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The advent of modern genotyping technologies has revolutionized genomic
selection in animal breeding. Large marker datasets have shown several
drawbacks for traditional genomic prediction methods in terms of flexibility,
accuracy, and computational power. Recently, the application of machine
learning models in animal breeding has gained a lot of interest due to their
tremendous flexibility and their ability to capture patterns in large noisy
datasets. Here, we present a general overview of a handful of machine learning
algorithms and their application in genomic prediction to provide a meta-picture
of their performance in genomic estimated breeding values estimation, genotype
imputation, and feature selection. Finally, we discuss a potential adoption of
machine learning models in genomic prediction in developing countries. The
results of the reviewed studies showed that machine learning models have indeed
performed well in fitting large noisy data sets and modeling minor nonadditive
effects in some of the studies. However, sometimes conventional methods
outperformed machine learning models, which confirms that there’s no
universal method for genomic prediction. In summary, machine learning
models have great potential for extracting patterns from single nucleotide
polymorphism datasets. Nonetheless, the level of their adoption in animal
breeding is still low due to data limitations, complex genetic interactions, a
lack of standardization and reproducibility, and the lack of interpretability of
machine learning models when trained with biological data. Consequently,
there is no remarkable outperformance of machine learning methods
compared to traditional methods in genomic prediction. Therefore, more
research should be conducted to discover new insights that could enhance
livestock breeding programs.
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1 Introduction

Farmers and animal breeders have long used artificial selection
to produce offspring with specific desired traits. Assessing the
performance of animals was based solely on phenotypes for
centuries; it was not until the 20th century that pedigree records
and performance data became the keys to genetic selection programs
(Boichard et al., 2016). Several statistical methods were developed to
predict the breeding values of individuals, such as selection index
and Mixed Model Equations (MME), which allowed, due to
advances in computational power, the Best Linear Unbiased
Prediction (BLUP) (Henderson, 1984) to become the most
sophisticated approach for breeding value estimation and thus
enable accurate selection decisions (Meuwissen et al., 2016).
Nevertheless, traditional genetic evaluation techniques are
generally more reliable in estimating breeding values for
phenotypic traits that can be easily measured and have moderate
to high heritability (Boichard et al., 2016). Conversely, traits with
low heritability necessitate a substantial quantity of pedigree and
phenotype data, which increases the generation interval and
subsequently diminishes the overall genetic improvement
accomplished through the breeding program. The emergence of
molecular genetics has prompted researchers to delve into a
comprehensive investigation of how traits are determined at the
DNA level. Numerous studies have been carried out with the aim of
pinpointing particular segments within the genome that play a
crucial role in accounting for variations in genetic characteristics
known as Quantitative Trait Loci. Later in the 1980s to the 2000s,
several methods were proposed for marker-assisted selection (MAS)
research that incorporate information about QTL in the MME as
fixed effects, and thus breeding value estimation is performed by
summing the estimated effects for every QTL (Weigel et al., 2017).
Nevertheless, the effectiveness of incorporating Quantitative Trait
Loci into estimating breeding values was constrained by the sparse
distribution of markers that were in linkage disequilibrium with
QTL across the entire population. Furthermore, it was discovered
that quantitative traits are influenced by a multitude of QTL with
relatively minor individual contributions. Meuwissen et al. (2001)
proposed a multiple QTL methodology named genomic selection,
that estimates breeding values using a dense marker map. Genomic
selection assumes that estimating the effects of a large number of
single nucleotide polymorphism (SNP) across the genome will
enable breeding value estimation without prior knowledge of the
location of specific genes on the genome (Eggen, 2012).

In 2007, progress in molecular technology allowed the first
assembly of the bovine genome. The Illumina Company and an
international consortium introduced a chip to genotype
simultaneously over 54,000 SNPs, which revolutionized dairy
cattle breeding (Boichard et al., 2016), and consequently, various
methods were developed for whole-genome selection in plants and
other domestic animal species. Recently, the availability of high-
throughput genotyping and the decrease in genotyping costs have
made genomic selection a standard method in animal breeding
schemes in many countries (Meuwissen et al., 2016). The underlying
concept is based on predicting markers effects using phenotypic
information and the genomic relationship between individuals of a
reference population previously genotyped and phenotyped to
forecast the breeding values of a certain trait for a population of

genotyped selection candidates (Goddard et al., 2010). Various
statistical methods, such as Genomic Best Linear Unbiased
Prediction (GBLUP) or Bayesian methods with different prior
assumptions, have been developed to predict markers’ effects and
thus the genomic breeding values of individuals. Nevertheless, these
conventional methods were unable to consider non-additive effects
such as epistasis and interactions between genotypes (Bayer et al.,
2021) which can have a large effect on phenotypes in animal species.
Furthermore, genotyping provides ever-increasing marker datasets,
which exacerbates the “curse of dimensionality” also known as the
“large P, small N” paradigm (Nayeri et al., 2019). Consequently,
traditional linear models became inadequate for capturing patterns
and explaining the complex relationships hidden in this mass of
large noisy data.

Recently, the development of machine learning (ML) algorithms
and the concomitant boost in computational processing power have
generated buzz in the scientific community. ML models are known
for their tremendous flexibility and their ability to extract hidden
patterns in large noisy datasets, such as image-based data (Xiao et al.,
2015), massive datasets of heterogeneous records (Li et al., 2018b),
or digital data, which is increasing remarkably due to advancements
in computer vision, natural language processing (NLP), internet of
things (IoT), or computer hardware (David et al., 2019). Genomics,
due to the advent of sequencing technologies, became a field where
researchers deal with massive, heterogeneous, redundant, and
complex omics datasets. Thus, the application of machine
learning models in genomics has been investigated in several
studies. In this paper, we review the application of ML
algorithms to genomic prediction (GP) in livestock breeding.
This work is organized as follows: First, we discuss machine
learning fundamentals and provide a brief description of
common algorithms used in genomic prediction. Second, we
outline the different evaluation methods used to assess the
performance of ML models. Afterwards, we review some of the
published studies concerning the application of ML models in
genomic prediction to provide a meta-picture of their potential
in terms of prediction accuracy and computational time. Finally, we
discuss the potential of applying ML to animal breeding in low- and
middle-income countries.

2 Machine learning fundamentals

Machine learning can be defined as a branch of artificial
intelligence that empowers computer systems to learn without
being voraciously programmed (Sharma and Kumar, 2017). In
other words, a learning computer system can be described as a
computer whose performance P on task T improves as its experience
E increases (Kang and Jameson, 2018). Based on the learning
process, machine learning algorithms can be classified into
supervised learning, unsupervised learning and reinforcement
learning.

2.1 Supervised learning

In supervised learning, the learning process consists of
conceiving a meaning from labeled data. Mainly, supervised
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learning algorithms tend to estimate or predict a response variable y,
based on a set of explicative variables x, through a function called
predictor f(x, β) where β is a vector of model parameters. The
performance criterion we use to define the best predictor is called a
loss function L,we thus define the best predictor as the predictor who
minimizes the loss function L (Crisci et al., 2012; Pereira and
Borysov, 2019). Depending on the nature of the response variable
y (continuous or discrete), supervised learning algorithms are
applied to either regression or classification problems. If the
main task of an algorithm is to predict a numeric value of a
continuous target variable, the ML algorithm performs a
regression problem. Alternatively, a classification problem
consists of training the algorithm using a set of labeled features
(discrete variable), to learn how to successfully classify new features
accordingly (Kang and Jameson, 2018). Sometimes the training data
involves labeled and unlabeled data. This type of learning is called
semi-unsupervised learning and it is considered a class of supervised
learning tasks. Anomaly detection is a typical application of semi-
supervised learning algorithms (Kang and Jameson, 2018).

2.2 Unsupervised learning

Unsupervised learning consists of finding patterns or clusters in
the training data where the target variable is not present. Algorithms
learn on their way to discovering interesting structures in the
training data (Mahesh, 2020). Since the features fed to the
algorithms are unlabeled, there is no way of assessing the
accuracy of these algorithms, unlike supervised learning and
reinforcement learning. These models are mainly used for
clustering and feature reduction (Sharma and Kumar, 2017).

2.3 Reinforcement learning

In reinforcement learning, software agents perceive and
interpret their environment, perform actions and get rewards or
penalties in return. Explicitly, a reinforcement learning algorithm
enables an agent connected to its environment, to choose an action
a1 and generate an output y, given an input i and an environment s1.
The action changes the environment, and a value is attributed to the
transition of the environment’s state through a scalar reinforcement
signal r. Consequently, the agent chooses actions that increase the
sum of values of the reinforcement signal (Kaelbling et al., 1996).
Similar to biological systems, animals living in specific environments
face fundamental challenges such as locating sustenance, avoiding
harm, and reproducing. These environmental conditions are subject
to dynamic changes and sudden variations. Consequently, animals
must continuously acquire knowledge from their surroundings and
adapt their behaviors accordingly (Neftci and Averbeck, 2019).
Similarly, when a robot is assigned the task of navigating a maze
in reinforcement learning scenarios, it functions as an agent within
this process. In its interactions with themaze environment, the robot
seeks to identify optimal paths by taking successive actions
(i.e., moving) while simultaneously receiving feedback through
rewards for proximity to the exit or penalties for deviating
further away or finding no escape route. By integrating these

multiple-step feedback signals into its decision-making processes
over time, the robot gradually enhances its navigation capabilities.

In the field of genomic prediction, supervised learning stands
out as the most widely employed technique. This approach leverages
labeled data to develop and assess models, thereby allowing for more
direct predictions based on established patterns. In contrast, less
prominence is given to unsupervised learning and reinforcement
learning in relation to genomic prediction.

3 Common ML models used for
genomic prediction

In the sections below, we present a short description of some
widely used machine learning algorithms for genomic prediction.

3.1 Linear regression

Linear regression is a model usually used to forecast the value of
a continuous variable y also called label or target variable using ML
terminology, through a vector of explanatory variables also called
independent variables or features X, and a linear function. If the
model involves a single independent variable x, simple linear
regression defines the relationship between the variables using
the model:

y � β0 + β1x + ε (1)
where β0 is the intercept term and β1 is a regression coefficient that
represents the variation in the outcome for a 1-unit increase in the
value of the independent variable x, and ε represents the error term
also called noise. The dependent variable y can be explained with
more than one explanatory variable. In that case, we are talking
about Multivariate Linear Regression (MLR). The basic model for
MLR is Maulud and Abdulazeez (2020):

y � β0 + β1x1 + ... + βmxm + ε (2)
Linear regression is considered a supervised learning algorithm

because we feed the model with a data set containing features xi and
the corresponding values of the target variable yi, and we expect an
accurate prediction of yj for another set of features xj. In order to
reach sufficient accuracy, the model minimizes the value of a chosen
loss function (Nasteski, 2017). The most commonly used loss
function for linear regression is Least Squared Error (LSE)
(Maulud and Abdulazeez, 2020).

3.2 Logistic regression

Logistic regression is a classification model regularly applied for
the analysis of dichotomous or binary outcomes (LaValley, 2008). In
other words, logistic regression is used to study the effects of
predictor variables on binary or categorical outcomes, such as the
presence or absence of an event (Nick and Campbell, 2007).
Training data is fed to a model that uses a logistic function in
order to predict the probability of the event. Unlike linear regression,
logistic regression does not require a linear relationship between
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dependent and independent variables, the model uses a log
transformation to the odds ratio defined as the ratio of the
probability of the event happening divided by the probability of
the event not happening (LaValley, 2008). The logistic regression
hypothesis is defined as (Nasteski, 2017):

hθ x( ) � g θTx( ) (3)

Where the function g is a sigmoid function defined as the
following:

g z( ) � 1
1 + ⅇ−z

(4)

Logistic regression uses a Maximum Likelihood Estimation
(MLE) loss function, which is a conditional probability. The
algorithm assigns each observation to class 0 or class 1 based on
whether the probability is greater or smaller than a given threshold,
0.5 for example, (Belyadi and Haghighat, 2021).

3.3 Decision trees

Decision Trees (DT), also known as Classification And
Regression Trees (CART) is one of the most popular supervised
learning algorithms based on recursive partitioning (Jiang et al.,
2020). This approach was first introduced by Breiman et al. (1984),
and it relies on dividing a heterogeneous large dataset into multiple
smaller homogeneous subsets, which leads to a branching structure.
This structure (Figure 1) consists of nodes connected through
branches. If a node does not represent an incoming edge, it is
called a root. Generally, all nodes have one incoming edge and two
ormore outgoing edges. The nodes with no outgoing edges are called
leaves. In decision trees, splitting the training data is performed by
answering several questions incrementally from the topmost node to
a leaf. A good question can split a heterogeneous dataset into several
homogenous subsamples. Decision trees can deal with both
classification and regression problems. For continuous variables,
the split is performed using a threshold, the rule takes the form x< s
where s is a threshold over the variable x. Contrary, when the

variable is discrete, the split has the form x ∈ Lwhere L is a subset of
possible levels of x. When the target variable is continuous, which
means we are dealing with regression, the predicted value of each
subgroup is the average value of y for all observations in the training
set assigned to that subgroup (Crisci et al., 2012). In contrast, when y
is discrete and DT algorithm is dealing with classification problems,
the most frequent level of y over the leaf observation is assigned to
the target value. The basic algorithm used to build decision trees for
regression matters is the Iterative Dichotomiser 3 (ID3) which uses
the standard deviation reduction (SDR) to generate the decision tree.
In classification situations, the ID3 algorithm uses entropy, defined
as a measure of the homogeneity of subsamples, and information
gain (Choudhary and Gianey, 2017). This method is widely used
because of its flexibility and ease of interpretability.

3.4 Ensemble learning

3.4.1 Bagging
Bagging, also called Bootstrap aggregating, is an ensemble

method used for assembling multiple versions of a predictor to
get an aggregated strong predictor (Breiman, 1996). Given a labeled
training set (X1, Y1)/(Xn, Yn) , bagging algorithm constructs a
bootstrap replicate (X1

*, Y1
*) . . . (X*

n, Y
*
n), by randomly selecting

samples n times with replacement from the original dataset, and
then using them as new learning sets for the CART model. The final
model is obtained by repeating these steps M times during the
learning process. When predicting a numerical outcome, the
aggregation algorithm averages the outcome of all predictors. If
the target variable is a class label, the bagging predictor is then
defined as the majority vote over the M models (Bühlmann, 2012).
Bagging algorithms outperformed simple CART models, showing
substantial gains in accuracy and significant optimization for weak
learners who exhibit unstable behavior. However, bagging
algorithms are sensitive to changes in training sets and can
slightly reduce the performance of stable procedures (Breiman,
1996; Freund and Schapire, 1996; Bühlmann, 2012; Crisci et al.,
2012).

FIGURE 1
Decision trees structure.
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3.4.2 Random forest
Random Forest consists of a combination of tree predictors that

operates as an ensemble (Breiman, 2001). These decision trees are
generated by a randomized tree-building algorithm. The algorithm
builds several trees using different random samples of the same size
as the original training set by including certain items more than
once. Additionally, at each node of the decision trees, the split
considers a small random subset of features. As a result, the
predictions of these trees can be different. The target value is
then assigned to a certain class based on the majority vote over
the prediction given by the trees (Kingsford and Salzberg, 2008).
Random forests can also be used for regression, in which case the
estimated value of the output variable is the average of the
predictions of the trees in the forest (Choudhary and Gianey, 2017).

3.4.3 Boosting
Boosting is a strategy used to enhance the accuracy of prediction

models. It works bymerging multiple simple models, known as weak
learners, into one comprehensive and more accurate model. These
weak learners, such as basic decision trees, do not have high
predictive power on their own. However, when many of them
are combined using a boosting algorithm, their collective
accuracy significantly improves (Freund and Schapire, 1996).

The Adaboost is one of the most widely used practical boosting
algorithms. The learning procedure of this algorithm starts by taking
m labeled training examples S � ((x1, y1)/(xm, ym)), where xi
belongs to some space X and it is represented as a vector of input
values, and yi∈Y is the labeled output associated with xi. Boosting
algorithm runs repeatedly in a series of rounds t = 1, . . . ,T, and every
weak learner who’s given a distribution Dt, which refers to the
distribution of weights assigned to the examples in the training set S
at each iteration, finds a weak hypothesis ht:X→Y. The overall aim of
the weak learning algorithm is to find a hypothesis, called weak
hypothesis, that minimizes the weighted error t associated to Dt. The
final outcome of the boosting algorithm is a combination of all the
weak hypotheses, where each one is assigned a weight (αt) according
to its importance. Themore accurate a weak hypothesis is, the higher
its weight. This final combination is a kind of “majority vote” of all
the weak hypotheses, and it is much more accurate than any of the
individual weak learners. Mathematically, the final hypothesis H is
represented as a weighted majority vote of the weak hypotheses,
where every hypothesis ht is multiplied by a weight αt (Freund and
Schapire, 1996). Boosting is effective at reducing both random
variability (variance) and systematic error (bias) in the
predictions. It also has a unique feature where it focuses more on
the more challenging examples, based on the performance of the
previous weak learners. This makes boosting algorithms perform
better than other methods like bagging, and makes them less
sensitive to changes in the training data (Freund and Schapire,
1996).

3.5 Kernel-based algorithms

3.5.1 Reproducing kernel Hilbert spaces (RKHS)
Reproducing kernel Hilbert (RKHS) is a semi-parametric

regression model applied for the first time on marker genotypes
by Gianola et al. (2011). This method has shown great

computational potential, especially when p >> n. RKHS is a
Hilbert space (H) of functions where every function can be
thought of as a point in Euclidean space, and is assumed to be
bounded and linear. In other words, if two functions f and g have
close norms ‖f(8) − g(x) → 0‖, they also have close values
|f(x) − g(x) → 0|. The learning task of RKHS can be described
as follows: Let xi be a vector of marker genotypes (input), yi a vector
of genetic values (output), and g(x) an unknown function of genetic
effects.

To infer g, RKHS proceeds by defining a space of functions from
which an element ĝ will be chosen if it minimizes the loss function
bellow:

l g
∣∣∣∣λ( ) � y − g

���� ����2 + λ g
���� ����2H (5)

Where λ is a regularization parameter that controls tradeoffs
between goodness of fit and model complexity, H represents a
Hilbert space, and ‖g‖2H is the square of the norm of g on H. The
square of the norm measures the model complexity. According to
Manton and Amblard (2014), RKHS theory can be used to solve
three types of problems:

(i) when the problem is defined over a subspace that happens to be
RKHS. This suggests that mapping the problem space into a higher
dimensional space makes the problem easier. Genomic selection
poses a high-dimensional challenge as the number of genotypes (p)
typically exceeds the number of individuals (n). By leveraging an
RKHS framework, it becomes possible to mitigate this
dimensionality and facilitate solving such problems. Introducing
a Gaussian kernel allows for transforming the genotypic data into
an appropriate RKHS representation, whereby subsequent linear
regression models can be effectively used for predicting genetic
values within this reduced-dimensional space.

(ii) when a problem has a positive semi-definite function: In the
field of genomic selection, a critical component is the genetic
relationship matrix (also referred to as the kinship matrix),
which quantifies the genetic similarity between individuals.
This function serves an important purpose in correcting for
confounding factors such as population structure and familial
relatedness in association studies. Utilizing a reproducing
kernel Hilbert space is one solution to the problem that
high-dimensional genotypes present. By applying this
approach, we can leverage the kernel trick to effectively
handle and make more manageable this complex problem.

(iii) When the data points can be embedded into a RKHS with the
kernel function capturing the characteristics of the distance
function, given all the data points and a function determining
the distance between them Nayeri et al. (2019). One common task
in genomic selection is to group individuals based on their
genotypes. This is typically done for purposes such as
identifying subpopulations or accounting for population
structure. To achieve this, the genotypes can be embedded into
a reproducible Kernel Hilbert Space using an appropriate kernel
function, such as a Gaussian or linear kernel. By doing so, we are
able to capture the genetic similarity among individuals. The
clustering algorithm operates within this RKHS and aims to
find clusters that are well-separated in the RKHS even if they
may not appear well-separated in the original genotype space.
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3.5.2 Support vector machines
Support vector machines (SVM) is a non-parametric algorithm

proposed by Cortes and Vapnik (1995). It was first conceived for
two-group classification problems; however, it is widely used
nowadays for both regression and classification. When dealing
with clustering, the aim of SVM algorithm is to identify an
optimal hyperplane defined as a boundary that maximally
separates classes (Jiang et al., 2020). When data points are
linearly separable, the SVM algorithm performs a linear
classification and the optimal hyperplane is found using
numerical optimization (Crisci et al., 2012). Otherwise, SVM can
perform a non-linear classification using the Kernel function.
Gaussian kernel function is used to map the data points from a
data space to a high-dimensional feature space. In the feature space,
small spheres appear to enclose the image of data, these spheres are
mapped back to the data space and form cluster boundaries that
enclose data points of the same cluster (Ben-Hur et al., 2001). The
boundaries should maximize the margin between them and the
classes to minimize the classification error (Mahesh, 2020). When
the SVM algorithm is applied to regression problems, the loss
function should include a distance measure. The possible loss
functions are the quadratic, Laplacian loss function, Huber and
the insensitive loss function (Gunn, 1998). SVM algorithms can
result in highly accurate predictions due to their flexibility. However,
they’re described as a black box because no metrics are provided for
how predictors optimize the hyperplane, which makes the
predictions hard to interpret (Jiang et al., 2020).

3.6 Nearest neighbors

Nearest neighbors model is one of the most simple and intuitive
machine learning algorithms. The idea of this approach is to forecast
the value of a target variable yi associated with an input variable xi

based on the distance between xi and other data points. Generally,
Euclidean distance is used, but there are other methods to calculate
this distance, such as Manhattan distance (Zhang, 2016). In
classification, yi is assigned to the class label of the majority of
the nearest data points in the space. Alternatively, when dealing with
regression, the predictor is the average of the output over the nearest
neighbors (Crisci et al., 2012). The K-nearest neighbors (KNN) is the
most popular algorithm in this category. It is based on the same idea
that the nearest patterns to a datapoint xi deliver useful label
information. The unknown parameter K decides how many
neighbors will be considered in the learning process (Kramer,
2013). The number of neighbors K has a significant impact on
the performance of the algorithm. An optimal K is the one that
strikes a balance between overfitting (low bias but high variance) and
underfitting (low variance but high bias). Some authors suggest K to
the square root of the number of observations in the training set
(Zhang, 2016).

3.7 Deep neural networks

Deep learning is a family of powerful learning methods capable
of recognizing complex patterns in raw data (Vieira et al., 2020). The
well-known Rosenblatt “perceptron” proposed in the 1950s was the

first attempt to conceive a model closely analogous to the perceptual
processes of the human brain (Rosenblatt, 1957). Deep neural
networks’ (DNN) structure (Figure 2) consists of stacked layers
of connected neurons. In other words, the DNN model comprises a
certain number of layers, each layer contains several neurons. Each
neuron is connected to the neurons in adjacent layers through
weights that reflect the strength and direction of the connection
(excitatory or inhibitory) (Montesinos-López et al., 2021). DNN
models are characterized by their depth, size and width. The number
of layers that a DNN contains, excluding the input layer, is called
depth. The total number of neurons in the model is referred to as the
size. Finally, the width of the DNN is the layer that comprises the
largest number of neurons.

When running DNN, a set of observations X enter the model
through the input layer. The observations xi are the input and the
output of this layer. In the hidden layers of the DNN, every neuron
of a given layer receives from the layer of lower hierarchical level, the
weighted sum of its neurons’ output, and then passes it through an
activation function to drive it as an output for that neuron. In the
hidden layers, the most widely used activation functions are the
rectified linear unit, hyperbolic tangent activation and the sigmoid
function. In the output layer, the DNN is meant to perform either a
classification or a regression based on the nature of the target
variable. When dealing with classification, the number of neurons
in the output layer is equal to the number of classes. Additionally,
different activation functions could be used according to the type of
the target variable. Softmax is used for categorical variables, the
exponential function for count data and the sigmoid function for
binary outcomes (Vieira et al., 2020; Montesinos-López et al., 2021).
In regression problems, the output layer represents the estimated
values of the target variables and linear activation functions are
applied. The most successful activation function when dealing with a
continuous variable is the rectified linear unit (ReLU) (Bircanoğlu
and Arıca, 2018). The tanh activation function is used in DNN to
introduce non-linearity in the model and to allow the model to learn
from both positive and negative weights since it is centered around
zero (unlike the sigmoid function). It is typically used in the hidden
layers.

Like other ML models, training DNN consists of choosing
optimal weights that minimize the differences between real and
estimated values of the target variable. The gradient descent is used
to minimize the loss function. These parameters need to be updated
during the learning process. When first training the DNNmodel, the
weights are randomly initialized. Once an observation has entered
the model, the information is forward propagated through the
network until it predicts a certain output value. The gradients of
the loss function are then computed using a hyperparameter called
the learning rate η, which indicates how big the steps of gradient
descent should be, and then used to update the function parameters
(weights and biases). Backpropagation is another efficient method of
computing gradients. The concept of this method is based on the fact
that the contribution of each neuron to the loss function is
proportional to the weight of its connection with the neurons of
the following layer. Therefore, these contributions could be
calculated starting from the output layer and backpropagated
through the network using the weights and the derivative of the
activation function (Pereira and Borysov, 2019; Vieira et al., 2020;
Montesinos-López et al., 2021).

Frontiers in Genetics frontiersin.org06

Chafai et al. 10.3389/fgene.2023.1150596

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1150596


Deep learning comprises a wide variety of architectures. The
most popular ones are the feedforward networks, also called the
multilayer perceptron (MLP), recurrent neural networks (RNN) and
the convolutional neural networks (CNN).

3.7.1 Multilayer perceptron (MLP)
The multilayer perceptron (MLP) is a layered feedforward

network where all layers are fully connected. Every neuron of a
given layer is connected to neurons of the adjacent layer, the
information flows in a single direction. In other words, there are
no intralayer or supralayer connections. MLPs are found to be
powerful and simple to train. However, these networks are not
suitable to deal with spatial or temporal datasets and they’re prone to
overfitting (Montesinos-López et al., 2021).

3.7.2 Recurrent neural networks (RNN)
In Recurrent Neural Networks (RNN), information flows in

both directions. Every neuron has three types of connections:
incoming connections from the previous layer, ongoing
connections toward the subsequent layer, and recurrent
connections between neurons of the same layer (Montesinos-
López et al., 2021). This recursive structure allows this network
to have some notion of memory since the output of a layer depends
on both current and previous inputs. RNN are frequently used to
model space-temporal structures. It is also used in the fields of
natural language processing and speech recognition (Pereira and
Borysov, 2019; Zingaretti et al., 2020).

3.7.3 Convolutional neural networks (CNN)
Convolutional Neural Networks (CNN) are designed to

accommodate situations where data is represented in the form of
multiple arrays. The input variable can have one-dimension such as
SNPs, two dimensions such as color images, or three dimensions for
videos or volumetric images (LeCun et al., 2015). The architecture of
CNNs is made up of convolutional and pooling layers followed by
fully connected neural networks (Pereira and Borysov, 2019). When
training CNNs, the first two types of layers, namely, convolutional

and pooling layers, perform feature extraction. The fully connected
neural network is meant to perform the classification or the
regression task. In the convolutional layer, a mathematical
operation is performed to generate one filtered version of the
original matrices of the input data. This convolutional operation
is called “kernel” or “filter”. A non-linear activation function,
generally ReLU, is applied after every convolution to produce the
output, which is organized as feature maps. The pooling operation
comes after to smooth out the results, its role is to merge
semantically similar features into one. In other words, pooling
reduces the number of parameters and makes the network less
computationally expensive. Max pooling is a typical pooling
operation that proceeds by extracting patches from the feature
maps, determining the maximum value in each patch, and then
eliminating all the other values. Finally, after turning the input
matrices into a one-dimensional vector, the features are mapped by a
network of fully connected layers similar to the aforementioned
feedforward deep network to obtain the final output, the
probabilities of a given feature belonging to a given class for
example,. The output of the fully connected neural network is
fed to another different activation function to perform
classification or regression based on the output variable
(Yamashita et al., 2018). CNNs have been successfully applied in
visual and speech recognition, natural language processing, and
various classification tasks (LeCun et al., 2015; Yamashita et al.,
2018; Pereira and Borysov, 2019).

4 Performance fitness and errormetrics

Machine learning algorithms need to be rigorously evaluated in
order to confirm their validity in understanding complex datasets
and hence extend the use of this model in different datasets.
Generally, the performance of ML models is assessed using
Performance Fitness and Error Metrics (PFEMs), defined as
mathematical constructs used to measure how close the predicted
and real observed values of a given variable are. Choosing the right

FIGURE 2
A graphical representation of a simple neural network.
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metric for assessing the performance of a predictor is very delicate
because a limited understanding of the behavior of algorithms can
lead to misinterpretations of results and thus false assumptions. In
addition, PFEMs are used differently when dealing with regression
and classification problems.

In regression, performance metrics are based on calculating the
distance between predicted and real values using subtraction or
division operations, sometimes supplemented with absoluteness or
squareness. Moreover, PFEMs in regression also investigate the
distribution of residuals, whether it is random or regular, which
indicates that the regression model does not explain all the regularity
in the dataset. The most common PFEMs used in regression are
(Table 1): mean square error (MSE) or root mean square error
(RMSE), normalized mean squared error (NMSE), correlation
coefficient (R), r squared (R2), mean absolute error (MAE), and

mean absolute percentage error (MAPE). They are easy to interpret,
straightforward, and they indicate the magnitude of the difference
between measured and predicted values (Naser and Alavi, 2021).
The interpretation of these metrics can be found elsewhere
(Botchkarev, 2018).

Classification models are meant to categorize data into distinct
classes. Therefore, assessing the performance of classifiers relies on a
confusion matrix where columns represent the predicted values,
while rows represent the actual values as described in Figure 3, where
TP refers to true positives, TN denotes true negatives, FP denotes
false positives, and FN refers to false negatives. The performance of
classifiers is often evaluated using prediction accuracy (PAC),
sensitivity or recall, specificity, and precision. Based on the
confusion matrix, these metrics are defined as below:

PAC � TP + TN

TP + FP + TN + FN
, precision � TP

TP + FP
,

recall � TP

TP + FN
, specificity � TN

TN + FP
(6)

Other methods based on the aforementioned metrics have also
been broadly used in assessing the performance of classifiers. The
F1 score that combines both precision and recall in a harmonic
mean in the following formula:

F1 score � 2 x
precision x recall

precision + recall
(7)

Moreover,Matthews (1975) introduced a coefficient used tomeasure
the performance of binary classifiers, called the Matthews correlation
coefficient (MCC). This coefficient combines all four measures in the
confusion matrix, and thus it is qualified as the most informative metric
especially when a significant imbalance in class sizes is noticed (Nayeri
et al., 2019). MCC formula is represented below:

MCC � TPxTN − FPxFN������������������������������������������
TP + FP( ) x TP + FN( ) x TN + FP( )x TN + FN( )√

(8)
Another criterion widely used to measure the performance of

classifiers is the Area Under the Receiver Operating Characteristic
(ROC) curve (AUC). The ROC curve visualizes the tradeoff between

TABLE 1 Common performance metrics used for the evaluation of regression models.

Metric abbreviation Metric name Metric formula

MSE Mean squared error
MSE � 1

N∑
N

n�1
[y(n) − ŷ(n)]2

RMSE Root mean squared error RMSE � �����
MSE

√

NMSE Normalized mean squared error

NMSE �
∑N
n�1

[y(n)−ŷ(n)]2

∑N
n�1

[y(n)−y ]2

MAE Mean absolute error
MAE � 1

N∑
N

n�1
|[y(n) − ŷ(n)]2|

MAPE Mean absolute percentage error
MAPE � 100

N ∑
N

n�1
|[y(n)−ŷ(n)]2y(n) |

R2 Coefficient of determination R2 � 1 −NMSE

Where N (1 , ..., n) is the number of observations, y(n) refers to observed values, and ŷ(n) refers to the estimated values.

FIGURE 3
Interpretation of ROC curves of varying sensitivity and specificity. The
sensitivity and the specificity of the test increases as the curve approaches
thepoint a (x=0, y= 1). Thecloser thecurves are to thediagonal line the less
precise they are. From “ROC-ing along: Evaluation and interpretation
of receiver operating characteristic curves” by Carter et al. (2016).
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sensitivity and specificity. In other words, the curve captures the
ratio of false to true positive rates under variation of the decision
threshold (Hoffmann et al., 2019). Generally, good performance is
detected when the curve is high and close to the left in the ROC
space. In contrast, an inaccurate method has a curve close to the
main diagonal (Figure 4). Thus, when comparing several ML
models, the one with the highest AUC value is the most accurate
(Metz, 1978).

5 Machine learning models applied to
genomic prediction in animal breeding

Machine learning algorithms have been widely used in various
fields. Their ability to discover patterns in large, messy datasets has
driven researchers to investigate their performance in dealing with
complex models and nonlinearities in large datasets. Animal
breeding in the post-genomic era is a domain that deals with
high-dimensional marker datasets such as genomics,
epigenomics, transcriptomics, proteomics and metabolomics. The
most commonly used marker data sets in animal breeding are single
nucleotide polymorphism (SNPs) data sets that represent the genetic
variation in a genome. SNP markers data sets are very large, for
example, the data set resulting from genotyping 2,000 individuals for
10,000 SNP markers, contains 20 million data points. Furthermore,
they can be complex and noisy due to genotyping errors, missing
data, batch effects, and biological variability. Copy number variation
(CNV) is another valuable form of genetic variation that
complements SNPs analysis. CNV datasets are used to investigate
diversity within populations (Yang et al., 2018). They can serve as
informative markers for marker-assisted selection by identifying
CNVs associated with desirable traits (Ma et al., 2018), and genomic
prediction to enhance the accuracy of predicting breeding values
(Hay et al., 2018), etc. In addition, microarray data provide valuable
information concerning gene expression, by measuring the mRNA
expression levels of tens of thousands of genes. Gene expression
datasets are known to be massive (large number of genes) and
redundant, and thus, their manipulation requires a lot of pre-
processing and dimensionality reduction (Liu and Motoda, 2007).
Applying machine learning models is hence becoming attractive in

genomics, due to their potential in dealing with large, noisy data and
modeling minor nonadditive effects as well as interactions between
phenotypes and genotypes.

Machine learning models have several important applications in
genomics. Through the introduction of sophisticated algorithms and
computational models, ML can be trained using large datasets of
genotypes and phenotypes to predict animals’ breeding values for
certain traits. This would enable an accurate selection of animals
with the highest genetic merit and allow for more informed breeding
decisions. MLmodels have successfully been implemented to predict
genomic breeding values across various animal species, including
dairy cattle (Beskorovajni et al., 2022), beef cattle (Srivastava et al.,
2021), pigs (Zhao et al., 2020), and broilers (González-Recio et al.,
2008). The estimated GEBVs provide an accurate prediction of
animals’ genetic potential and thus identify animals with high
genetic potential that surpass the population average. Therefore,
ML models can have a valuable role in allowing breeders to make
more precise breeding decisions, leading to faster genetic progress.

In addition, machine learning algorithms can also be deployed to
predict disease occurrence based on integrated information of
genotypes and health records. For example, Ehret et al. (2015)
applied ML to encounter a serious health problem in the intensive
dairy industry, which is subclinical ketosis risk. The authors proposed
an ANN to investigate the utility of combining metabolic, genomic and
milk performance in predicting milk levels of β-hydroxybutyrate. Data
comprised SNP markers, and weekly records of the concentrations of
glycerophosphocholine, phosphocholine, and milk composition data
(milk yield, fat and protein percentage). The deep learning model
deployed provided an average correlation between real and predicted
values up to 0.643 when incorporating information about metabolite
concentration, milk yield, and genomic information.

Moreover, ML models can be coupled with GWAS and
population genomics to identify genetic variants and biological
pathways linked to specific phenotypic traits. A deep learning
framework was proposed by Zeng et al. (2021) to predict
quantitative phenotypes of interest and discover genomic markers
considering the zygosity of SNP information from plants and
animals as input. Furthermore, ML models can be used to
impute moderate-density genotypes when genotyping large
populations can be expensive and time-consuming. ML models

FIGURE 4
Confusion matrix.
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TABLE 2 Machine learning models applied to genomic prediction in animal breeding.

Year Authors Species Breed No. of
individuals

No. of
markers

Response
variable

ML
algorithms

Aim of the
study

2016 Naderi et al. Dairy cattle
(simulated)

- 20000 females and
400 males

50025 and
10005 SNPs

Subclinical Ketosis ANN (MLP) Building an ANN
for an earlier
prediction of

subclinical Ketosis
in lactation

2016 Yao et al. Dairy cattle Holstein 3000 genotyped
792 genotyped and

phenotyped

57491 SNPs RFI SVM (semi-
supervised
learning)

Describing a SVM-
based semi-

supervised learning
model, and applying

it for genomic
prediction of

residual feed intake

2018 Li et al. Beef cattle Brahman 2093 40184 SNPs BW RF, GBM,
XGBoost

Assessing the
efficiency of three
ML methods in

identifying the top-
ranked SNPs and
using the subsets of
SNPs to construct

genomic
relationship
matrices for

estimating genomic
breeding values

2020 Liang et al. Beef cattle Simmental 1217 671900 SNPs CW, LW, EMA Adaboost.RT
(integrated SVR),

KRR, RF

Applying ensemble
learning models to
predict genomic
breeding values of
three economic

traits

2020 Abdollahi-
Arpanahi et al.

Dairy cattle Holstein 1170 57749 SNPs SCR MLP, CNN,
RF, GB

Comparing the
predictive

performance of two
deep learning
methods, two

ensemble learning
methods, gradient
boosting and two

parametric methods
(GBLUP and
Bayes B)

Simulated
data

- - 100 and
1000 QTNs

A quantitative trait

2021 Chen et al. Beef cattle Nellore 18 16,423 genes FE RF, XGBoost,
RX, SVM

Applying Rf,
XGBoost and RX to

identify small
subsets of
biologically

important genes to
classify animals into
High Feed Efficiency

and Low Feed
Efficiency

2021 Srivastava et al. Beef cattle Hanwoo 7324 53866 SNPs CWT, MS, BFT EMA RF, XGB, SVM Comparing the
predictive ability of
three ML models in

predicting
phenotypes from

genotypes

2021 Wang et al. Pig Yorkshire 2566 44922 SNPs TNB, NBA SVR, KRR, RF,
Adaboost.R2

Exploring and
comparing the

prediction ability of
fourML models to
GBLUP, ssGBLUP

and bayesian
methods in genomic

(Continued on following page)
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can accurately infer missing genotypes and fill the gaps to create
moderate density genotypes. This has already been implemented in
the beef cattle genomic dataset (Sun et al., 2012).

Taken together, ML models appear to be a powerful tool for
enabling more accurate predictions, targeted selection, and an
improved understanding of genetic mechanisms. However, when
training ML models on biological data, several challenges can occur.
For example, when using markers data, environmental data, and
phenotypic records all together to predict a certain variable, the large
heterogeneity of the input data can be a hurdle. Therefore, it is
indispensable to perform a pre-processing step that includes
formatting, cleaning, scaling, and normalizing the data. This step
ensures that the data is prepared to optimize the performance and
accuracy of the machine learning model. Markers data sets are
usually massive and comprise a lot of noise. Using the raw data can
lead to a low performance and overfitting. Thus, performing feature
selection is vital when manipulating omics data in order to reduce
the dimensionality of the data by selecting relevant features while
eliminating noise from the model. Multiple methods can be used to
perform feature selection including statistical methods, correlations,
or hypothesis testing. Recently, ML models were proved to be very
powerful in feature selection. The most broadly used machine
learning-based methods for feature selection are filters, wrappers,
and embedded methods that combine filter and wrapper methods
(Tadist et al., 2019). Machine learning-based feature selection is
widely used when manipulating animal species marker data sets.
Finally, when training ML models on biological data, several steps
should be performed to ensure the quality of the data fed to the
model. In addition, adjusting the hyperparameters and generalizing
the model through regularization techniques are also central to
optimizing the performance of the model. There are multiple
techniques to optimize ML models, such as gradient descent,

stochastic gradient descent, random search, grid search, Bayesian
optimization, and genetic algorithms.

Now that we have discussed the overall applications of ML
models in genomic prediction and the multiple issues encountered
while implementing those models on markers data, we will review,
in this section, some of the published studies on the application of
different ML models for genomic prediction in animal breeding,
feature selection, and genotype imputation separately, to provide a
meta-picture of their potential in terms of prediction accuracy and
computational time. Data sets and different machine learning
models applied to genomic prediction in a handful of the
reviewed papers are summarized in Table 2. In Supplementary
Materials; Table 1 contains the full summary of the reviewed
papers, and Table 2 presents the programming languages and
packages used to train the models in the aforementioned studies.

5.1 Genomic prediction

The wide majority of traits of interest in animal breeding are
presumed to be influenced by many genomic regions with complex
interactions. Kernel-based methods are gaining consideration over
conventional regressionmodels due to their capacity to capture non-
additive effects. A more succinct description of kernel-based
methods applied to GP can be found in Morota and Gianola
(2014). González-Recio et al. (2008) used the F-metric model,
kernel regression, reproducing kernel Hilbert spaces (RKHS)
regression, and Bayesian regression to predict mortality in
broilers and see how well they did compared to the standard
genetic evaluation (E-BLUP), which is only based on pedigree
information. The dataset contained records for mortality rates for
12167 progeny of 200 sires with a total of 5523 SNPs. The authors

TABLE 2 (Continued) Machine learning models applied to genomic prediction in animal breeding.

Year Authors Species Breed No. of
individuals

No. of
markers

Response
variable

ML
algorithms

Aim of the
study

prediction of
reproductive traits

2021 Beskorovajni
et al.

Dairy cattle Holstein 92 - MFP, MPP, CM, FM,
LIV, SCE, HCR,

CCR, DSB, SSB, GL

MLP Predicting yield and
fertility traits using
an MLP model
based on the

Broyden-Fletcher-
Goldfarb-Shanno

iterative
optimization
algorithm for

genomic selection

2021 An et al. Beef cattle Simmental 1301 671990 SNPs Cosine Kernel based
KRR (KcRR),SVR

LW, CW, EMA Assessing the
prediction

accuracies of
12 traits with

various heritabilities
and genetic

architectures using
parametric methods
(GBLUP and Bayes
B), and two machine
learning models
(KcRR and SVR)

Dairy cattle Holstein 5024 42551 SNPs MY, MFP, SCS

Pig - 3534 43494, 43407, and
43412 SNPs for

each trait

T1, T2, T3

Simulated
data

- 4000 50 SNPs for each
trait (3 traits)

T1, T2,T3

A summary of a handful of the reviewed researches in the paper. For the full version of the table please view Supplementary Materials.
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concluded that kernel regression and RKHS regression had a low
residual sum of squares and increased the accuracy from 25% to
150% relative to other methods, and thus the authors recommended
their utility in the genomic prediction of early mortality in broilers.
An et al. (2021) developed another kernel-based algorithm named
Cosine Kernel-based Ridge Regression (KcRR) to perform genomic
prediction using simulated and real datasets. The simulated dataset
included 4000 individuals and concerned three quantitative traits
with various heritabilities (0.36, 0.35, and 0.52). Meanwhile, the real
data concerned three species: a Chinese Simmental beef cattle
dataset contained 1,301 bulls, with a total of 671990 SNPs and
concerned three traits of interest: live weight (LW, kg), cold carcass
weight (CW, kg), and eye muscle area (EMA, cm2). The pig dataset
included 3,534 animals, and finally, the German Holstein cattle
dataset included 5,024 bulls with a total of 42551 SNPs that
concerned three phenotype traits, milk yield (MY, kg), milk fat
percentage (MFP,%), and somatic cell score (SCS). The designed
model consisted of a kernel-based ridge regression, which is a ridge
regression built in a higher dimensional feature space that uses a
Cosine similarity matrix (CS matrix) instead of the genomic
relationship matrix (G matrix). The difference between these two
matrices is that the CS matrix measures the cosine of the angle
between two projected vectors, and the G matrix in an
m-dimensional feature space where m is the number of SNP
markers. For comparison purposes, a 20-fold cross-validation
approach was used to evaluate the prediction accuracy of KcRR
to that of GBLUP, BayesB, and SVR. The authors have also
simulated for the quantitative traits different heritabilities, and
genetic architectures, including one major gene and a large
number of genes with minor effects, a number of genes with
moderate effects and many genes with small effects, and finally a
large number of genes with small effects, in order to assess the
performance and consistency of these methods. Overall, KcRR had
the best prediction accuracy among the methods, in addition, it
performed stably for all traits and genetic architectures, which
confirms its reliability and robustness. Therefore, An et al. (2021)
suggested the use of KcRR and the CS matrix as a potential
alternative in future GP. Zhao et al. (2020) investigated the
performance of SVM in a pig dataset containing 3,534 samples
with a different number of SNPs for each trait respectively 45,025,
45,441, 44,190, 44,151, and 44,037 SNPs for T1, T2, T3, T4, and T5.
For training the SVM model, a suitable kernel function was
selected. The authors tested the prediction ability of four
commonly used kernel functions namely, the Radial Basis
Function (RBF), the Polynomial Kernel Function, the Linear
Kernel Function, and the Sigmoid Kernel Function in
previously published pig and maize datasets. The findings
demonstrated that SVM-RBF had the best performance, the
SVM-sigmoid and the SVM-poly models had similar accuracies,
and the SVM-linear had the lowest accuracy. As a result, the
authors chose using the SVM-RBF model to adjust the
hyperparameters of the final SVM model. Afterwards, the
authors evaluated the performance of SVM-RBF, GBLUP and
BayesR in fitting the five pig datasets, using a 10-fold cross-
validation approach. Overall, the performance of the trained
models was similar. However, the SVM model performed better
than BayesR but worse than GBLUP in terms of time, and better
than GBLUP but worse than BayesR in terms of memory.

Ensemble learning has been broadly used in the genomic
prediction of animal breeding values. Naderi et al. (2016) studied
the use of RF for genomic prediction of binary disease traits using
simulated data from 20,000 cows with different disease incidence
scenarios, different heritability (h2 = 0.30 and h2 = 0.10), and
different genomic architecture (725 and 290 QTL, populations
with high and low levels of linkage disequilibrium). The training
set contained 16,000 healthy cows, and the testing data contained the
remaining 4,000 sick cows. Afterwards, the number of sick cows was
increased progressively by moving 10% of the sick individuals to the
training data, ensuring that the size of both the training and testing
data remained constant. This study compared the performance of
RF and GBLUP using the correlations between estimated genomic
breeding values and true breeding values, and the area under the
curve (AUROC). The results confirmed that RF had a great
advantage in the binary classification for scenarios with a larger
marker density. In addition, the best prediction accuracies of RF
(0.53) and GBLUP (0.51), and the highest values of AUROC for RF
(0.66) and for GBLUP (0.64), were achieved using 50,025 SNPs, a
heritability of 0.30, 725 QTL, and a disease incidence similar to the
population disease incidence (0.20). The authors also noted that the
genetic makeup of the population had an impact on the performance
of RF and GBLUP. However, the variability was more pronounced
for RF than for GBLUP.

A boosting algorithm called L2-Boosting was suggested by
González-Recio et al. (2010) to forecast the progeny test
predicted transmitting abilities for the length of productive life
(PL) in a dairy cattle dataset, and the average food conversion
rate records in a broiler dataset. The dairy cattle data set consisted of
4702 Holstein sires with a total of 32611 SNPs, and the broiler
dataset comprised 394 sires of a commercial broiler line with
3,481 SNPs. The L2-Boosting algorithm proceeds by combining
two weak learners, namely, ordinary least squares (OLS) and non-
parametric (NP) regression. The performance of OLS-Boosting and
NP-Boosting was compared to Bayesian LASSO (BL) and Bayes A
regression. The results showed that OLS-Boosting had the lowest
bias and mean-squared errors (MSEs) in both the dairy cattle
(0.08 and 1.08, respectively) and the broiler (0.011 and 0.006,
respectively) data sets. The authors concluded that L2-Boosting
with a suitable learner represents a good alternative for genomic
prediction, providing high accuracy and low bias in a short
computational time.

In another study, a bagging approach using GBLUP (BGBLUP)
was performed to predict the genomic predicted transmitting ability
(GPTA) of young Holstein bulls for three traits: protein yield (PY),
somatic cell score (SCS), and daughter pregnancy rate (DPR)
(Mikshowsky et al., 2017). The dataset consisted of
17276 Holstein bulls with a total of 57169 SNP markers, and it
was split into a reference population set used to train the model and
a testing set for the evaluation. The aim of the proposed bagging
approach was to create 50 bootstraps containing bulls selected
randomly, with replacement, from the reference population, until
each bootstrap reaches the same number of individuals as the
original reference population. GBLUP was applied to predict the
GEBVs of individuals for each trait. According to the results,
GBLUP outperformed BGBLUP in the genomic prediction for
PY, SCS, and DPR, the correlations between the real and
predicted values of each trait for GBLUP were 0.690, 0.609, and
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0.557, and 0.665, 0.584, and 0.499 for BGBLUP. In summary, the
authors found no advantage to using BGBLUP over GBLUP for
genomic prediction.

For comparison purposes, several studies have deployed various
machine learning methods to forecast and compare their predictive
accuracies when trained using genomic data. For example, Ogutu
et al. (2011) compared the performance of three machine learning
models, namely RF, stochastic gradient boosting, and SVMs, in
estimating genomic breeding values. A simulated dataset of
2326 genotyped and phenotyped individuals and 900 individuals
who lacked phenotypic records was used. As a performance metric,
Pearson correlations were used between the simulated values and the
predicted values from the validation set, as well as between the
predicted and real breeding values for non-phenotyped individuals.
The results showed that stochastic gradient boosting and SVM had
better correlations between the simulated values and predicted
values compared to RF. However, RF provided reasonable
rankings of the SNPs, which can be useful for identifying
markers for further testing. In conclusion, stochastic gradient
boosting and SVM are found to be able to accommodate
complex relationships and interactions in marker data such as
epistasis. They have also outperformed RF in the genomic
prediction of the quantitative trait, however, SVM was
computationally intensive due to the grid search for tuning the
hyper-parameters. In contrast, Srivastava et al. (2021) found
different conclusions when evaluating the performance of RF,
XGB, and SVM in predicting four traits namely, carcass weight
(CWT), marbling score (MS), backfat thickness (BFT) and eye
muscle area (EMA) of 7234 Hanwoo cattle. According to this
study, XGB yielded higher correlations for CWT, MS, (0.43, 0.44,
respectively) compared to GBLUP (0.41, 0.42), and lower (0.23, and
0.31) than GBLUP (0.35, and 0.38) for BFT, and EMA. Meanwhile,
GBLUP delivered the lowest MSE for all traits. Among the ML
methods, XGB had the lowest MSE for CWT and MS, and SVM
provided the lowest MSE for BFT and EMA. Despite the good
performance of XGB and SVM, the authors still concluded that there
was no advantage to using ML methods over GBLUP.

Liang et al. (2021), compared the performance of Adaboost.RT,
SVR, KRR, RF to the conventional GBLUP in predicting breeding
values for cattle growth traits in Chinese Simmental cattle (carcass
weight, live weight, and eye muscle area), using a dataset of
1,217 young bulls with a total of 671990 SNPs. Contrary to the
previous study, the authors recommended using ML methods over
GBLUP. Indeed, the predictive accuracies of SVR, KRR, RF,
Adaboost.RT and GBLUP were 0.346, 0.349, 0.315, 0.349, and
0.290 respectively. In other words, ML methods improved the
predictive accuracy by 12.8%, 14.9%, 5.4%, and 14.4%,
respectively, over GBLUP. In summary, Liang et al. (2021) found
a great advantage in using ML algorithms for GP in Simmental beef
cattle, especially Adaboost.RT due to its reliability. However, the
authors pointed out that ML models were sensitive to data, which
means that two different datasets may have significant differences in
predictive accuracy. Wang et al. (2022) used a pig dataset of
2566 Chinese Yorkshire pigs to compare the same models. The
study concentrated on estimating the genomic breeding values of
these individuals for two reproductive traits: the total number of
piglets born (TNB) and the number of piglets born alive (NBA). The
GEBVs were also estimated using classical methods [GBLUP,

ssGBLUP, and Bayesian Horseshoe (BayesHE)]. Overall, ML
methods outperformed conventional ones, and the degree of
improvement over GBLUP, ssGBLUP, and BayesHE was 19.3%,
15.0% and 20.8% respectively. Furthermore, results showed that ML
methods had the lowest MSE and MAE in all case scenarios. SVR
and KRR provided the most consistent prediction abilities including
higher accuracies and lower MSE and MAE. The findings of this
study showed that ML methods are more efficient and had better
performance in predicting GEBVs for reproductive traits, which can
provide new insights for future GP. In another report, Sahebalam
et al. (2019) evaluated the predictive ability of RF, SVM, the
semiparametric model reproducing kernel Hilbert spaces (RKHS),
and two parametric methods, namely, ridge regression and Bayes A.
The ability of the above methods to predict was tested by estimating
genomic breeding values for traits with different combinations of
QTL effects, QTL numbers, three scenarios of heritability, and two
training sets with 1,000 and 2,000 individuals. A genome of four
chromosomes was simulated, and four generations were considered
in the study. In the various simulation scenarios, the parametric
methods outperformed semi-parametric (RKHS) and non-
parametric ones (RF and SVM). However, the superiority of
parametric models compared to semi-parametric ones was not
statistically significant. In summary, Bayes A had the best
prediction accuracy among all tested models.

Deep learning algorithms are found to be powerful in
discovering intricate patterns and nonlinearity in large, messy
datasets. Their application in genomic prediction has been
investigated, however, the number of reports on DL application
in animal breeding is small, and thus their potential should be
further investigated. Gianola et al. (2011) evaluated the predictive
ability of an artificial neural network to predict three quantitative
traits, namely, milk, fat, and protein yield. In Jersey dairy cows. The
dataset contained records of the milk yield of 297 Jersey dairy cows
with a total of 35,798 SNPS. The authors conceived different
Bayesian neural networks (BNN) with various architectures that
differed in terms of the number of neurons, the type of activation
function, and the source of the input variables, whether they were
derived from pedigree or molecular markers. According to the
results, BNNs with at least two neurons in the hidden layer had
better performance. Moreover, results also showed that Bayesian
regularization helped reduce the number of weights, which helped
prevent overfitting. However, an overfitting problem still occurred
in the Jersey training set, where large correlations between observed
and predicted data were observed in the training set (0.90–0.95) and
much lower correlations in the testing set. In another study,
Beskorovajni et al. (2022) developed a multi-layer perceptron for
predicting yield and fertility traits of 92 genotyped Holstein heifers,
using several “Key traits” as input variables. These traits consist of
Milk Yield, Fat Yield, Protein Yield, Somatic Cell Score (SCS),
Productive Life (PL), Daughter Pregnancy Rate (DPR), Daughter
Calving Ease (DCE), Final Type (PTA Type) and Genomic Future
Inbreeding (GFI). An iterative method called the Broyden-Fletcher-
Goldfarb-Shanno algorithm, which proceeds by minimizing the
validation error, was used for optimization while training the
ANN model. The authors obtained one optimal ANN for each
target variable. The obtained ANN contained three layers,
11 neurons in the hidden layer and 276 weights and biases due
to the high nonlinearity of the observed system. These hyper-
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parameters led to the highest values of r2 (0.951, 0.947, 0.989, 0.985,
0.902, 0.887, 0.676, 0.953, 0.590, 0.647, and 0.444) for these traits
respectively; fat percentage, protein percentage, cheese merit, fluid
merit, cow livability, sire calving ease, sire calving ease, heifer
conception rate, cow conception rate, daughter stillbirth, sire
stillbirth, and gestation length. In the end, Beskorovajni et al.
(2022) found that the ANN (network MLP 9-11-11) based on
the Broyden-Fletcher-Goldfarb-Shanno optimization algorithm
did a good job of fitting the data and predicting yield and
fertility traits. Waldmann et al. (2020) combined a one-
dimensional CNN model with l1-norm regularization, Bayesian
optimization and ensemble prediction within Genome Wide
Prediction framework (CNNGWP) using simulated data with
additive and dominance genetic effects and real pig data of
808 Australian Large White and Landrace sows with a total of
50174 SNPs. In comparison to findings achieved with GBLUP and
the LASSO, the results demonstrate that CNNGWP does indeed
reduce prediction error by more than 25% on simulated data and by
about 3% on real pig data. In summary, Waldmann et al. (2020)
pointed out that CNNGWP appears to offer a promising approach
for GWP, however the degree of improvement depends on the
genetic architecture and the heritability. A detailed guide about the
implementation of DL for GP may be found in (Zingaretti et al.,
2020).

In order to compare the performance of ensemble learning
methods and deep learning algorithms, Abdollahi-Arpanahi et al.
(2020), compared the performances of RF and GB with MLP and
CNN, and two conventional tools, namely, GBLUP and Bayes B, in
predicting quantitative traits using both simulated and real Holstein
datasets. The simulated dataset was used to assess the performance
of ML methods in different scenarios of genetic architectures. A
quantitative trait was simulated and two scenarios of QTN number
were considered: [small (100) and large (1,000)]. QTNs were located
across the genome in two different ways: clustered or randomly, and
gene action were either purely additive or a combination of additive,
dominance and epistasis effects. On the other hand, real data from
11790 US Holstein bulls with a total of 57749 SNPs were used to test
how well ML approaches can predict complex phenotypes like SCR,
which is affected by both additive and non-additive effects.
Abdollahi-Arpanahi et al. (2020) found that results differed
depending on the genetic architecture of the trait. When pure
additive actions controlled the trait, classic statistical models had
better predictive accuracies compared to MLmethods. However, the
number of loci controlling the trait of interest appears to be an
important factor in how well the models predicted outcomes when
non-additive genetic effects occurred. The performance of ML
algorithms, and in particular, GB, surpassed that of traditional
statistical methods when the traits were controlled by a small
number of QTN. The researchers finally came to the conclusion
that, since Waldmann (2018) had already shown that loci are
clustered, ML approaches work well for predicting traits with
complex gene action and a small number of QTN (Abdollahi-
Arpanahi et al., 2020).

Genomic prediction in animal breeding usually involves small
reference population issues, especially when it concerns a novel trait,
which can be costly and labor-intensive to measure. Machine
learning models can be deployed to tackle these challenges. For
example, Yao et al. (2016) developed a self-trainingmodel, which is a

semi-supervised algorithm wrapped around SVM to encounter the
challenge of genomic prediction of residual feed intake (RFI). The
model uses 792 animals with both genotypes and phenotypes to
train a base predictor, which is used to estimate the “self-trained
phenotype” of 3,000 animals with genotypes only. To train a new
predictor that is utilized to generate the final genomic predictions,
both of these datasets are integrated. A total of 57491 SNPs were
used for the analysis. The results showed that indeed, the self-
training algorithm increased the accuracy of genomic prediction,
however, this improvement was small when the dataset already
contained more individuals with measured phenotypes.
Additionally, the correlation between predicted and measured
phenotypes increased by adding more self-trained phenotypes,
however, it reached a plateau at a certain level. In summary, Yao
et al. (2016) concluded that semi-supervised learning is a powerful
tool for enhancing the accuracy of genomic prediction for novel
traits and for small reference populations. However, choosing an
adequate sample size and an adequateML algorithm are necessary to
prevent poor predictions. As an example, the predictive ability of RF
models with a set-up similar to this study was assessed, and the
authors found no improvement in accuracy from using self-training
models (Yao et al., 2016).

5.2 Feature selection

Feature selection techniques are vital in genomic prediction.
They allow us to identify the most informative genetic markers,
mostly SNPs, that contribute to the traits of interest. In genomics,
the massive amount of markers data poses a challenge in terms of
computational efficiency and interpretability. By eliminating
irrelevant markers, feature selection methods reduce noise and
dimensionality, and increase the accuracy and performance of
ML models. In addition, feature selection procedures enable the
identification of key genetic variants, providing valuable insights
into the biological mechanisms underlying traits of interest.
Therefore, several studies have investigated the potential of ML
models in performing feature selection using SNPs datasets of
multiple animal species. Li et al. (2018a) applied three machine
learning methods, namely, RF, GBM and XgBoost, for ranking the
top 400, 1,000, and 3,000 SNPs directly related to the body weight of
Brahman cattle to generate genomic relationship matrices (GRMs)
for estimating genomic breeding values (GEBVs). The database used
consisted of the body weight records of 2093 animals with a total of
38082 SNP markers. According to the results, RF and GBM
outperformed XgBoost in identifying a subset of SNPs related to
the growth trait. Furthermore, the top 3,000 SNPs identified by RF
and GBM provided similar GEBV values to those of the whole SNP
panel. In summary, the authors highly recommend the use of RF and
GBM for identifying subsets of potential SNPs related to traits of
interest. Besides, this approach could be very useful in animal
breeding since the vast majority of research suffers from small
reference population issues, whether it is due to genotyping cost
constraints or to the nature of the target variable, which could be
costly and labor-intensive to measure, such as feed efficiency. In this
sense, Chen et al. (2021) compared the performance of two
conventional methods, t-test and edgeR and three ensemble
learning models, namely, RF, XGBoost, and a combination of
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both RF and XGBoost (RX) in identifying subsets of potential
predictor genes in different tissues related to feed efficiency in
Nellore Bulls. The dataset contained RNA sequences of five
tissues (adrenal gland, hypothalamus, liver, skeletal muscle, and
pituitary) from nine high-feed efficiency (HFE) and nine low-feed
efficiency (LFE) bulls. Using the SVM model, the predictor genes
that had been found using the abovemethods were used to divide the
animals in the testing set into HFE and LFE. The performance of the
classifier was evaluated using four metrics: overall accuracy,
precision, recall and F1-score. The results showed that RX
provided the best prediction accuracy yet with the smallest subset
of genes (117). RF, in contrast, had the worst performance despite
the fact that it had identified the largest number of candidate genes,
contrary to what has been found in Naderi et al. (2016). The authors
emphasize the idea that ML methods demonstrate great potential in
identifying biologically relevant genes that can be used in classifying
individuals accurately. In another study, Piles et al. (2021)
implemented three types of feature selection methods: filter
methods (tree-based methods), embedded methods (elastic net
and LASSO regression), and a combination of both. Ridge
regression, SVM, and GB were used after the pre-selection of
relevant SNPs with filter methods. The results showed that using
small subsets (50-250 SNPs), the feature selection method had a
significant impact on prediction accuracy. In addition, filter
methods demonstrated good performance and stability, indicating
their potential for designing low density SNP chips for evaluating
feed efficiency based on genomic information (Piles et al., 2021).

5.3 Genotype imputation

Genotype imputation plays a crucial role in animal genomics
by inferring genotypes at specific positions in a genome by
leveraging patterns and correlations within the data. Machine
learning can be deployed to perform genotype imputation. For
example, Sun et al. (2012) investigated the performance of
Adaboost in imputing moderate-density genotypes from low-
density panels in order to reduce genotyping costs. The
proposed model works, in fact, by combining the imputation
results of preexisting software packages. The database included
3059 registered genotyped Angus cattle and 51911 SNPs across the
whole genome. The missing genotypes were first imputed by
previously available packages, of which three were family-based
and the others were population-based. Consequently, the possible
combinations of the six packages resulted in 720 unique ensemble
systems. The proposed Adaboost-based systems attribute a weight
to each imputation method as a weak classifier. During the iterative
training, the weights of classifiers that provided good predictions
remained constant, whereas the weights of the misclassified
samples were increased, which emphasized the focus on difficult
samples. Finally, the final imputation of the genotype is the one
with the majority of votes from all classifiers in the ensemble
system. The results showed that indeed the ensemble method
improved the accuracy of imputation in the data, however, the
degree of improvement was limited by the fact that the packages
used as weak classifiers had already provided highly accurate
imputation results. Nevertheless, the authors highlighted the
potential of ensemble learning to provide robust systems to

address inconsistencies among different imputations of the
preexisting methods.

6 Potential for ML applications to
genomic prediction in animal breeding
in developing countries

The majority of developing countries are grappling with
satisfying the nutritional demands of an increasing human
population. Meeting the demand for animal protein in a context
of difficult environmental conditions and the predominance of
smallholder systems in a sustainable manner is a challenging
task. In addition, the introduction of highly productive dairy
cows and the use of elite AI bulls’ semen to inseminate national
dairy herds resulted in low productivity due to unfavorable
genotypes by environment interaction. Moreover, it is delicate for
developing countries to implement a consistent conventional
genomic selection breeding scheme due to the lack of reliable
phenotypes and pedigree data recording (Mrode et al., 2019).
Therefore, in order to improve national livestock systems
productivity, developing countries should find alternatives to the
aforementioned bottlenecks. The development of genomic
technologies and the remarkable decrease in genotyping costs can
be valuable for low- and middle-income countries, as they can tackle
pedigree error problems by using the genomic relationship matrix
(G) instead of the relationship matrix (A) or combining both
information in a matrix H. However, the size and structure of
the reference population is the biggest struggle for adopting GS in
developing countries, the number of genotyped animals is limited,
usually between 500 and 3,000 animals, predominated by females
due to the non-existence of AI bulls (Mrode et al., 2019).
Collaborations with developed nations, as Li et al. (2016)
describe, could therefore be advantageous for implementing GS
in these nations. Also, the use of a mixture of high-density (HD) and
low density (LD) chips followed by imputation to the HD could be
an alternative for reducing even more the genotyping costs in order
to increase the size of the reference population (Lashmar et al.,
2019).

Considering indigenous breeds in breeding programs is
indispensable in developing countries. First of all, the majority of
smallholder systems’ dairy cows are either indigenous dairy cattle or
crossbreds. Second, the conservation of genetic resources of local
breeds that are adapted to specific agro-ecologies is crucial for the
sustainability of the breed and biodiversity (Bulcha et al., 2022).
Several countries, such as Kenya, Senegal, East Africa, Ethiopia, etc.,
have already implemented genomic technologies for indigenous
breeds in Africa. Some studies used SNP data to determine the
most adequate breed-type for different production environments.
Others used genomic technologies to enhance breeding programs by
increasing the accuracy of relationships among individuals. In other
words, they have adopted genomic procedures to tackle the lack of
pedigree recording. Finally, researchers investigated the potential of
genomics for creating new breed-types that combine the adaptation
and resilience of local breeds with the high productivity of exotic
breeds. Genomic procedures and technologies have also been shown
to be useful in discovering valuable genes in indigenous breed
genomes, with significant effects due to the high levels of genome
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diversity of local breeds compared to exotic ones (Marshall et al.,
2019).

Adopting GS in developing countries could benefit from the
implementation of machine learning algorithms. First of all, given
that indigenous breeds always have small reference populations,
machine learning has shown great advantage in increasing the
accuracy of breeding values estimation in small populations, as
previously seen in Yao et al. (2016). In addition, ML models
increased the accuracy of SNP imputation from low-density (LD)
panels to high density (HD) chips, as investigated by Sun et al.
(2012). This could result in reducing genotyping costs and
increasing the size of genotyped animals (if the reference
population is small due to genotyping costs). Overall, the
potential of applying machine learning models for animal
breeding in low- and medium-income countries is remarkable, as
it could provide insightful findings. However, one of the biggest
challenges would be the lack of data. Machine learning models
typically require a massive amount of data in order to achieve high
accuracy, while low- and middle-income countries often struggle
with limited access to reliable data. Nonetheless, efforts should be
directed toward exploring alternative techniques to enhance
genomic prediction accuracy using a small reference population
and promoting data sharing through collaborations among
institutes and countries. As far as we know, the combination of
machine learning models and genomic prediction in developing
countries has not been used in any of the published studies, and thus
their potential in enhancing breeding programs in low- and middle-
income countries should be investigated in future experiments.

7 Conclusion

Machine learning algorithms have proven their high flexibility
and ability to extract patterns in large, messy datasets in various
fields such as natural language processing, robotics, speech
recognition, image processing, etc. Genomic prediction is indeed
a field of study where the main challenge is dealing with an ever-
increasing marker dataset and capturing interactions and non-
additive effects between genotypes. Consequently, investigating
the potentiality of ML algorithms in GP is gaining a lot of buzz
in the animal breeding community. Here, we reviewed studies that
applied ML models to GP, whether they concerned estimating the
GEBVs for production traits, health traits, or novel traits. In
addition, several studies used ML algorithms for feature selection
(FS) and moderate-density genotype imputation from low-density
panels. It can be observed that ML algorithms outperformed
conventional methods in some studies but were less accurate in
others, which indicates that there’s no universal method that can be
applied to enhance the accuracy of prediction regardless of the
domain of application. As a prerequisite, one should pay attention to
several factors in order to successfully apply ML algorithms. For
instance, the nature of the task, whether it consists of classification,
clustering, regression, or dimensionality reduction, the type of the
target variable (continuous or discrete), and the quality of the data
(redundant, noisy, existence of outliers, missing values). ML models

are indeed flexible and powerful, but they also have several
drawbacks. One of the most common problems encountered in
ML is overfitting. Additionally, finding the optimal hyperparameters
can be challenging, and the size of the training data needs to be very
large, especially for training deep learning algorithms. It is indeed
true that incorporating ML algorithms and biological knowledge
provides valuable results. However, marker datasets tend to be very
heterogeneous and redundant, which can lower the predictive ability
of these models. Moreover, the interpretability of non-parametric
ML models is also questionable. Even though the algorithm’s
prediction for a particular target variable is accurate, the
relationship between the input and output variables is not simple
to understand. In fact, DLmodels are broadly known for their “Black
Box” nature, which means that their interpretation cannot extract
relevant information about variables in the dataset. In summary, ML
algorithms showed great potential for fitting and extracting patterns
from large, noisy datasets. However, their adoption in livestock
breeding is still in its infancy, and hence more research must be done
in order to find new insights for GP. The limited number of
applications of ML in animal breeding did not allow researchers
to clarify the huge potential for these models to improve the genomic
prediction of important traits. Therefore, more iterative
experimentation needs to be conducted.
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