstly
calculated the genomic offset of each current grid cell within the
extant range of T. hemsleyanum to all future grid cells within China.
Then we identified minimum offset among genomic offsets
estimated across all future grid cells (termed “forward offset”),
which assumes unconstrained dispersal of T. hemsleyanum
populations to any location within China. High values of forward
offset indicate a low adaptation capacity of the population to all
future climates of China and a high chance of extinction in current
genotype–climate relationships across the landscape. Besides, the
distance and initial bearing that populations would migrate/disperse
to the grid cell that minimized forward offset were estimated in R
package geosphere (Hijmans et al., 2017) using the distGeo and
bearing functions, respectively. Reverse offset is predicted by
identifying the minimum offset among populations under current
climate and “hypothetical” populations in 2017 and, both within the
current range of this species. High reverse offset indicates the future
novelty of genotype-climate relationships, since such relationships
are not existed at any location of current landscape. The Spearman’s
correlations between population structure, genomic offsets and
climate variable shifts were quantified in R. To visualize genomic
vulnerability to climate change, we presented an RGB image using
ArcGIS 10.1 to simultaneously map all three genomic offset
measures as red, green and blue bands, respectively, in
geographic space for the year 2070. Prior to plotting, the values
of each color band were rescaled to their quantiles (analogous to a
histogram equalization) to illustrate the full range of each band.

3 Results

3.1 SLAF-seq and SNP calling

In this study, a total of c. 850 million reads was generated from
all individuals with an average Q30 of 95.69% and a GC content of
approximately 41.33% (Supplementary Table S3). The average
number of reads per sample is 5.45 × 106 (minimum: 2.02 × 106;
maximum: 13.17 × 106). High-quality SLAF tags (68,13,573 in total)
were identified throughout the genome with an average of 12.05-fold
sequencing depth (Supplementary Table S3). Subsequently, a total of
1,28,15,312 SNPs in 16,86,020 polymorphic SLAF tags were
obtained. Of the 156 samples, 78.2% had a mean depth greater
than 10×. After filtering for read depth and missing data (as
described in the Methods), we retained a total of 30,252 high
quality SNPs across samples.

3.2 Genetic diversity and population
structure

Based on the high-quality SNP data, the genetic diversity of
24 populations in T. hemsleyanum were calculated and summarized
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in Supplementary Table S1. Nei’s genetic diversity (HE) was similar
across populations (mean HE = 0.364, SD = 0.025) and varied from
0.045 (SW1) to 0.125 (EC2). The FIS values ranged from −0.044
(EC6) to 0.098 (EC1) with a mean value of 0.038. Significant
pairwise genetic differentiation was detected for all population
pairs (mean FST = 0.289, p < .001), ranging from 0.079 (between
CC3 and CC6) to 0.455 (between EC2 and SW1) (Supplementary
Table S4). Bayesian clustering implemented in STRUCTURE
supported an optimal clustering at K = 4 (Supplementary
Figure S1). The geographical assignment pattern of the
individuals in the four clusters were almost concordant with to
the geographical regions of Southwest [“SW” (green; pops
SW1–5)], Central [“CC” (purple; CC1–8)], South [“SC”
(tangerine; SC1–2, and adjacent island populations HN, TW)
and East China [“EC” (light blue; EC1–5)] (Figures 1A, B). We
observed high probabilities of ancestry to a given cluster for all
populations, except that two populations (i.e., EC1, SW6)
exhibited homogeneous levels of admixture. DAPC revealed a
grouping pattern in concordance with that observed from
STRUCTURE analysis, and the first two PCs explained 21.17%
and 11.89% of the genetic variation, respectively (Figure 1C).
AMOVA indicated that 37.01% of the genomic variation was
distributed among regional groups (SW, CC, SC and EC) (FCT =
0.37, p < 0.001), while 39.25% of the variation occurred within
populations of T. hemsleyanum (Supplementary Table S5).

3.3 Impacts of climate and spatial variables
on genome-wide population differentiation

3.3.1 RDA analysis
We performed RDA using partially constrained ordination

(without accounting for spatial structure), whereby ten climate
variables were identified as significant predictive of genetic
variation among populations (Table 1), with one factor (PETS:
Monthly variability in potential evapotranspiration) excluded.
The most predictive variables include BIO15 (Precipitation

Seasonality), GDD0 (degree days above 0°C) and PETWeQ
(Mean monthly PET of wettest quarter). In Partial redundancy
analysis (pRDA), four dbMEM were retained as sufficient to explain
the geographic structure among populations (Supplementary Table
S6; Supplementary Figure S2). Among these four axes, dbMEM2 and
dbMEM4 described broad-scale spatial structure, whereas
dbMEM5 and dbMEM6 described fine-scale structure
(Supplementary Table S6; Supplementary Figure S2).
dbMEM2 contributed most variation of any single spatial
variable (6.19%; Supplementary Table S6). Cumulatively more

TABLE 1 Climate variables retained by forward selection and their contribution to genomic SNP variation using RDAs. The climate variable definitions are in
Supplementary Material.

RDA (not constrained on space) Partial RDA (constrained on space)

Variable Contribution to RDA model (R2.adj%) p Variable Contribution to RDA model (R2.adj%) p

BIO15 6.38 0.000*** BIO19 11.72 0.002**

GDD0 5.95 0.000*** PETWeQ 3.29 0.002**

PETWeQ 5.66 0.000*** GDD0 3.27 0.002**

PETS 4.3 0.000*** PETS 3.27 0.038*

BIO19 1.92 0.000*** BIO15 2.54 0.002**

BIO13 1.79 0.000*** BIO2 1.67 0.002**

BIO2 1.28 0.000*** CMI 0.85 0.002**

PETWaQ 1.11 0.000*** BIO8 0.67 0.002**

AIT 0.77 0.004** BIO13 0.56 0.002**

BIO8 0.75 0.004** AIT 0.25 0.002**

FIGURE 2
Biplot of Redundancy analysis conditioned on geography.
Individuals are colored in corresponding with genetic clusters inferred
by STRUCTURE analysis (see Figure 1). Top and right axes in red
displayed the correlation of each climate variable (see
Supplementary Table S2 for variable abbreviations) with RDA1 and
RDA2 axes, respectively. Black vectors represent climate variables.
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variation was explained by broad-scale spatial variables (8.30%) than
fine-scale ones (5.95%). Forward selection constrained on dbMEMs
retained ten climate variables (Table 1; Figure 2), which is predictive
while accounting for spatial effect. The strongest predictor
contributing to the total variation was BIO19 (Precipitation of
Coldest Quarter; 11.72%), followed by PETWeQ (3.29%) and
GDD0 (3.27%), while AIT (Aridity Index Thornthwaite) was the
weakest predictor (Table 1; Figure 2).

Using RDA, the climate (ten variables identified by forward
selection) and geography both explained significant proportions of
genetic variation (11.9%–31.8%, p < 0.001; “combined fractions” in
Table 2). To further decompose their contribution, we performed
partial RDA, which revealed that climate and geography jointly
explained 36.4% of the inter-population genetic variation (“total

explained,” Table 2). A minority of this (6.4%) was attributed to the
collinear portion of climate and geography (Figure 3), that could
represent the effects of clinical climate factors. Considering their
independent effects, climate alone explained a substantially larger
fraction of genetic variation than the geography alone (27.5% vs.
2.5%; Figure 3).

The correlations of climatic predictors with each RDA axes
indicated that their contribution to population genetic variation
varies geographically across the distribution range and therefore the
climate variables acting as leading force in driving divergent
selection regarding the geographic clusters being compared.
Populations from South China (cluster IV) are exposed to greater
growing degree days in comparison to populations from rest of the
range; eastern coastal populations (cluster III) experience more
winter precipitation; and southwestern populations (cluster I)
experience highly potential evapotranspiration in warm and rainy
seasons (Supplementary Figure S3). Moreover, we detected
significant difference among the four genetic clusters that may
contribute to divergent selection (p < 0.0001 for all tests;
Supplementary Figure S3), indicating that these regional clusters
tend to occupy habitats characterized by more or less unique climate
features.

3.3.2 GDM analysis
The full GDM (climate + geography) model explained 17.6% of

the deviance in spatial patterns of genetic variation among
populations (p < 0.001) (Figure 3; Supplementary Table S7). The
models accounting for individual effect of geography and climate
explained 8.1% and 14.3% of the deviance, respectively (Figure 3). As
with RDA, this finding suggests that a larger proportion of variation
is attributable to climate differentiation than to geographic isolation.
In climate GDM model, the sums of I-spine basis functions
(Supplementary Figure S4) indicated that BIO15 (Precipitation
Seasonality) had the greatest magnitude in partial allelic turnover
response (importance weight = 0.330), followed by BIO19
(Precipitation of Coldest Quarter; importance weight = 0.298). It
is worth noticing that these two variables were consistently identified
as significant predictors contributing to SNP variation in both GDM

TABLE 2 RDAs to partition genomic variation among T. hemsleyanum populations into climate, geography and their combined fractions.

Combined fractions R2 p (>F)

F ~ clim. 0.318 0.001***

F ~ geo. 0.119 0.001***

Individual fractions

F ~ clim.|geo. 0.275 0.001***

F ~ geo.|clim. 0.025 0.001***

F ~ geo.+ clim. 0.064 —

Total explained 0.364 —

Total unexplained 0.636 —

Total 1 —

Notes: F, population allele frequencies matrix; RDA tests form, F ~ independent matrices|covariate matrixes; clim., ten climate variables identified by forward selection; geo., four retained

dbMEMs. Total explained: sum of adjusted R2 of each fraction. The significance for confounded fractions (geo. + clim.) was not estimated. ***p < 0.001.

FIGURE 3
Results of variance partitioning estimated by RDA and GDM
models. The total in legend means the genetic variation that climate
and geography jointly explained, and the climate + geography means
the collinear part of genetic variation. Note that GDM cannot
estimate the contribution of climate + geography.
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and RDA analysis (see Supplementary Tables S8, S9 for variable
contributions in GDM models).

3.4 Identification of candidate adaptive SNP

By OA, a total of 107 SNPs was detected in at least two of the
three tests (Figure 4; Supplementary Table S10). Specifically,
BayeScan (see Supplementary Figure S5), BayENV XT X and
Selestim identified 55, 303, and 343 putatively adaptive SNPs,
respectively. 20 SNPs were identified in all three tests and 87 in
two tests, with the rest SNPs exclusively to BayeScan (9), BayENV XT

X (204) and Selestim (254) (Figure 4). Using EAA analysis
(Baypass), 402 SNPs were identified with significant associations
with climate variables, and 14 of these SNPs were related to multiple
climate variables (Supplementary Table S11). Collectively, a total of
497 SNPs was identified to be outliers by multiple OA methods and/
or to be associated with at least one of the eleven climate variables
tested, representing 1.7% of the SNP dataset. Of these candidate
SNPs, only 12 SNPs were shared between OA and EAA approaches
(Supplementary Tables S10, S11).

GDMs were independently applied to the 497 candidate SNPs to
quantify partial allelic turnovers through climatic gradients
(Supplementary Table S12). For each variable, we presented
GDM results for the top 150 SNPs with the greatest magnitude
of partial allelic turnovers in Supplementary Figure S6, which
revealed varying gradients and strengths of selection acting across
a range of loci. For example, the SNPs associated with geography
(Supplementary Figure S6A), BIO19 (Supplementary Figure S6F)
and PET seasonality (Supplementary Figure S6J) mostly appeared to
reach the highest allelic turnover magnitudes at positions where the
greatest change occurs along environmental gradients, while SNPs
associated with BIO15 mostly ceased allelic turnover beyond a

precipitation seasonality cut-off of 58 (Supplementary Figure S6).
On average, the magnitude in partial allelic turnovers per climate
variable for the 497 SNPs were highest in relation to BIO19 (0.147),
followed by BIO13 (0.141) and PET seasonality (0.120)
(Supplementary Table S12). BIO13 (Supplementary Figure S6D)
and GDD0 (Supplementary Figure S6I) drove the most variable
magnitudes of partial allelic turnover, both of which had distinct
thresholds of turnover recognizable for each related locus.

Among the 497 previous identified candidate SNPs, 6 SNPs
(1.2%) showed non-significant allelic turnover response to any of the
variables, and were not interpreted further. 50 of the 497 SNPs
(10.1%) had less magnitude in partial allelic turnover associated with
climate variables than with geographic distance (and considered to
be possible false positives). The “reference SNP group” explained
10.5% of the deviance in GDM model, and therefore the SNPs with
explanatory power less than 10.5% were also excluded. Finally, we
retained 275 SNPs for further functional annotation.

3.5 Annotation

Of the 275 putative adaptive SNPs we identified, 219 occurred in
SLAF scaffolds that aligned to contigs of T. voinierianum genome
assembly, and reside in different genomic regions including coding,
intron and intergenic regions. No candidate SNPs were found within
regulatory regions. Of the 219 SNPs, 92 SNPs were predicted to fall
within genes. 31 (33.7%) out of the genic SNPs were exonic variants,
including two identified in OA, 28 in EAA test (associated with
climate variables) and one in both tests (Table 3). The 31 SNPs
uncovered gene functions associated with abiotic stimuli response,
cell cycle progression, flora reproductive development and terpenoid
synthesis. Full annotation results of all candidate SNPs are given in
Supplementary Table S13.

3.6 Genomic offset and migration to climate
change

The GDM model based on 275 potentially adaptive loci
explained 25.91% of the deviance. BIO19 was the most important
predictor for the observed adaptive genetic variation
(Supplementary Figure S7). Under a scenario of future climate
change, although we found differing patterns of the local,
forward and reverse offsets across the distribution range of T.
hemsleyanum, some general patterns can be observed. The three
genomic offsets were predicted be lowest for populations in the
southern range margin of the mainland (Figure 5; Supplementary
Figure S7). By contrast, the central-north part of the range, especially
along eastern Yungui Plateau and Xuefeng Mts, have relatively high
levels of genomic offsets (Figure 5; Supplementary Figure S7),
indicative of relatively high future disruption of genotype-climate
relationships in populations occupied current locations, and such
effects of climate change cannot be mitigated by movement towards
more suitable locations. Local and forward offsets were most
strongly associated with shifts in BIO19, PET seasonality and
arid index (Supplementary Figure S9). Besides, there is no
obvious relationships between local/forward offset and population
structure, except for a significant negative relationship existed

FIGURE 4
Number of T. hemsleyanum SNPs detected in three FST outlier
tests. Shaded overlapping regions (outliers in >2 tests) represent SNPs
deemed as outliers in this study.
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TABLE 3 Gene annotation and associated variables for potentially adaptive SNPs. SNP IDs, gene function on the T. voinierianum genome are shown. The detection method (PD/EA tests) and partial allelic turnover by variables
predicted by GDM are listed for each annotated locus. The SNP presented had 1) higher allelic turnover responses associated with climate variables relative to geographic distance, and 2) a higher explained deviance (%) in
GDMs than the reference SNP group. The climate variable definitions are in Supplementary Material.

SNP_ID Gene annotation from the T. voinierianum
genome

Detect.
Meth.

%
GDM

Partiall allelic turnover by variable

Symbol Description GEO BIO13 BIO15 BIO19 BIO2 BIO8 AIT CMI GDD0 PETs PETWaq PETWeQ

106296_81 RH7 DEAD-box ATP-dependent RNA helicase 7 Both 19.62 0.27 0.00 0.05 0.00 0.00 0.26 0.00 0.09 0.25 0.48 0.00 0.00

108307_57 APX1 L-ascorbate peroxidase 2, cytosolic EAA 10.05 0.14 0.07 0.16 0.00 0.04 0.00 0.00 0.00 0.14 0.21 0.13 0.22

108813_20 GALT31A Beta-1,6-galactosyltransferase GALT31A
isoform X1

EAA 19.81 0.29 0.09 0.00 0.00 0.00 0.40 0.04 0.00 0.00 0.02 0.00 0.00

111595_169 SHT Spermidine hydroxy-cinnamoyl transferase EAA 28.44 0.18 0.09 0.00 0.36 0.57 0.00 0.01 0.00 0.04 0.44 0.08 0.09

112920_33 At4g11810 SPX domain-containing membrane protein PD 31.13 0.08 0.00 0.01 0.64 0.00 0.07 0.13 0.02 0.87 0.00 0.04 0.00

At4g22990

149183_189 BAM1 Leucine-rich repeat receptor-like serine/
threonine-protein kinase BAM1

EAA 12.26 0.18 0.23 0.21 0.00 0.09 0.31 0.19 0.00 0.00 0.18 0.00 0.05

150607_97 CYCA2-4 Cyclin-A2-4 isoform X2 EAA 15.91 0.00 0.19 0.00 0.56 0.04 0.00 0.00 0.00 0.00 0.23 0.04 0.11

157676_241 NORK Nodulation receptor kinase EAA 18.54 0.01 0.00 0.71 0.00 0.01 0.00 0.00 0.37 0.00 0.00 0.00 0.51

165239_220 MS5 Protein POLLENLESS 3 EAA 13.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.00 0.00 0.00 0.08

182454_174 ECR Very-long-chain enoyl-CoA reductase
isoform X1

PD 25.52 0.24 0.63 0.00 0.02 0.00 0.51 0.17 0.00 0.00 0.00 0.00 0.04

183110_19 ABCG10 ABC transporter G family member 10 EAA 25.31 0.20 0.36 0.02 0.00 0.39 0.05 0.00 0.00 0.34 0.00 0.00 0.00

200811_248 Os01g0253300 Importin subunit alpha-4 EAA 18.93 0.00 0.19 0.18 0.00 0.38 0.13 0.00 0.34 0.22 0.11 0.00 0.15

210328_156 TPS9 Terpene synthase 9 EAA 13.73 0.18 0.00 0.10 0.00 0.00 0.05 0.00 0.52 0.24 0.00 0.00 0.41

226772_121 MYB3R1 Transcriptional activator MYB EAA 15.84 0.25 0.00 0.00 0.02 0.16 0.17 0.00 0.00 0.00 0.26 0.06 0.00

234472_247 BHLH93 Transcription factor bHLH93 isoform X2 EAA 15.40 0.00 0.06 0.18 0.02 0.04 0.01 0.00 0.00 0.00 0.26 0.00 0.00

259725_242 GRDP2 Glycine-rich domain-containing protein EAA 12.38 0.22 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00

259831_218 Stk24 Germinal center kinase 1 isoform X3 EAA 21.16 0.00 0.00 0.24 0.66 0.06 0.10 0.01 0.00 0.00 0.03 0.00 0.26

275220_193 BHLH60 Transcription factor BHLH60 EAA 11.70 0.00 0.00 0.12 0.00 0.00 0.08 0.00 0.00 0.00 0.04 0.00 0.04

43765_162 PER64 Peroxidase 64 EAA 28.09 0.00 0.08 0.17 0.03 0.13 0.00 0.00 0.00 0.60 0.00 0.02 0.33

47867_74 LMK1 Putative LRR receptor-like serine/threonine-
protein kinase

EAA 16.46 0.15 0.00 0.15 0.30 0.02 0.00 0.14 0.00 0.31 0.06 0.01 0.21

(Continued on following page)
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TABLE 3 (Continued) Gene annotation and associated variables for potentially adaptive SNPs. SNP IDs, gene function on the T. voinierianum genome are shown. The detection method (PD/EA tests) and partial allelic turnover
by variables predicted by GDM are listed for each annotated locus. The SNP presented had 1) higher allelic turnover responses associated with climate variables relative to geographic distance, and 2) a higher explained
deviance (%) in GDMs than the reference SNP group. The climate variable definitions are in Supplementary Material.

SNP_ID Gene annotation from the T. voinierianum
genome

Detect.
Meth.

%
GDM

Partiall allelic turnover by variable

Symbol Description GEO BIO13 BIO15 BIO19 BIO2 BIO8 AIT CMI GDD0 PETs PETWaq PETWeQ

50095_180 PCMP-H88 Pentatricopeptide repeat-containing protein
At1g08070

EAA 29.45 0.00 0.00 0.00 0.10 0.00 0.16 0.00 0.05 0.88 0.34 0.02 0.07

53321_68 WRKY70 Probable WRKY transcription factor 70 EAA 10.59 0.00 0.00 0.10 0.00 0.07 0.39 0.20 0.12 0.00 0.17 0.00 0.06

56811_114 SecA Protein translocase subunit EAA 19.56 0.23 0.00 0.00 0.00 0.85 0.11 0.00 0.00 0.00 0.00 0.00 0.00

SecA, chloroplastic

61513_232 RE2 Uncharacterized protein EAA 15.54 0.31 0.00 0.38 0.00 0.04 0.00 0.00 0.29 0.00 0.32 0.00 0.01

LOC107261244

64046_224 HMA5 Putative copper-transporting ATPase HMA5 EAA 13.18 0.25 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.29 0.00 0.16

64578_209 DDB_G0268948 Putative methyltransferase EAA 12.42 0.00 0.00 0.00 0.04 0.00 0.10 0.18 0.00 0.07 0.13 0.29 0.00

67001_214 BGAL6 Unnamed protein product, partial EAA 19.84 0.29 0.21 0.00 0.00 0.00 0.37 0.17 0.00 0.00 0.00 0.00 0.00

68729_42 PAP15 Hypothetical protein VITISV_037278 EAA 13.75 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.44 0.04 0.35 0.00 0.06

71182_245 APC1 Anaphase-promoting complex subunit
1 isoform X1

EAA 16.64 0.06 0.05 0.19 0.08 0.20 0.12 0.05 0.00 0.25 0.00 0.14 0.02

8850096_188 LPXA Putative acyl-[acyl-carrier-protein]--UDP-
N-acetylglucosamine O-acyltransferase,
mitochondrial

EAA 18.51 0.18 0.00 0.04 0.95 0.07 0.00 0.00 0.00 0.23 0.17 0.08 0.00

92082_176 ABCC10 ATP-binding cassette transporter member EAA 15.20 0.00 0.00 0.24 0.00 0.00 0.12 0.05 0.45 0.18 0.39 0.00 0.21
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between local offset and the estimated ancestry coefficients for the
“South” cluster (Supplementary Figure S9).

For the set of adaptive loci, few (<1%) locations had the distance
to locations that minimized forward offset (Dmin) equals to zero. The
longest Dmin was predicted in central-north part of the range,
whereas the shortest Dmin mainly occurred in the southern and
northwestern range edge (Figure 6A). Furthermore, the initial
direction that populations would adhere to move to locations
that minimize maladaptation risks varied throughout the range.
The GDMs predicted an overall northward trajectory for most
(71.14%) locations within the range, but substantial variations
were observed beyond the core of the range, especially along the
northwestern range edge, where populations showed eastward,
westward, or even southward trajectories (Figure 6B).

4 Discussion

This study demonstrated a broad correlation between genetic
and regional climatic difference in this species, and identified
climate as a predominant force in driving current patterns of
genetic structure. To trace footprints of climate-related
adaptation, we adopted a landscape genomics framework to
analyze population genomic data, from which candidate SNPs
were discovered by OA and EAA methods, then further screened
by SNP-specific GDM modelling and functional annotation. Based
on the adaptive genomic variants, this study, for the first time,
incorporated migration and dispersal into vulnerability assessment
of this widespread species in subtropical China. We investigated
most vulnerable populations that require proactive management
efforts and candidate adaptive genes for breeding and other special
agricultural aims. The results highlighted the role of heterogeneous
climate conditions of subtropical China in shaping genomic
structure and driving local adaptation among populations,
facilitating future T. hemsleyanum conservation managements.

4.1 Regional climatic differences contribute
to genomic divergence

In this study, we applied RDA and GDM to quantify the
contributions of spatial isolation and climate variables to patterns
of genomic variation, and obtained concordant results. Both
methods identified a larger proportion of SNP variation
attributed to climate than to geography (Figure 3), indicating
that the assessed climate variables are more influential in driving
the pattern of genetic variation in T. hemsleyanum, which has been
frequently reported in plant species (Shryock et al., 2017; Vidaller
et al., 2020; Feliciano et al., 2022). When we isolate the effect of
climate variables, geography alone explained a rather small portion
(RDA: 2.5%; GDM: 8.1%; Figure 3), which potentially reflect the
absence of unmeasured spatially structured climate variables
(Feliciano et al., 2022). Furthermore, our RDA and regional
climatic differences revealed that climate predictors acting as key
selective agents vary across specific geographic clusters (Figure 2;
Supplementary Figure S3).

Unlike GDM analysis, RDA was able to quantify the
contribution of the colinear fraction of climate and geography.

This fraction, termed as induced spatial dependence (ISD), could
represent impact of climatic gradients that are highly related to space
(Borcard et al., 2011; Mikulyuk et al., 2011; Ma et al., 2020). While
clinal gradients (e.g., latitudinal temperature gradients) are treated
as key adaptive evolutionary forces in plant species (Adrion et al.,
2015; Kooyers et al., 2015; Gibson and Moyle, 2020), the estimated
influence of ISD on genomic variation of T. hemsleyanum was low
(6.4%; Figure 3; Table 2). This eliminated some of the confounding
effect of demography that could impact the inference of local
adaptation.

Apart from quantifying the relative effects of climate and space,
we also found specific climate factors that uniquely contributed to
genomic variation. In subtropical areas, the survival and distribution
of plants has been reported to be constrained by insufficient
precipitation (Allan et al., 2010; Aguirre-Gutiérrez et al., 2019),
and across the range of T. hemsleyanum, BIO19 and PETWeQ
represented the most important predictors of genome-wide SNP
variation when taking the effects of spatial isolation into account,
which suggested that populations are responding to selective forces
related to drought. This result agrees with the general consensus that
T. hemsleyanum is best suited to moist hillsides or valleys and is a
drought-sensitive species (Du et al., 2015; Song et al., 2017), and
reinforces previous findings of distribution models that identified
water availability as a major determinant of contemporary
distribution range of this species (Wang et al., 2022). Beyond
that, GDD0 was by far the most important variable in the
temperature regime associated with genetic variation (Table 1),
and its corresponding range was from 51,930 days degrees at
Xingshan (CC7) in Central China to 1,03,932 days degrees at
Janfengling (HN) in South China (Supplementary Table S1). The
large variations in temperature conditions during growing seasons
reflected differential heat requirement of T. hemsleyanum across
regions, and this seemed to be a strong abiotic selective agent,
especially between populations in southern and central regions.
Indeed, local adaptation of populations for phenological traits in
relation to accumulated heat conditions has been described in
several species with wide distributions (Khoufi et al., 2013; Olson
et al., 2013). As a result, we presume that similar pattern may also be
found in T. hemsleyanum populations along the GDD gradient. Such
hypothesis is testable in the future, with common garden
experiments to assess phenological variation across natural
populations that are predicted to differ at specific SNPs
associated with growing degree days. This may also aid in the
selection of populations genetically adapted in their phenology to
face less GDDs and better adapted to cold stress.

Although in our study climatic selection processes appeared to
be the most important in driving genomic variation, a large portion
of the variation remains unexplained in RDA (63.6%) and GDM
(77.6%) analysis, which accords with the other genetic (Jia et al.,
2020; Boulanger et al., 2021) and community ecological studies (Ma
et al., 2019) using similar approaches. This probably results from
several factors not fully addressed in this study. Firstly, despite that
many climate predictor variables were considered in this study,
other ecological forces may also play a role; these may include biotic
interactions, and abiotic factors that were unmeasured or occurred
at relatively small scales (Geue et al., 2016; Gibson andMoyle, 2020).
Secondly, the remaining variation can be attributed to balancing
selection or neutral and/or stochastic process that maintain local
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allelic diversity, which may weaken the predictive power of the
models. Thirdly, the four dbMEM variables generated here may not
fully represent geographic heterogeneity present in subtropical
China. Lastly, RDA analysis, which model linear associations
between geography/climate and SNP loci, cannot fully capture
non-linear statistical relationships. As a result, we also applied
GDM to the SNP data and detected the non-linear SNP-climate
relationships arise across the range of T. hemsleyanum; this would be
critical to understand the process of local adaptation in the context
of multivariate climates.

4.2 Detection of candidate SNPs by multiple
methods

Combining population differentiation with EAA methods is a
desirable way to identify potentially adaptive SNPs and reduce the
rate of false positives (Martins et al., 2018; Lu et al., 2019). One
notable aspect of these two methods employed in this study is the
minimal overlap of SNPs we identified. Specifically, only 12 SNPs
deemed as FST outliers were detected in BayPass, and between 2.70%
and 9.67% of the genotype-environment associations were

FIGURE 5
Spatial distribution of local, forward, and reverse genomic offsets estimated from GDM under SSP370 (A–C) and SSP580 (D–F) in 2070.

FIGURE 6
The initial bearing (A) andmigrate distance (B) to locations that canminimize forward offset in the future climate scenarios (2070, SSP370). The polar
histogram in (B) indicated the log10 number of cells within each bearing bin.
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overlapped among two or more variables (Supplementary Tables
S10, S11). The low levels of congruence are not surprising since the
two methods captures different selection signatures (Eckert et al.,
2010; Hancock et al., 2010; Martins et al., 2018; Lu et al., 2019). OA
are generally more sensitive to detect strong signatures of divergent
selection acting directly on new mutations, yet it is impossible to
determine specific environment forces (de Villemereuil et al., 2014).
EAA tests, on the other hand, performs better in identifying
polygenic or weak selection signatures (Narum and Hess, 2011;
de Villemereuil et al., 2014; Frichot and François, 2015) and are
nowadays widely applied to explore adaptive loci with subtle
variation across landscape (Jones et al., 2013; Martins et al.,
2018). Concordantly, previous studies comparing OA and EAA
have found little overlap in the significant SNPs between the
approaches (Dudaniec et al., 2018; Lu et al., 2019). A caveat on
using EAA is that a locus may not be significantly associated with
environmental factors when it is advantageous across a range of
environment conditions at the same time (Frichot et al., 2013). The
GDM analysis included in our approach is complementary to EAA,
since it is capable to simultaneously characterize relative allelic
responses across predictor variables.

In forest species, climate adaptation is likely driven by polygenic
alleles with small effects (Savolainen et al., 2013; Sang et al., 2022). In
T. hemsleyanum, we surmise that a number of SNPs identified here
are genetic variants of small effects according to previous reviews
and case studies (Mackay et al., 2009; Rockman, 2012; Savolainen
et al., 2013; Barghi et al., 2020). Indeed, climate explains a small to
moderate portion of allelic turnover for majority of the SNPs
detected by multiple models (Supplementary Figure S6;
Supplementary Table S12), and the defined climate points of
allelic turnover varies across adaptive variants (Supplementary
Figure S6), suggesting that climate is affecting each SNP
differently. This finding may reflect additive genetic variation
related to many genes or genomic regions and multilocus
patterns of adaptation (Shaw and Etterson, 2012). Furthermore,
for the annotated candidates (listed in Table 3), especially for that
highly supported by GDM, the observed FST changes (0.27–0.50)
were not biased towards greater values (Supplementary Table S12),
which indicated that a higher probability to identify a SNP under
selection does not correlate with a greater shift of FST values across
climatic gradients. Overall, these observations indicate that climate
adaptation in T. hemsleyanum is polygenic and potentially related to
both small- and large-effect genetic variants. Future experiments
that investigate gene interactions may help to elaborate the
polygenic basis of local adaptation (He et al., 2016; De Kort
et al., 2022).

Detecting signals of local adaptation is complicated by the issue
of disentangling geographically structured variation from adaptive
variation (Hoban et al., 2016), which is especially relevant when
environmental gradients are highly correlated with neutral structure
(Lotterhos and Whitlock, 2015). Given the strong population
differentiation and broad correlations between genetic clusters
and floristic divisions (Supplementary Figure S10) in this species,
we adopted multiple filtering and correcting steps in genome scans
to better control for false positives. First, we selected only putatively
adaptive SNPs found by two or three outlier tests (only diversifying
selection) and excluded SNPs in relation to geography in EAA. Next,
considering the small overlap of loci detected by OA and EAA

methods, we used two subsequent screening approaches in GDM to
control for false positives by 1) excluding loci that had an
explanatory power not exceeding the “reference” SNP group and
2) excluding loci with highest partial allelic turnover response to
geography. Finally, we focus our interpretation on SNPs located in
stimuli response or other ecologically relevant genes, since they offer
a better opportunity to elucidate gene function and climatic forces
driving the current patterns of adaptive variation. Future whole
genome sequencing of T. hemsleyanum individuals may facilitate
more comprehensive investigation of genetic targets of selection and
mining of adaptive loci valuable for breeding purposes.

4.3 Key geneswith a local climate adaptation
signature

We retained 275 SNPs with significant signatures of selection,
some of which were located in exonic regions of genes associated
with plant adaptation to abiotic environment (Table 3;
Supplementary Figure S13). Of foremost interest are those genes
that act as key regulators of abiotic stress tolerance. For example, one
SNP 106296_81 (identified by both OA and EAA methods) resides
in the RH7 gene encoding a DEAD box helicase (Table 3). DEAD
box helicases serve as important molecular tools in developing stress
tolerant plants (Nidumukkala et al., 2019). In Arabidopsis thaliana
RH7 allelic mutants, plants showed developmental defects and high
sensitivity to cold stress (Huang et al., 2016; Liu et al., 2016). We also
found one SNP (108307_57) located in the APX1, which plays a vital
role in adaptation of plants to a combination of drought and heat
stress (Zandalinas et al., 2018). Not surprising that both EAA and
GDM identified this SNP to be significantly associated with potential
evapotranspiration (PET) (Table 3; Supplementary Figure S11),
which is a climatic measure integrating temperature and
humidity to reflect water availability (Rehana and Monish, 2021).
We also identified one candidate SNP linked to a pentatricopeptide
repeat (PPR) gene. In cotton, a single recessive mutation of a PPR
gene reduces the heat accumulation (Kim et al., 2021). In this study,
the SNP annotated to the PPR gene showed the highest magnitude of
partial allelic turnover in response to GDD (0.88) and served as top-
ranked SNPs for growing degree days (9) (Table 3; Supplementary
Figure S12), suggesting that this PPR gene is among good candidates
for further functional studies.

Beyond that, a role for gene regulation variation, not merely
functional variation, for climate adaptation was indicated by the
detection of genes encoding several families (bHLH, MYB, WRKY,
etc.) of transcription factors (TFs), for example, bHCH93, identified
as a key player in regulating flowering (Wang et al., 2017) and abiotic
stress responses (Bhaskarla et al., 2020; Samarina et al., 2020; Wang
et al., 2021a), andMYB3R1 acting as a “master switch” in a variety of
stress tolerance (Dai et al., 2007). The TF families and members we
found here mostly match results in previous studies, such as bHLH
transcription factors identified as outliers in Corchorus olitorius
(Sarkar et al., 2019) and Pinus taeda (Lu et al., 2019), and MYB
transcription factors that identified by both OA and EAA methods
in Brachypodium distachyon (Dell’Acqua et al., 2014).

Furthermore, we note two candidate genes encoding A-type
cyclin (CYCA) and anaphase-promoting complex (APC), both of
which control cell cycle progression. Recent studies have begun to
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address the important role of cell cycle regulator, especially cyclins
(such as CYCA2;4 we identified here) and cyclin-dependent kinases
(CDKs), in stimulus response of plants (Komaki and Sugimoto,
2012). Arabidopsis thaliana and maize were reported of cell cycle
arrest and cell proliferation reduction in response to salt and
drought stresses due to the disruption of cell cycle regulators
(Kamal et al., 2021).

It is noteworthy that several genes involved in flora reproductive
development and flowering time were also identified (Table 3).
GRDP2 encodes a novel glycine-rich domain protein that
modulates flowering time and ovule development (Ortega-Amaro
et al., 2015; Czolpinska and Rurek, 2018; Wang et al., 2021b), and
was previously identified to be involved in environmental response
in Arabidopsis (Mangeon et al., 2010; Ortega-Amaro et al., 2015).
BAM1 has been shown to regulate anther development in
Arabidopsis (Hord et al., 2006), and MS5 is known to be essential
for male fertility in Arabidopsis and Brassica species (Glover et al.,
1998; Zeng et al., 2021). The initiation of reproduction is an
important transition of life cycle (Franks and Hoffmann, 2012).
In plants, due to their sedentary life-style, the exact timing of
flowering has strong impacts on reproductive success and, thus
fitness (Anderson et al., 2011). As outlined in previous studies,
selection can optimize flowering time to track suitable climatic
conditions, thus contributing to plant adaptation to climate
change (Sandring and Ågren, 2009; Keller et al., 2012). In this
study, we found that in this perennial herb, the candidate genes
associated with reproductive development and flowering were
mainly significantly related to precipitation and aridity index
(Table 3; Supplementary Figure S11).

A few candidate genes were ambiguous in how they are
associated with climate. For example, an LRR (Leucine-rich
repeat) receptor-like serine/threonine-protein kinase gene,
associated with precipitation, appears to be involved in plant-
pathogen interaction and developmental control (Afzal et al.,
2008). Precipitation and moisture availability have a positive
impact on the dispersal and infection success of phytopathogens
(Swinfield et al., 2012; Milici et al., 2020), and pathogen recognition
could be vital for plants in a mesic climate (Ahrens et al., 2019).

Overall, the results indicate that adaptation to climate is
polygenic, potentially involving multiple adaptive mechanisms
(Jordan et al., 2017; Dudaniec et al., 2018; Ahrens et al., 2019).
Although the genes we identified only form a part of the broader
adaptive evolutionary processes, we can take advantage of these
patterns as a proxy to generate spatial patterns of adaptive variation
and improve future management strategies. Future studies, based on
high-quality genomic sequencing, knockout mutations and
common garden experiments, are in need to validate the
identified candidate gene regions in this study (Rellstab et al., 2015).

4.4 Population-level risk of future climate
change

The influence of future shifts in climate across species’
distribution range is mediated by the collective potential of
adapted populations to climate and/or migration in response. But
few studies integrated intra-specific adaptation and migration when
predicting how species responses to climate change (but see Sang

et al., 2022). In this study, we followed a novel approach presented in
Gougherty et al. (2021) to assess the contribution of in situ
adaptation versus migration by simultaneously calculating three
metrics of genomic offset. Overall, it is predicted that the
genomic offsets are highest in central-north part of the species’
range, suggesting that there are no extant populations throughout
the distribution range preadapted to the future climate in this area.
Moreover, the effect of local climate shifts in this area cannot be
mitigated by movement of populations to more suitable climate
conditions, since the distances to locations that can minimize future
maladaptation were predicted to exceed 3,000 km (largest within the
range we assessed) that realistically is not reachable given the seed
and pollen dispersal limitations. On the other hand, the genomic
offset (vulnerability) of T. hemsleyanum was generally low in the
southern (trailing) edge, which is in contrast with some theoretical
work (Hampe and Petit, 2005). These patterns partially reflect the
fact that the influence of temperature is secondary to that of
precipitation/moisture condition in promoting the adaptive
differentiation of loci we investigated, since precipitation in the
coldest quarter is the most important climate variable in our GDM
models (Supplementary Figure S7). The dominant effect of winter
precipitation probably results from the involvement of a portion of
candidate SNPs in drought response and/or phenological events in
cool season. Future projection of precipitation predicted that the
most notable change (a deceasing trend) of winter precipitation
within our sampling area will occur in the middle reaches of the
Yangtze river basin, especially along the mid-altitude mountainous
region (Bucchignani et al., 2014; Bao et al., 2015) that largely
corresponded to the central-north part of the species’ range. In
addition to the winter precipitation decrease, the rising winter
temperature will lead to increasing evapotranspiration, and
exacerbate soil moisture losses. As predicted by high-resolution
climate simulations (Yin et al., 2015; Ma et al., 2019), mutual
reinforcement of these effects would induce a shift towards
greater aridity in this humid region (aridity index increase ~20%
in 2070–2099) that populations may have not undergone in the
recent past, thus rendering high adaptive offsets in central-north
part of the range. Perhaps as a consequence of this, we observed
significant associations of local and forward offsets not only with
shifts in BIO19 and PETs (two most predictive variables in GDM),
but with shifts in aridity index (Supplementary Figure S9). Besides, a
general lack of correlation was observed between local/forward
offset and the underlying pattern of population structure. This
finding suggested that the genomic offsets in our focal species
mainly reflect the influence of climate adaptation instead of the
expected shifts in neutral variation.

Besides, our results further revealed substantial difference in the
direction of migration that populations would follow to mitigate
maladaptation to future climate challenges, and such pattern has
been reported by several recent studies (Shaw, 2018; Gougherty
et al., 2021).While most locations in the contemporary species range
showed an overall northward shift, GDM indicated diverse
population-level trajectories especially along the northwestern
range edge (Figure 6B). Future climate projections by multiple
general circulation models consistently discovered that
subtropical China may experience an enhancement of spatial
heterogeneity in precipitation and an expansion of arid regions
(TCNARCC, 2011; Zhao and Wu, 2014). Since precipitation and
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PET related factors were the most significant predictors for GDMs,
we propose that future shifts in precipitation regimes and moisture
availability may account for some of the non-northward dispersal of
T. hemsleyanum in our predictions.

Local populations vulnerable to future climate may occupy
substantial unique adaptive genetic resources, thus special
conservation and management efforts could be sensible as an
insurance against such future genetic losses. For example, in
central-north part of the range where T. hemsleyanum
populations demonstrated maladaptation, we propose assisted
gene flow strategy that involves the translocation of genotypes
preadapted to future climate scenarios, particularly introducing
from the moist and warm regions in southern margin of the
mainland China. The genome-informed assisted gene flow can be
beneficial for threatened species, as it may increase adaptive
potential and alleviate inbreeding depression by introducing and
increasing the frequency of adaptive alleles (Browne et al., 2019).

The reliability of genomic offsets as metrics of climate
maladaptation was confirmed by recent works using data from
population trend surveys and common garden experiments (Bay
et al., 2018; Fitzpatrick et al., 2021). But it should be noted that the
assumptions of future maladaptation made here is based on genomic
SNP data, which does not account for alternatives (beyond allelic
changes) for continued adaptation provided by epigenetic and
expression changes, and phenotypic plasticity (Kenkel and Matz,
2016; Gao et al., 2022). Furthermore, we recognize that although we
adopted GDMs to predict the genomic vulnerability to climate
change, the genomic complexity of polygenic climate adaptation,
for example, genetic redundancy and pleiotropy, have not been
accounted here. It would be valuable to integrate quantitative
genetics and systems biology methods to validate the current
genotype–environment interactions and improve the prediction
of species’ response to future climate challenges.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: https://www.ncbi.nlm.nih.gov/sra/,
PRJNA922859.

Author contributions

YW acquired funding. LF and PG designed the conceptual
approach. YZ carried out the field work, and LZ performed the

molecular laboratory work. WM analyzed the genomic data. ML
generated and analyzed climate data. YW wrote the manuscript,
with major contributions from CF and LF. All authors read and
approved the final version of the manuscript.

Funding

This research was supported by the National Natural Science
Foundation of China (Nos. 32271550, 31700193), Henan Province
Postdoctoral Research Grant (No. 201901020), Scientific and
Technological Project of Henan Province (No. 202102110004)
and Young Elite Scientists Program by Henan Agricultural
University (30500580).

Acknowledgments

The authors are grateful to Yuanmiao Fu, Pan Li, Li Zheng, and
Shuting Yang for collecting plant materials, to Rebecca Jordan, Wen
Yao, and Nan Lin for advice on data analysis, and to Prof. Fude
Shang for great support with laboratory work.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of
the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made
by its manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2023.1150704/
full#supplementary-material

References

Adrion, J. R., Hahn, M. W., and Cooper, B. S. (2015). Revisiting classic clines in
Drosophila melanogaster in the age of genomics. Trends Genet. 31, 434–444. doi:10.
1016/j.tig.2015.05.006

Afzal, A. J., Wood, A. J., and Lightfoot, D. A. (2008). Plant receptor-like serine
threonine kinases: Roles in signaling and plant defense.Mol. Plant-Microbe Interact. 21,
507–517. doi:10.1094/MPMI-21-5-0507

Aguirre-Gutiérrez, J., Oliveras, I., Rifai, S., Fauset, S., Adu-Bredu, S., Affum-Baffoe, K.,
et al. (2019). Drier tropical forests are susceptible to functional changes in response to a
long-term drought. Ecol. Lett. 22, 855–865. doi:10.1111/ele.13243

Aguirre-Liguori, J. A., Ramírez-Barahona, S., and Gaut, B. S. (2021). The evolutionary
genomics of species’ responses to climate change. Nat. Ecol. Evol. 5, 1350–1360. doi:10.
1038/s41559-021-01526-9

Ahrens, C. W., Byrne, M., and Rymer, P. D. (2019). Standing genomic variation
within coding and regulatory regions contributes to the adaptive capacity to climate in a
foundation tree species. Mol. Ecol. 28, 2502–2516. doi:10.1111/mec.15092

Allan, R. P., Soden, B. J., John, V. O., Ingram, W., and Good, P. (2010). Current
changes in tropical precipitation. Environ. Res. Lett. 5, 025205. doi:10.1088/1748–9326/
5/2/025205

Frontiers in Genetics frontiersin.org16

Wang et al. 10.3389/fgene.2023.1150704

https://www.ncbi.nlm.nih.gov/sra/
https://www.frontiersin.org/articles/10.3389/fgene.2023.1150704/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2023.1150704/full#supplementary-material
https://doi.org/10.1016/j.tig.2015.05.006
https://doi.org/10.1016/j.tig.2015.05.006
https://doi.org/10.1094/MPMI-21-5-0507
https://doi.org/10.1111/ele.13243
https://doi.org/10.1038/s41559-021-01526-9
https://doi.org/10.1038/s41559-021-01526-9
https://doi.org/10.1111/mec.15092
https://doi.org/10.1088/1748�9326/5/2/025205
https://doi.org/10.1088/1748�9326/5/2/025205
https://doi.org/10.1088/1748�9326/5/2/025205
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1150704


Anderson, J. T., Willis, J. H., and Mitchell-Olds, T. (2011). Evolutionary genetics of
plant adaptation. Trends Genet. 27, 258–266. doi:10.1016/j.tig.2011.04.001

Bao, J., Feng, J., and Wang, Y. (2015). Dynamical downscaling simulation and future
projection of precipitation over China. J. Geophys. Res. Atmos. 120, 8227–8243. doi:10.
1002/2015JD023275

Barghi, N., Hermisson, J., and Schlötterer, C. (2020). Polygenic adaptation: A unifying
framework to understand positive selection. Nat. Rev. Genet. 21, 769–781. doi:10.1038/
s41576-020-0250-z

Bay, R. A., Harrigan, R. J., Underwood, V. L., Gibbs, H. L., Smith, T. B., and Ruegg, K.
(2018). Genomic signals of selection predict climate-driven population declines in a
migratory bird. Science 359, 83–86. doi:10.1126/science.aan4380

Bhaskarla, V., Zinta, G., Ford, R., Jain, M., Varshney, R. K., and Mantri, N.
(2020). Comparative root transcriptomics provide insights into drought
adaptation strategies in chickpea (Cicer arietinum L.). Int. J. Mol. Sci. 21, 1781.
doi:10.3390/ijms21051781

Borcard, D., Gillet, F., and Legendre, P. (2011). “Eigenvector-based spatial variables
and spatial modelling,” in Numerical ecology with R. Editors D. Borcard, F. Gillet, and
P. Legendre (New York: Springer), 243–285.

Borcard, D., Gillet, F., and Legendre, P. (2018). “Spatial analysis of ecological data,” in
Numerical ecology with R. Editors D. Borcard, F. Gillet, and P. Legendre (Cham:
Springer), 299–367.

Boulanger, E., Loiseau, N., Valentini, A., Arnal, V., Boissery, P., Dejean, T., et al.
(2021). Environmental DNA metabarcoding reveals and unpacks a biodiversity
conservation paradox in Mediterranean marine reserves. Proc. R. Soc. Lond. B Biol.
Sci. 288, 20210112. doi:10.1098/rspb.2021.0112

Browne, L., Wright, J. W., Fitz-Gibbon, S., Gugger, P. F., and Sork, V. L. (2019).
Adaptational lag to temperature in valley oak (Quercus lobata) can be mitigated by
genome-informed assisted gene flow. Proc. Natl. Acad. Sci. USA. 116, 25179–25185.
doi:10.1073/pnas.1908771116

Brunner, M. I., Melsen, L. A., Newman, A. J., Wood, A. W., and Clark, M. P.
(2020). Future streamflow regime changes in the United States: Assessment using
functional classification. Hydrol. Earth Syst. Sci. 24, 3951–3966. doi:10.5194/hess-
24-3951-2020

Bucchignani, E., Montesarchio, M., Cattaneo, L., Manzi, M. P., and Mercogliano, P.
(2014). Regional climate modeling over China with COSMO-CLM: Performance
assessment and climate projections. J. Geophys. Res. Atmos. 119, 12,151–12,170.
doi:10.1002/2014JD022219

Cai, L., Arnold, B. J., Xi, Z., Khost, D. E., Patel, N., Hartmann, C. B., et al. (2021).
Deeply altered genome architecture in the endoparasitic flowering plant Sapria
himalayana griff. (Rafflesiaceae). Curr. Biol. 31, 1002–1011. e9. doi:10.1016/j.cub.
2020.12.045

Cao, Y. N., Zhu, S. S., Chen, J., Comes, H. P., Wang, I. J., Chen, L. Y., et al. (2020).
Genomic insights into historical population dynamics, local adaptation, and climate
change vulnerability of the East Asian Tertiary relict Euptelea (Eupteleaceae). Evol. Appl.
13, 2038–2055. doi:10.1111/eva.12960

Capblancq, T., Afitzpatrick, M., Abay, R., Aexposito-Alonso, M., and Akeller, S.
(2020). Genomic prediction of (Mal)Adaptation across current and future climatic
landscapes. Annu. Rev. Ecol. Evol. S. 51 (1), 245–269. doi:10.1146/annurev-ecolsys-
020720-042553

Capblancq, T., Lachmuth, S., Fitzpatrick, M. C., and Keller, S. R. (2022). From
common gardens to candidate genes: Exploring local adaptation to climate in red
spruce. New Phytol. 121, 1590–1605. doi:10.1111/nph.18465

Catchen, J. M., Amores, A., Hohenlohe, P., Cresko, W., and Postlethwait, J. H. (2011).
Stacks: Building and genotyping loci de novo from short-read sequences. G3-Genes
Genom Genet. 1, 171–182. doi:10.1534/g3.111.000240

Chang, C. W., Fridman, E., Mascher, M., Himmelbach, A., and Schmid, K. (2022).
Physical geography, isolation by distance and environmental variables shape genomic
variation of wild barley (Hordeum vulgare L. ssp. spontaneum) in the Southern Levant.
Heredity 128, 107–119. doi:10.1038/s41437-021-00494-x

Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., et al. (2012). A
program for annotating and predicting the effects of single nucleotide polymorphisms,
SnpEff: SNPs in the genome ofDrosophila melanogaster strain w1118; iso-2; iso-3. Fly 6,
80–92. doi:10.4161/fly.19695

Czolpinska, M., and Rurek, M. (2018). Plant glycine-rich proteins in stress response:
An emerging, still prospective story. Front. Plant Sci. 9, 302. doi:10.3389/fpls.2018.00302

Dai, X., Xu, Y., Ma, Q., Xu, W., Wang, T., Xue, Y., et al. (2007). Overexpression of an
R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt
stress in transgenic Arabidopsis. Plant Physiol. 143, 1739–1751. doi:10.1104/pp.106.
094532

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., et al.
(2011). The variant call format and VCFtools. Bioinformatics 27, 2156–2158. doi:10.
1093/bioinformatics/btr330

De Kort, H., Toivainen, T., Van Nieuwerburgh, F., Andrés, J., Hytönen, T. P., and
Honnay, O. (2022). Signatures of polygenic adaptation align with genome-wide
methylation patterns in wild strawberry plants. New Phytol. 235, 1501–1514. doi:10.
1111/nph.18225

De Villemereuil, P., Frichot, É., Bazin, É., François, O., and Gaggiotti, O. E. (2014).
Genome scan methods against more complex models: When and how much should we
trust them? Mol. Ecol. 23, 2006–2019. doi:10.1111/mec.12705

Dell’Acqua, M., Zuccolo, A., Tuna, M., Gianfranceschi, L., and Pè, M. E. (2014).
Targeting environmental adaptation in the monocot model Brachypodium distachyon:
A multi-faceted approach. BMC Genomics 15, 801. doi:10.1186/1471-2164-15-801

DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., et al.
(2011). A framework for variation discovery and genotyping using next-generation
DNA sequencing data. Nat. Genet. 43, 491–498. doi:10.1038/ng.806

Du, S., Xiang, T., Song, Y., Huang, L., Sun, Y., and Han, Y. (2015). Transgenic hairy
roots of Tetrastigma hemsleyanum: Induction, propagation, genetic characteristics and
medicinal components. Plant Plant Cell. tiss.org. 122, 373–382. doi:10.1007/s11240-
015-0775-6

Dudaniec, R. Y., Yong, C. J., Lancaster, L. T., Svensson, E. I., and Hansson, B. (2018).
Signatures of local adaptation along environmental gradients in a range-expanding
damselfly (Ischnura elegans). Mol. Ecol. 27, 2576–2593. doi:10.1111/mec.14709

Dyderski, M. K., Paź, S., Frelich, L. E., and Jagodziński, A. M. (2018). How much does
climate change threaten European forest tree species distributions? Glob. Change Biol.
24, 1150–1163. doi:10.1111/gcb.13925

Earl, D. A., and vonHoldt, B. M. (2012). Structure harvester: A website and program
for visualizing STRUCTURE output and implementing the Evanno method. Conserv.
Genet. Resour. 4, 359–361. doi:10.1007/s12686-011-9548-7

Eckert, A. J., Bower, A. D., GonzÁLez-MartÍNez, S. C., Wegrzyn, J. L., Coop, G., and
Neale, D. B. (2010). Back to nature: Ecological genomics of loblolly pine (Pinus taeda,
pinaceae). Mol. Ecol. 19, 3789–3805. doi:10.1111/j.1365-294X.2010.04698.x

Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of
individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620.
doi:10.1111/j.1365-294X.2005.02553.x

Excoffier, L., and Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of
programs to perform population genetics analyses under linux and windows.Mol. Ecol.
Resour. 10, 564–567. doi:10.1111/j.1755-0998.2010.02847.x

Exposito-Alonso, M., Booker, T. R., Czech, L., Gillespie, L., Hateley, S., Kyriazis, C. C.,
et al. (2022). Genetic diversity loss in the Anthropocene. Science 377 (6613), 1431–1435.
doi:10.1126/science.abn5642

Exposito-Alonso, M., Exposito-Alonso, M., Gómez Rodríguez, R., Barragán, C.,
Capovilla, G., Chae, E., et al. (2019). Natural selection on the Arabidopsis thaliana
genome in present and future climates. Nature 573, 126–129. doi:10.1038/s41586-019-
1520-9

Exposito-Alonso, M., Vasseur, F., Ding, W., Wang, G., Burbano, H. A., andWeigel, D.
(2018). Genomic basis and evolutionary potential for extreme drought adaptation in
Arabidopsis thaliana. Nat. Ecol. Evol. 2, 352–358. doi:10.1038/s41559-017-0423-0

Feliciano, D. C., De Godoy, S. M., Da Silva, J. F. M., Góes, B. D., Ferraz, J. R., De
Oliveira Santos, P., et al. (2022). Landscape genetics reveal low diversity and adaptive
divergence in Portulaca hatschbachii (portulacaceae): An endangered species endemic
to rocky outcrops of the atlantic forest. Bot. J. Linn. Soc. 200, 116–141. doi:10.1093/
botlinnean/boac006

Feng, L., and Du, F. K. (2022). Landscape genomics in tree conservation under a
changing environment. Front. Plant Sci. 13, 822217. doi:10.3389/fpls.2022.822217

Ferrier, S., Manion, G., Elith, J., and Richardson, K. (2007). Using generalized
dissimilarity modelling to analyse and predict patterns of beta diversity in regional
biodiversity assessment. Divers. Distrib. 13, 252–264. doi:10.1111/j.1472-4642.2007.
00341.x

Fitzpatrick, M. C., Chhatre, V. E., Soolanayakanahally, R. Y., and Keller, S. R. (2021).
Experimental support for genomic prediction of climate maladaptation using the
machine learning approach Gradient Forests. Mol. Ecol. Resour. 21, 2749–2765.
doi:10.1111/1755-0998.13374

Fitzpatrick, M. C., and Keller, S. R. (2015). Ecological genomics meets community-
level modelling of biodiversity: Mapping the genomic landscape of current and future
environmental adaptation. Ecol. Lett. 18, 1–16. doi:10.1111/ele.12376

Foll, M., and Gaggiotti, O. (2008). A genome-scan method to identify selected loci
appropriate for both dominant and codominant markers: A bayesian perspective.
Genetics 180, 977–993. doi:10.1534/genetics.108.092221

Forester, B. R., Lasky, J. R., Wagner, H. H., and Urban, D. L. (2018). Comparing
methods for detecting multilocus adaptation with multivariate genotype–environment
associations. Mol. Ecol. 27, 2215–2233. doi:10.1111/mec.14584

Franks, S., and Hoffmann, A. (2012). Genetics of climate change adaptation. Annu.
Rev. Genet. 46, 185–208. doi:10.1146/annurev-genet-110711-155511

Frichot, E., and François, O. (2015). Lea: An R package for landscape and ecological
association studies. Methods Ecol. Evol. 6, 925–929. doi:10.1111/2041-210X.12382

Frichot, E., Schoville, S. D., Bouchard, G., and François, O. (2013). Testing for
associations between loci and environmental gradients using latent factor mixed
models. Mol. Biol. Evol. 30, 1687–1699. doi:10.1093/molbev/mst063

Gao, Y., Chen, Y., Li, S., Huang, X., Hu, J., Bock, D. G., et al. (2022). Complementary
genomic and epigenomic adaptation to environmental heterogeneity. Mol. Ecol. 31,
3598–3612. doi:10.1111/mec.16500

Frontiers in Genetics frontiersin.org17

Wang et al. 10.3389/fgene.2023.1150704

https://doi.org/10.1016/j.tig.2011.04.001
https://doi.org/10.1002/2015JD023275
https://doi.org/10.1002/2015JD023275
https://doi.org/10.1038/s41576-020-0250-z
https://doi.org/10.1038/s41576-020-0250-z
https://doi.org/10.1126/science.aan4380
https://doi.org/10.3390/ijms21051781
https://doi.org/10.1098/rspb.2021.0112
https://doi.org/10.1073/pnas.1908771116
https://doi.org/10.5194/hess-24-3951-2020
https://doi.org/10.5194/hess-24-3951-2020
https://doi.org/10.1002/2014JD022219
https://doi.org/10.1016/j.cub.2020.12.045
https://doi.org/10.1016/j.cub.2020.12.045
https://doi.org/10.1111/eva.12960
https://doi.org/10.1146/annurev-ecolsys-020720-042553
https://doi.org/10.1146/annurev-ecolsys-020720-042553
https://doi.org/10.1111/nph.18465
https://doi.org/10.1534/g3.111.000240
https://doi.org/10.1038/s41437-021-00494-x
https://doi.org/10.4161/fly.19695
https://doi.org/10.3389/fpls.2018.00302
https://doi.org/10.1104/pp.106.094532
https://doi.org/10.1104/pp.106.094532
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1111/nph.18225
https://doi.org/10.1111/nph.18225
https://doi.org/10.1111/mec.12705
https://doi.org/10.1186/1471-2164-15-801
https://doi.org/10.1038/ng.806
https://doi.org/10.1007/s11240-015-0775-6
https://doi.org/10.1007/s11240-015-0775-6
https://doi.org/10.1111/mec.14709
https://doi.org/10.1111/gcb.13925
https://doi.org/10.1007/s12686-011-9548-7
https://doi.org/10.1111/j.1365-294X.2010.04698.x
https://doi.org/10.1111/j.1365-294X.2005.02553.x
https://doi.org/10.1111/j.1755-0998.2010.02847.x
https://doi.org/10.1126/science.abn5642
https://doi.org/10.1038/s41586-019-1520-9
https://doi.org/10.1038/s41586-019-1520-9
https://doi.org/10.1038/s41559-017-0423-0
https://doi.org/10.1093/botlinnean/boac006
https://doi.org/10.1093/botlinnean/boac006
https://doi.org/10.3389/fpls.2022.822217
https://doi.org/10.1111/j.1472-4642.2007.00341.x
https://doi.org/10.1111/j.1472-4642.2007.00341.x
https://doi.org/10.1111/1755-0998.13374
https://doi.org/10.1111/ele.12376
https://doi.org/10.1534/genetics.108.092221
https://doi.org/10.1111/mec.14584
https://doi.org/10.1146/annurev-genet-110711-155511
https://doi.org/10.1111/2041-210X.12382
https://doi.org/10.1093/molbev/mst063
https://doi.org/10.1111/mec.16500
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1150704


Gautier, M. (2015). Genome-wide scan for adaptive divergence and association with
population-specific covariates. Genetics 201, 1555–1579. doi:10.1534/genetics.115.
181453

Geue, J. C., Vágási, C. I., Schweizer, M., Pap, P. L., and Thomassen, H. A. (2016).
Environmental selection is a main driver of divergence in house sparrows (Passer
domesticus) in Romania and Bulgaria. Ecol. Evol. 6, 7954–7964. doi:10.1002/ece3.2509

Gibson, M. J. S., and Moyle, L. C. (2020). Regional differences in the abiotic
environment contribute to genomic divergence within a wild tomato species. Mol.
Ecol. 29, 2204–2217. doi:10.1111/mec.15477

Glover, J., Grelon, M., Craig, S., Chaudhury, A., and Dennis, E. (1998). Cloning and
characterization of MS5 from Arabidopsis: A gene critical in male meiosis. Plant J. 15,
345–356. doi:10.1046/j.1365-313X.1998.00216.x

Goudet, J. (2005). Hierfstat, a package for r to compute and test hierarchical
F-statistics. Mol. Ecol. Notes 5, 184–186. doi:10.1111/j.1471-8286.2004.00828.x

Gougherty, A. V., Keller, S. R., and Fitzpatrick, M. C. (2021). Maladaptation,
migration and extirpation fuel climate change risk in a forest tree species. Nat.
Clim. Change 11, 166–171. doi:10.1038/s41558-020-00968-6

Günther, T., and Coop, G. (2013). Robust identification of local adaptation from allele
frequencies. Genetics 195, 205–220. doi:10.1534/genetics.113.152462

Guo, W., Yang, Z., Hou, Z., Hou, Z., Qi, Z., and Sun, Y. (2019). A comprehensive
review of a Chinese folk herbal species Tetrastigmae hemsleyanum with multiplicity of
pharmacological effects. Chin. Trad. Med. J. 1, 1–19.

Hampe, A., and Petit, R. J. (2005). Conserving biodiversity under climate change: The
rear edge matters. Ecol. Lett. 8, 461–467. doi:10.1111/j.1461-0248.2005.00739.x

Hancock, A. M., Alkorta-Aranburu, G., Witonsky, D. B., and Di Rienzo, A. (2010).
Adaptations to new environments in humans: The role of subtle allele frequency shifts.
Philos. Trans. R. Soc. Lond B Biol. Sci. 365, 2459–2468. doi:10.1098/rstb.2010.0032

Harris, K., and Nielsen, R. (2014). Error-prone polymerase activity causes
multinucleotide mutations in humans. Genome Res. 24, 1445–1454. doi:10.1101/gr.
170696.113

He, F., Arce, A. L., Schmitz, G., Koornneef, M., Novikova, P., Beyer, A., et al. (2016).
The footprint of polygenic adaptation on stress-responsive cis-regulatory divergence in
the Arabidopsis genus. Mol. Biol. Evol. 33, 2088–2101. doi:10.1093/molbev/msw096

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A. (2005). Very high
resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25,
1965–1978. doi:10.1002/joc.1276

Hijmans, R. J., Williams, E., Vennes, C., and Hijmans, M. R. J. (2017). Package
‘geosphere’. Spherical trigonometry. Version 1.5-18.

Hoban, S., Kelley, J. L., Lotterhos, K. E., Antolin, M. F., Bradburd, G., Lowry, D. B.,
et al. (2016). Finding the genomic basis of local adaptation: Pitfalls, practical solutions,
and future directions. Am. Nat. 188, 379–397. doi:10.1086/688018

Hohenlohe, P. A., Phillips, P. C., and Cresko, W. A. (2010). Using population
genomics to detect selection in natural populations: Key concepts and
methodological considerations. Int. J. Philos. Stud. 171, 1059–1071. doi:10.1086/656306

Hord, C. L. H., Chen, C., DeYoung, B. J., Clark, S. E., and Ma, H. (2006). The BAM1/
BAM2 receptor-like kinases are important regulators of Arabidopsis early anther
development. Plant Cell. 18, 1667–1680. doi:10.1105/tpc.105.036871

Hu, W., Zheng, Y., Xia, P., and Liang, Z. (2021). The research progresses and future
prospects of Tetrastigma hemsleyanum diels et gilg: A valuable Chinese herbal medicine.
J. Ethnopharmacol. 271, 113836. doi:10.1016/j.jep.2021.113836

Huang, C.-K., Shen, Y.-L., Huang, L.-F., Wu, S.-J., Yeh, C.-H., and Lu, C.-A. (2016).
The DEAD-box RNA helicase AtRH7/PRH75 participates in pre-rRNA processing,
plant development and cold tolerance in Arabidopsis. Plant Cell. Physiol. 57, 174–191.
doi:10.1093/pcp/pcv188

Jia, K. H., Zhao,W., Maier, P. A., Hu, X. G., Jin, Y., Zhou, S. S., et al. (2020). Landscape
genomics predicts climate change-related genetic offset for the widespread Platycladus
orientalis (Cupressaceae). Evol. Appl. 13, 665–676. doi:10.1111/eva.12891

Jiang, W. (2015). “Studies on germplasm evaluation and quality controltechnology of
Tetrastigma hemsleyanum,”. dissertation/doctoral thesis (Zhejiang, China: Zhejiang
University).

Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic
markers. Bioinformatics 24, 1403–1405. doi:10.1093/bioinformatics/btn129

Jombart, T., and Ahmed, I. (2011). Adegenet 1.3-1: new tools for the analysis of
genome-wide SNP data. Bioinformatics 27, 3070–3071. doi:10.1093/bioinformatics/
btr521

Jones, M. R., Forester, B. R., Teufel, A. I., Adams, R. V., Anstett, D. N., Goodrich, B. A.,
et al. (2013). Integrating landscape genomics and spatially explicit approaches to detect
loci under selection in clinal populations. Evolution 67, 3455–3468. doi:10.1111/evo.
12237

Jordan, R., Hoffmann, A. A., Dillon, S. K., and Prober, S. M. (2017). Evidence of
genomic adaptation to climate in Eucalyptus microcarpa: Implications for adaptive
potential to projected climate change.Mol. Ecol. 26, 6002–6020. doi:10.1111/mec.14341

Kamal, K. Y., Khodaeiaminjan, M., Yahya, G., El-Tantawy, A. A., Abdel El-Moneim,
D., El-Esawi, M. A., et al. (2021). Modulation of cell cycle progression and chromatin

dynamic as tolerance mechanisms to salinity and drought stress in maize. Physiol. Plant.
172, 684–695. doi:10.1111/ppl.13260

Keller, S. R., Levsen, N., Olson, M. S., and Tiffin, P. (2012). Local adaptation in the
flowering-time gene network of balsam poplar, Populus balsamifera L. Mol. Biol. Evol.
29, 3143–3152. doi:10.1093/molbev/mss121

Kenkel, C. D., and Matz, M. V. (2016). Gene expression plasticity as a mechanism of
coral adaptation to a variable environment.Nat. Ecol. Evol. 1, 0014. doi:10.1038/s41559-
016-0014

Khoufi, S., Khamassi, K., Teixeira da Silva, J. A., Aoun, N., Rezgui, S., and Ben Jeddi, F.
(2013). Assessment of diversity of phenologically and morphologically related traits
among adapted populations of sunflower (Helianthus annuus L.). Helia 36, 29–40.
doi:10.2298/hel1358029k

Kim, H. J., Kato, N., Ndathe, R., Thyssen, G. N., Jones, D. C., and Ratnayaka, H. H.
(2021). Evidence for thermosensitivity of the cotton (Gossypium hirsutum L.) immature
fiber (im) mutant via hypersensitive stomatal activity. PLoS One 16, e0259562. doi:10.
1371/journal.pone.0259562

Kissoudis, C., Sunarti, S., van deWiel, C., Visser, R. G., van der Linden, C. G., and Bai,
Y. (2016). Responses to combined abiotic and biotic stress in tomato are governed by
stress intensity and resistance mechanism. J. Exp. Bot. 67, 5119–5132. doi:10.1093/jxb/
erw285

Komaki, S., and Sugimoto, K. (2012). Control of the plant cell cycle by developmental
and environmental cues. Plant Cell. Physiol. 53, 953–964. doi:10.1093/pcp/pcs070

Kooyers, N. J., Greenlee, A. B., Colicchio, J. M., Oh, M., and Blackman, B. K. (2015).
Replicate altitudinal clines reveal that evolutionary flexibility underlies adaptation to
drought stress in annual Mimulus guttatus.New Phytol. 206, 152–165. doi:10.1111/nph.
13153

Lasky, J. R., DesMarais, D. L., McKay, J. K., Richards, J. H., Juenger, T. E., and Keitt, T.
H. (2012). Characterizing genomic variation of Arabidopsis thaliana: The roles of
geography and climate. Mol. Ecol. 21, 5512–5529. doi:10.1111/j.1365-294X.2012.
05709.x

Legendre, P., and Legendre, L. (2012). Numerical ecology. Amsterdam: Elsevier.

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. arXiv preprint arXiv:1303.3997.

Liu, Y., Tabata, D., and Imai, R. (2016). A cold-inducible DEAD-box RNA helicase
from Arabidopsis thaliana regulates plant growth and development under low
temperature. PLoS One 11, e0154040. doi:10.1371/journal.pone.0154040

Lotterhos, K. E., and Whitlock, M. C. (2015). The relative power of genome scans to
detect local adaptation depends on sampling design and statistical method. Mol. Ecol.
24, 1031–1046. doi:10.1111/mec.13100

Lu, M., Loopstra, C. A., and Krutovsky, K. V. (2019). Detecting the genetic basis of
local adaptation in loblolly pine (Pinus taeda L.) using whole exome-wide genotyping
and an integrative landscape genomics analysis approach. Ecol. Evol. 9, 6798–6809.
doi:10.1002/ece3.5225

Ma, D., Deng, H., Yin, Y., Wu, S., and Zheng, D. (2019). Sensitivity of arid/humid
patterns in China to future climate change under a high-emissions scenario. J. Geog. Sci.
29, 29–48. doi:10.1007/s11442-019-1582-5

Ma, J.-Z., Chen, X., Mallik, A., Bu, Z.-J., Zhang, M.-M., Wang, S.-Z., et al. (2020).
Environmental together with interspecific interactions determine bryophyte
distribution in a protected mire of northeast China. Front. Earth Sci. 8, 32. doi:10.
3389/feart.2020.00032

Mackay, T. F. C., Stone, E. A., and Ayroles, J. F. (2009). The genetics of quantitative
traits: Challenges and prospects. Nat. Rev. Genet. 10, 565–577. doi:10.1038/nrg2612

Malhi, Y., Franklin, J., Seddon, N., Solan, M., Turner, M. G., Field, C. B., et al. (2020).
Climate change and ecosystems: Threats, opportunities and solutions. Philos. Trans. R.
Soc. B 375(1794), 20190104. doi:10.1098/rstb.2019.0104

Mangeon, A., Junqueira, R. M., and Sachetto-Martins, G. (2010). Functional diversity
of the plant glycine-rich proteins superfamily. Plant Signal. Behav. 5, 99–104. doi:10.
4161/psb.5.2.10336

Manion, G., Lisk, M., Ferrier, S., Lugilde, K. M., Fitzpatrick, M. C., Fitzpatrick, M. M.
C., et al. (2017). Package ‘gdm’. A toolkit with functions to fit, plot, and summarize
generalized dissimilarity models: CRAN repository.

Martins, K., Gugger, P. F., Llanderal-Mendoza, J., González-Rodríguez, A., Fitz-
Gibbon, S. T., Zhao, J.-L., et al. (2018). Landscape genomics provides evidence of
climate-associated genetic variation in Mexican populations of Quercus rugosa. Evol.
Appl. 11, 1842–1858. doi:10.1111/eva.12684

Matasci, N., Hung, L.-H., Yan, Z., Carpenter, E. J., Wickett, N. J., Mirarab, S., et al.
(2014). Data access for the 1,000 Plants (1KP) project. GigaScience 3, 17. doi:10.1186/
2047-217X-3-17

Mikulyuk, A., Sharma, S., Van Egeren, S., Erdmann, E., Nault, M. E., and Hauxwell, J.
(2011). The relative role of environmental, spatial, and land-use patterns in explaining
aquatic macrophyte community composition. Can. J. Fish. Aquat.Sci. 68, 1778–1789.
doi:10.1139/f2011-095

Milici, V. R., Dalui, D., Mickley, J. G., and Bagchi, R. (2020). Responses of
plant–pathogen interactions to precipitation: Implications for tropical tree richness
in a changing world. J. Ecol. 108, 1800–1809. doi:10.1111/1365-2745.13373

Frontiers in Genetics frontiersin.org18

Wang et al. 10.3389/fgene.2023.1150704

https://doi.org/10.1534/genetics.115.181453
https://doi.org/10.1534/genetics.115.181453
https://doi.org/10.1002/ece3.2509
https://doi.org/10.1111/mec.15477
https://doi.org/10.1046/j.1365-313X.1998.00216.x
https://doi.org/10.1111/j.1471-8286.2004.00828.x
https://doi.org/10.1038/s41558-020-00968-6
https://doi.org/10.1534/genetics.113.152462
https://doi.org/10.1111/j.1461-0248.2005.00739.x
https://doi.org/10.1098/rstb.2010.0032
https://doi.org/10.1101/gr.170696.113
https://doi.org/10.1101/gr.170696.113
https://doi.org/10.1093/molbev/msw096
https://doi.org/10.1002/joc.1276
https://doi.org/10.1086/688018
https://doi.org/10.1086/656306
https://doi.org/10.1105/tpc.105.036871
https://doi.org/10.1016/j.jep.2021.113836
https://doi.org/10.1093/pcp/pcv188
https://doi.org/10.1111/eva.12891
https://doi.org/10.1093/bioinformatics/btn129
https://doi.org/10.1093/bioinformatics/btr521
https://doi.org/10.1093/bioinformatics/btr521
https://doi.org/10.1111/evo.12237
https://doi.org/10.1111/evo.12237
https://doi.org/10.1111/mec.14341
https://doi.org/10.1111/ppl.13260
https://doi.org/10.1093/molbev/mss121
https://doi.org/10.1038/s41559-016-0014
https://doi.org/10.1038/s41559-016-0014
https://doi.org/10.2298/hel1358029k
https://doi.org/10.1371/journal.pone.0259562
https://doi.org/10.1371/journal.pone.0259562
https://doi.org/10.1093/jxb/erw285
https://doi.org/10.1093/jxb/erw285
https://doi.org/10.1093/pcp/pcs070
https://doi.org/10.1111/nph.13153
https://doi.org/10.1111/nph.13153
https://doi.org/10.1111/j.1365-294X.2012.05709.x
https://doi.org/10.1111/j.1365-294X.2012.05709.x
https://doi.org/10.1371/journal.pone.0154040
https://doi.org/10.1111/mec.13100
https://doi.org/10.1002/ece3.5225
https://doi.org/10.1007/s11442-019-1582-5
https://doi.org/10.3389/feart.2020.00032
https://doi.org/10.3389/feart.2020.00032
https://doi.org/10.1038/nrg2612
https://doi.org/10.1098/rstb.2019.0104
https://doi.org/10.4161/psb.5.2.10336
https://doi.org/10.4161/psb.5.2.10336
https://doi.org/10.1111/eva.12684
https://doi.org/10.1186/2047-217X-3-17
https://doi.org/10.1186/2047-217X-3-17
https://doi.org/10.1139/f2011-095
https://doi.org/10.1111/1365-2745.13373
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1150704


Murray, K. D., Janes, J. K., Jones, A., Bothwell, H.M., Andrew, R. L., and Borevitz, J. O.
(2019). Landscape drivers of genomic diversity and divergence in woodland Eucalyptus.
Mol. Ecol. 28, 5232–5247. doi:10.1111/mec.15287

Nadeau, S., Meirmans, P. G., Aitken, S. N., Ritland, K., and Isabel, N. (2016). The
challenge of separating signatures of local adaptation from those of isolation by distance
and colonization history: The case of two white pines. Ecol. Evol. 6, 8649–8664. doi:10.
1002/ece3.2550

Narum, S. R., and Hess, J. E. (2011). Comparison of FST outlier tests for SNP loci
under selection. Mol. Ecol. Resour. 11, 184–194. doi:10.1111/j.1755-0998.2011.02987.x

Nidumukkala, S., Tayi, L., Chittela, R. K., Vudem, D. R., and Khareedu, V. R. (2019).
DEAD box helicases as promising molecular tools for engineering abiotic stress
tolerance in plants. Crit. Rev. Biotechnol. 39, 395–407. doi:10.1080/07388551.2019.
1566204

Oksanen, J., Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al.
(2019). Vegan: Community ecology package (version 2.5-6). The comprehensive R
archive network.

Olson, M. S., Levsen, N., Soolanayakanahally, R. Y., Guy, R. D., Schroeder, W. R.,
Keller, S. R., et al. (2013). The adaptive potential of Populus balsamifera L. to phenology
requirements in a warmer global climate. Mol. Ecol. 22, 1214–1230. doi:10.1111/mec.
12067

Ortega-Amaro, M. A., Rodríguez-Hernández, A. A., Rodríguez-Kessler, M.,
Hernández-Lucero, E., Rosales-Mendoza, S., Ibáñez-Salazar, A., et al. (2015).
Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant
growth and improves stress tolerance. Front. Plant Sci. 5, 782. doi:10.3389/fpls.2014.
00782

Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E.,
Nakamura, M., et al. (2012). Ecological niches and geographic distributions (MPB-49).
Princeton: Princeton University Press.

Pina-Martins, F., Silva, D. N., Fino, J., and Paulo, O. S. (2017). Structure_threader: An
improved method for automation and parallelization of programs structure,
fastStructure and MavericK on multicore CPU systems. Mol. Ecol. Resour. 17,
e268–e274. doi:10.1111/1755-0998.12702

Pritchard, J. K., Wen, X., and Falush, D. (2009). Documentation for structure
software: Version 2.3. Waltham: Thermo Fisher scientific. Available at: http://pritch.
bsd.uchicago.edu/structure.html.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., et al.
(2007). Plink: A tool set for whole-genome association and population-based linkage
analyses. Am. J. Hum. Genet. 81, 559–575. doi:10.1086/519795

Quinlan, A. R., and Hall, I. M. (2010). BEDTools: A flexible suite of utilities for
comparing genomic features. Bioinformatics 26, 841–842. doi:10.1093/bioinformatics/
btq033

Rehana, S., and Monish, N. T. (2021). Impact of potential and actual
evapotranspiration on drought phenomena over water and energy-limited regions.
Theor. Appl. Climatol. 144, 215–238. doi:10.1007/s00704-021-03521-3

Rehfeldt, G. E., Leites, L. P., Bradley St Clair, J., Jaquish, B. C., Sáenz-Romero, C.,
López-Upton, J., et al. (2014). Comparative genetic responses to climate in the varieties
of Pinus ponderosa and Pseudotsuga menziesii: Clines in growth potential. For. Ecol.
Manage. 324, 138–146. doi:10.1016/j.foreco.2014.02.041

Rellstab, C., Dauphin, B., and Exposito-Alonso, M. (2021). Prospects and limitations
of genomic offset in conservation management. Evol. Appl. 14 (5), 1202–1212. doi:10.
1111/eva.13205

Rellstab, C. (2021). Genomics helps to predict maladaptation to climate change. Nat.
Clim. Change 11, 85–86. doi:10.1038/s41558-020-00964-w

Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M., and Holderegger, R. (2015). A
practical guide to environmental association analysis in landscape genomics. Mol. Ecol.
24, 4348–4370. doi:10.1111/mec.13322

Rockman, M. V. (2012). The QTN program and the alleles that matter for evolution:
All that’s gold does not glitter. Evolution 66, 1–17. doi:10.1111/j.1558-5646.2011.
01486.x

Samarina, L. S., Bobrovskikh, A. V., Doroshkov, A. V., Malyukova, L. S., Matskiv, A.
O., Rakhmangulov, R. S., et al. (2020). Comparative expression analysis of stress-
inducible candidate genes in response to cold and drought in tea plant [Camellia sinensis
(L.) kuntze]. Front. Genet. 11, 611283. doi:10.3389/fgene.2020.611283

Sandring, S., and Ågren, J. (2009). Pollinator-mediated selection on floral display and
flowering time in the perennial herb Arabidopsis lyrata. Evolution 63, 1292–1300.
doi:10.1111/j.1558-5646.2009.00624.x

Sang, Y., Long, Z., Dan, X., Feng, J., Shi, T., Jia, C., et al. (2022). Genomic insights into
local adaptation and future climate-induced vulnerability of a keystone forest tree in
East Asia. Nat. Commun. 13, 6541. doi:10.1038/s41467-022-34206-8

Sarkar, D., Kundu, A., Das, D., Chakraborty, A., Mandal, N. A., Satya, P., et al. (2019).
Resolving population structure and genetic differentiation associated with RAD-SNP
loci under selection in tossa jute (Corchorus olitorius L.) Mol. Genet. Genomics 294,
479–492. doi:10.1007/s00438-018-1526-2

Savolainen, O., Lascoux, M., and Merilä, J. (2013). Ecological genomics of local
adaptation. Nat. Rev. Genet. 14, 807–820. doi:10.1038/nrg3522

Seabra, S. G., Rodrigues, A. S. B., Silva, S. E., Neto, A. C., Pina-Martins, F., Marabuto,
E., et al. (2021). Population structure, adaptation and divergence of the meadow
spittlebug, Philaenus spumarius (Hemiptera, Aphrophoridae), revealed by genomic
and morphological data. PeerJ 9, e11425. doi:10.7717/peerj.11425

Shaw, R. G., and Etterson, J. R. (2012). Rapid climate change and the rate of
adaptation: Insight from experimental quantitative genetics. New Phytol. 195,
752–765. doi:10.1111/j.1469-8137.2012.04230.x

Shaw, R. G. (2018). From the past to the future: Considering the value and limits of
evolutionary prediction. Am. Nat.t 193, 1–10. doi:10.1086/700565

Shen, Y., Xia, H., Tu, Z., Zong, Y., Yang, L., and Li, H. (2022). Genetic divergence and
local adaptation of Liriodendron driven by heterogeneous environments. Mol. Ecol. 31,
916–933. doi:10.1111/mec.16271

Shryock, D. F., Havrilla, C. A., DeFalco, L. A., Esque, T. C., Custer, N. A., and Wood,
T. E. (2017). Landscape genetic approaches to guide native plant restoration in the
Mojave Desert. Ecol. Appl. 27, 429–445. doi:10.1002/eap.1447

Shryock, D. F., Washburn, L. K., DeFalco, L. A., and Esque, T. C. (2021). Harnessing
landscape genomics to identify future climate resilient genotypes in a desert annual.
Mol. Ecol. 30, 698–717. doi:10.1111/mec.15672

Smith, A. B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H.-H., and Warren, D.
(2019). Niche estimation above and below the species level. Trends Ecol. Evol. 34 (3),
260–273. doi:10.1016/j.tree.2018.10.012

Song, Y., Wu, P., Li, Y., Tong, X., Zheng, Y., Chen, Z., et al. (2017). Effect of
endophytic fungi on the host plant growth, expression of expansin gene and flavonoid
content in Tetrastigma hemsleyanum Diels & Gilg ex Diels. Plant Soil 417, 393–402.
doi:10.1007/s11104-017-3266-1

Sork, V. L., Squire, K., Gugger, P. F., Steele, S. E., Levy, E. D., and Eckert, A. J.
(2016). Landscape genomic analysis of candidate genes for climate adaptation in a
California endemic oak, Quercus lobata. Am. J. Bot. 103, 33–46. doi:10.3732/ajb.
1500162

Sun, X., Liu, D., Zhang, X., Li, W., Liu, H., Hong, W., et al. (2013). SLAF-Seq: An
efficient method of large-scale de novo SNP discovery and genotyping using high-
throughput sequencing. PLoS One 8, e58700. doi:10.1371/journal.pone.0058700

Swinfield, T., Lewis, O. T., Bagchi, R., and Freckleton, R. P. (2012). Consequences of
changing rainfall for fungal pathogen-induced mortality in tropical tree seedlings. Ecol.
Evol. 2, 1408–1413. doi:10.1002/ece3.252

TCNARCC (2011). China’s national assessment report on climate change(the second
time). Beijing: Science Press.

Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N., and Zimmermann, N. E. (2019).
Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1446.
doi:10.1038/s41467-019-09519-w

Title, P. O., and Bemmels, J. B. (2018). Envirem: An expanded set of bioclimatic and
topographic variables increases flexibility and improves performance of ecological niche
modeling. Ecography 41, 291–307. doi:10.1111/ecog.02880

Vidaller, C., Baumel, A., Juin, M., Dutoit, T., and Bischoff, A. (2020). Comparison of
neutral and adaptive differentiation in the Mediterranean grass Brachypodium retusum.
Bot. J. Linn. Soc. 192, 536–549. doi:10.1093/botlinnean/boz089

Vitalis, R., Gautier, M., Dawson, K. J., and Beaumont, M. A. (2014). Detecting and
measuring selection from gene frequency data. Genetics 196, 799–817. doi:10.1534/
genetics.113.152991

Wang, J., Li, Z., Lei, M., Fu, Y., Zhao, J., Ao, M., et al. (2017). Integrated DNA
methylome and transcriptome analysis reveals the ethylene-induced flowering pathway
genes in pineapple. Sci. Rep. 7, 17167. doi:10.1038/s41598-017-17460-5

Wang, J., Qian, Q., Zhang, F., Jia, X., and He, J. (2022). The possible future changes
in potential suitable habitats of Tetrastigma hemsleyanum (Vitaceae) in China
predicted by an ensemble model. Glob. Ecol. Conserv. 35, e02083. doi:10.1016/j.
gecco.2022.e02083

Wang, L., Liu, Y., Aslam, M., Jakada, B. H., Qin, Y., and Cai, H. (2021b). The glycine-
rich domain protein GRDP2 regulates ovule development via the auxin pathway in
Arabidopsis. Front. Plant Sci. 12, 698487. doi:10.3389/fpls.2021.698487

Wang, Y. H., Jiang, W. M., Comes, H. P., Hu, F. S., Qiu, Y. X., and Fu, C. X. (2015).
Molecular phylogeography and ecological niche modelling of a widespread herbaceous
climber, Tetrastigma hemsleyanum (vitaceae): Insights into plio–pleistocene range
dynamics of evergreen forest in subtropical China. New Phytol. 206, 852–867.
doi:10.1111/nph.13261

Wang, Y., Jiang, W., Ye, W., Fu, C., Gitzendanner, M. A., Soltis, P. S., et al. (2018).
Evolutionary insights from comparative transcriptome and transcriptome-wide
coalescence analyses in Tetrastigma hemsleyanum. BMC Plant Biol. 18, 208–215.
doi:10.1186/s12870-018-1429-8

Wang, Y., Wang, S., Tian, Y., Wang, Q., Chen, S., Li, H., et al. (2021a). Functional
characterization of a sugar beet BvbHLH93 transcription factor in salt stress tolerance.
Int. J. Mol. Sci. 22, 3669. doi:10.3390/ijms22073669

Wiens, J. A. (1989). Spatial scaling in ecology. Funct. Ecol. 3, 385–397. doi:10.2307/
2389612

Wu, Z., Sun, H., Zhou, Z., Li, D., and Peng, H. (2010). Floristics of seed plants from
China. Beijing: Science Press.

Frontiers in Genetics frontiersin.org19

Wang et al. 10.3389/fgene.2023.1150704

https://doi.org/10.1111/mec.15287
https://doi.org/10.1002/ece3.2550
https://doi.org/10.1002/ece3.2550
https://doi.org/10.1111/j.1755-0998.2011.02987.x
https://doi.org/10.1080/07388551.2019.1566204
https://doi.org/10.1080/07388551.2019.1566204
https://doi.org/10.1111/mec.12067
https://doi.org/10.1111/mec.12067
https://doi.org/10.3389/fpls.2014.00782
https://doi.org/10.3389/fpls.2014.00782
https://doi.org/10.1111/1755-0998.12702
http://pritch.bsd.uchicago.edu/structure.html
http://pritch.bsd.uchicago.edu/structure.html
https://doi.org/10.1086/519795
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1007/s00704-021-03521-3
https://doi.org/10.1016/j.foreco.2014.02.041
https://doi.org/10.1111/eva.13205
https://doi.org/10.1111/eva.13205
https://doi.org/10.1038/s41558-020-00964-w
https://doi.org/10.1111/mec.13322
https://doi.org/10.1111/j.1558-5646.2011.01486.x
https://doi.org/10.1111/j.1558-5646.2011.01486.x
https://doi.org/10.3389/fgene.2020.611283
https://doi.org/10.1111/j.1558-5646.2009.00624.x
https://doi.org/10.1038/s41467-022-34206-8
https://doi.org/10.1007/s00438-018-1526-2
https://doi.org/10.1038/nrg3522
https://doi.org/10.7717/peerj.11425
https://doi.org/10.1111/j.1469-8137.2012.04230.x
https://doi.org/10.1086/700565
https://doi.org/10.1111/mec.16271
https://doi.org/10.1002/eap.1447
https://doi.org/10.1111/mec.15672
https://doi.org/10.1016/j.tree.2018.10.012
https://doi.org/10.1007/s11104-017-3266-1
https://doi.org/10.3732/ajb.1500162
https://doi.org/10.3732/ajb.1500162
https://doi.org/10.1371/journal.pone.0058700
https://doi.org/10.1002/ece3.252
https://doi.org/10.1038/s41467-019-09519-w
https://doi.org/10.1111/ecog.02880
https://doi.org/10.1093/botlinnean/boz089
https://doi.org/10.1534/genetics.113.152991
https://doi.org/10.1534/genetics.113.152991
https://doi.org/10.1038/s41598-017-17460-5
https://doi.org/10.1016/j.gecco.2022.e02083
https://doi.org/10.1016/j.gecco.2022.e02083
https://doi.org/10.3389/fpls.2021.698487
https://doi.org/10.1111/nph.13261
https://doi.org/10.1186/s12870-018-1429-8
https://doi.org/10.3390/ijms22073669
https://doi.org/10.2307/2389612
https://doi.org/10.2307/2389612
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1150704


Wu, Z., and Wu, S. (1998). “A proposal for a new floristic kingdom (realm): The E.
Asiatic kingdom, its delineation and characteristics,” in Floristic characteristics and
diversity of East Asian plants. Editors A. L. Zhang and S. G. Wu (Beijing: China Higher
Education Press/Springer), 3–42.

Yang, X., Yang, Z., Cheng, X., and Tan, M. (2019). Analysis on phenotypic diversity of
Tetrastigma hemsleyanum from different provenances (In Chinese). J. Res. Environ. 28,
78–80. doi:10.1111/tan.13528

Yin, S., Cui, H., Zhang, L., Yan, J., Qian, L., and Ruan, S. (2021). Transcriptome and
metabolome integrated analysis of two ecotypes ofTetrastigma hemsleyanum reveals candidate
genes involved in chlorogenic acid accumulation. Plants 10, 1288. doi:10.3390/plants10071288

Yin, Y., Ma, D., Wu, S., and Pan, T. (2015). Projections of aridity and its regional
variability over China in the mid-21st century. Int. J. Climatol. 35, 4387–4398. doi:10.
1002/joc.4295

Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., and Gómez-Cadenas, A. (2018).
Plant adaptations to the combination of drought and high temperatures. Physiol. Plant.
162, 2–12. doi:10.1111/ppl.12540

Zeng, X., Li, H., Li, K., Yuan, R., Zhao, S., Li, J., et al. (2021). Evolution of the
Brassicaceae-specific MS5-Like family and neofunctionalization of the novel MALE
STERILITY 5 gene essential for male fertility in Brassica napus. New Phytol. 229,
2339–2356. doi:10.1111/nph.17053

Zhao, D., and Wu, S. (2014). Vulnerability of natural ecosystem in China under
regional climate scenarios: An analysis based on eco-geographical regions. J. Geog. Sci.
24, 237–248. doi:10.1007/s11442-014-1085-3

Zhu, B., Hua, J., Cheng, W., Ji, Q., Wu, J., and Qi, C. (2015). Comparison of
agronomic traits of different Tetrastigma hemsleyanum(In Chinese). Acta Agric.
Zhejiangensis 27, 1752–1756.

Frontiers in Genetics frontiersin.org20

Wang et al. 10.3389/fgene.2023.1150704

https://doi.org/10.1111/tan.13528
https://doi.org/10.3390/plants10071288
https://doi.org/10.1002/joc.4295
https://doi.org/10.1002/joc.4295
https://doi.org/10.1111/ppl.12540
https://doi.org/10.1111/nph.17053
https://doi.org/10.1007/s11442-014-1085-3
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1150704

	Using landscape genomics to assess local adaptation and genomic vulnerability of a perennial herb Tetrastigma hemsleyanum ( ...
	1 Introduction
	2 Materials and methods
	2.1 Plant materials and genotyping
	2.2 Environmental data
	2.3 Genetic diversity and population genetic structure
	2.4 Assessing the role of climate and geography
	2.5 Outlier and environmental association analysis
	2.6 Landscape modelling
	2.7 Genomic contexts of candidate SNPs
	2.8 Genomic offset under future climates

	3 Results
	3.1 SLAF-seq and SNP calling
	3.2 Genetic diversity and population structure
	3.3 Impacts of climate and spatial variables on genome-wide population differentiation
	3.3.1 RDA analysis
	3.3.2 GDM analysis

	3.4 Identification of candidate adaptive SNP
	3.5 Annotation
	3.6 Genomic offset and migration to climate change

	4 Discussion
	4.1 Regional climatic differences contribute to genomic divergence
	4.2 Detection of candidate SNPs by multiple methods
	4.3 Key genes with a local climate adaptation signature
	4.4 Population-level risk of future climate change

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


