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Background: Lysosomes are essential for the development and recurrence of
cancer. The relationship between a single lysosome-related gene and cancer has
previously been studied, but the relationship between the lysosome-related genes
(LRGs) and colon adenocarcinoma (COAD) remains unknown. This research
examined the role of lysosome-related genes in colon adenocarcinoma.

Methods: 28 lysosome-related genes associatedwith prognosis (PLRGs)were found
by fusing the gene set that is differently expressed between tumor and non-tumor in
colon adenocarcinoma with the gene set that is related to lysosomes. Using
consensus unsupervised clustering of PLRGs, the colon adenocarcinoma cohort
was divided into two subtypes. Prognostic and tumor microenvironment (TME)
comparisons between the two subtypes were then made. The PLRGs_score was
constructed using the least absolute shrinkage and selection operator regression
(LASSO) method to quantify each patient’s prognosis and provide advice for
treatment. Lastly, Western Blot and immunohistochemistry (IHC) were used to
identify MOGS expression at the protein level in colon adenocarcinoma tissues.

Results: PLRGs had more somatic mutations and changes in genetic level, and the
outcomes of the two subtypes differed significantly in terms of prognosis, tumor
microenvironment, and enrichment pathways. Then, PLRGs_score was established
based on two clusters of differential genes in the cancer genome atlas (TCGA)
database, and external verification was performed using the gene expression
omnibus (GEO) database. Then, we developed a highly accurate nomogram to
enhance the clinical applicability of the PLRGs_score. Finally, a higher PLRGs_score
was associated with a poorer overall survival (OS), a lower tumor mutation burden
(TMB), a lower cancer stem cell (CSC) index, moremicrosatellite stability (MSS), and a
higher clinical stage. MOGS was substantially elevated at the protein level in colon
adenocarcinoma as additional confirmation.
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Conclusion: Overall, based on PLRGs, we identified two subtypes that varied
significantly in terms of prognosis and tumor microenvironment. Then, in order
to forecast patient prognosis and make treatment suggestions, we developed a
diagnostic model with major significance for prognosis, clinical relevance, and
immunotherapy. Moreover, we were the first to demonstrate that MOGS is highly
expressed in colon adenocarcinoma.
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Introduction

Cancer incidence and mortality, which is second only to heart
disease (Siegel et al., 2021), are increasing rapidly around the world,
with colorectal cancer accounting for about 9% of the total (Bray
et al., 2018). In recent years, the number of colorectal cancer cases
and deaths in China has also increased (Li et al., 2021a), and colon
adenocarcinoma, the main component of colorectal cancer, has
received increased attention (Siegel et al., 2020). Despite the
availability of numerous treatments, including endoscopic
therapy, surgical treatment, radiotherapy, immunotherapy, and
targeted therapy, the 5-year OS time for patients with COAD is
still dismal. Patients with local tumor spread have a 5-year OS time
of 69.2%, while patients with distant metastasis have a 5-year OS
time of only 11.7% (Brenner et al., 2014). Traditional histological
classification approaches, however, cannot adequately direct the
treatment of all patients due to the high heterogeneity of colonic
malignancies (Punt et al., 2017). In light of this circumstance, an
increasing number of studies have classified patients into several
prognostic subtypes. Dai et al. divided colorectal cancer patients into
two prognostic subtypes based on senescence-related genes (Dai
et al., 2022). Based on genes related to lipid metabolism, Jiang et al.
divided COAD patients into three subtypes with distinct prognostic
characteristics (Jiang et al., 2021). Hence, to provide more
suggestions for further treatment, we wanted to use new multiple
molecules to construct molecular subtypes of COAD and construct a
prognostic model to quantify the prognosis of COAD patients and
provide recommendations for subsequent treatment.

The lysosome, an organelle that digests both endocytic extracellular
material and autophagic intracellular material, is the cell’s primary
degradation site (Piao and Amaravadi, 2016). Lysosome dysfunction
influences the onset and progression of diseases such as cancer (Ballabio
and Bonifacino, 2020). Previous research has found that lysosomes are
linked to a number of cancers. By activating theAKT signaling pathway,
lysosomes promote cancer progression and metastasis (Radisavljevic,
2019). The activation of the lysosomal clearance system is a newmarker
for assessing pancreatic cancer invasiveness (Perera et al., 2015). In
mice, AMPK-mediated lysosomal function promotes the development
of lung cancer (Patra et al., 2019). HSPA5 was found to be a protective
factor in HNSCC by maintaining lysosomal activity (Kim et al., 2018).
LRGs have been previously studied (Haratake et al., 2021; Li et al., 2022),
LAPTM5 is a potential diagnostic marker for hypertensive left
ventricular hypertrophy, and SLCA38A7 overexpression in lung
cancer represents a poor prognosis. Significant progress has also
been made in the study of LRGs recently (Pechincha et al., 2022;
Richards et al., 2022). LYSET, a molecule that allows cancer cells to feed
on extracellular proteins, was found to be required for the mannose 6-

phosphate (M6P) lysosomal transport pathway. Another study
published around the same time found that inhibiting LYSET
decreased the efficiency of lysosomal transport and tumor
progression was slowed. These findings have revealed a link between
lysosomes and diseases, particularly cancer. These studies, however,
were limited to a single gene, and no study based on all LRGs has been
established. Hence, subtypes based on LRGs were constructed, and
prognostic model was constructed by DEGs between the two subtypes.

We performed a series of systematic analyses after intersecting
LRGs with the differentially expressed genes (DEGs) between tumor
and normal in COAD from TCGA database. First, we used
consensus unsupervised clustering analysis to divide patients into
two clusters based on the PLRGs expression levels, and then
prognostic, TME and pathway enrichment analyses were
performed between the two clusters. After which, to further
investigate the role of the PLRGs in COAD, we built a
prognostic model based on the DEGs between the two clusters.
We evaluated the prognosis, clinical relevance, and immunotherapy
of the TCGA group using the prognostic model, and we used the
GEO database for external validation. These findings demonstrated
that a novel multi-molecule diagnostic model based on PLRGs can
evaluate the prognosis of COAD and provide further treatment
recommendations.

Materials and methods

Data source

Our study included a total of 588 COAD patients from various
platforms. The TCGA data portal was used to obtain raw genotype
data for COAD patients, including RNA-seq transcriptome data
(fragments per kilobase million, FPKM) and related clinical and
survival information (Supplementary Table S1). The TCGA-COAD
cohort served as the training cohort in this study, while the
GSE17538 cohort from the GEO database served as the
independent validation cohort. Simultaneously, we searched the
Gene Ontology (GO) database for the 876 LRGs. To eliminate
batch effects between the two data sets, the “Combat” package
was used. To reduce bias, we also excluded patients with the OS
time of less than 30 days. Following that, copy number variation
(CNV) files and somatic mutation data were obtained using the
TCGA COAD cohort. Using the “DESeq2” package, the
differentially expressed genes between normal samples and tumor
samples from the TCGA database were examined. The web-based
gene network prediction tool GeneMANIA was used to create
protein interaction networks.
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Consensus clustering analysis of PLRGs and
relationships between different subtypes

Using univariable Cox regression (p < 0.05), we chose 28 genes
strongly related to prognosis from the group of genes linked to the
lysosomes. In order to categorize patients into several subtypes based
on the levels of the PLRGs expression, consensus unsupervised
clustering analysis was carried out using the R
“ConsensusClusterPlus” package. To keep the clustering consistent,
we went through 1,000 iterations. Next, the correlation between
clinicopathological characteristics and prognosis and molecular
subtypes was assessed. In addition, using Kaplan-Meier (KM)
analysis and the accompanying “survival” and “survminer”
packages (Rich et al., 2010), this article compared the OS and the
disease-free survival (DFS) of the two subtypes. Furthermore, R
software’s gene set variation analysis (GSVA) was employed to
evaluate variations in biological pathways (Hänzelmann et al.,
2013) among the two subtypes. The immunological score and
stromal score for each patient were then calculated using the
ESTIMATE method to explore for variations between the immune
microenvironment of different subtypes (Meng et al., 2020). By then,
we had performed single-sample gene set enrichment analysis
(ssGSEA) to calculate the degree of immune cell infiltration among
different subtypes (Huang et al., 2021). Finally, the differences in
immune checkpoint genes and immune activation genes between the
two subtypes were discussed.

DEGs identification and functional
annotation

The R package “limma” was applied to recognize DEGs between
the two clusters (FDR<0.05 and log2 fold change≥1). Functional
enrichment analysis on the DEGs was performed using the R
package “clusterprofiler” to explore the probable activities of
clusters-associated DEGs and find related gene functions and
enriched pathways (Yu et al., 2012).

Construction of the prognostic PLRGs_
score and nomogram

To furtherevaluate the value of the two subtypes of DEGs for
COAD prognosis, the paper employed the TCGA COAD cohort as
the training group and the GSE17538 cohort as the external
validation group. Univariate Cox regression was implemented in
the TCGA group for differential genes (p < 0.001), and the univariate
Cox results were then reduced in dimensionality using LASSO
regression. For the final screening, multivariate Cox regression
was used, and seven genes were obtained.

PLRGs score � ∑i

n�1 Coef i * PLRGsExp( )

The coefficient and expression levels of the relevant genes are
represented, respectively, by the Coefi and PLRGsExp. Depending on
the median risk score, all samples were split into low-risk (PLRGs_
score < median value) and high-risk (PLRGs_score > median value)
subgroups. The differences in OS between the various risk subgroups

were examined using KM analysis. The “survivalROC” R package was
used to create the time-dependent receiver operating characteristic
(ROC) curve that measures PLRGs_ score’s accuracy. Both univariate
and multivariate Cox analyses showed that the PLRGs_score had a
substantial impact on all clinical features. Finally, utilizing the “rms”
software, a nomogram was developed to forecast 1-, 3-, and 5-year
survival. The correctness of the nomogram was evaluated by means of
calibration and ROC. Results were assessed in a group that underwent
external validation (GSE17538).

Evaluation of TME in lysosome-related
signature

First, the seven lysosome-related signature genes and risk scores
were explored for their links to immune cells. In order to compare
the immune infiltration of the two groups based on the PLRGs_
score, the paper next calculated the ESTIMATE score and examined
the differential distribution of ssGSEA based on 22 immune cells
between two groups. Finally, the distinctions between the two
subtypes’ immune checkpoints and immune activation genes
were explored.

Mutation, microsatellite instability (MSI),
TMB and CSC

The somatic mutations of the COAD patients were divided into
high- and low-risk groups using the mutation annotation format
(MAF) generated from the TCGA database using the “maftools” R
package (Mayakonda et al., 2018). For every COAD patient in the
two groups, we also calculated the immunophenotype score (IPS)
and TMB scores. And we also took into account the linkages
between the two risk groups in addition to CSC and MSI.

Drug susceptibility and clinical correlation
analysis

Using chi-square testing, the relationships between the PLRGs_
score and the clinical characteristics (age, sex, stage, TNM stage) were
examined. In order to further evaluate variations in the therapeutic
effects of chemotherapeutic medications in the two subgroups, we
computed the semi-inhibitory concentration (IC50) values of
chemotherapeutic agents routinely used to treat COAD patients
using the “pRRophetic” program (Geeleher et al., 2014).

Collection of clinical samples

Samples of human COAD and nearby normal mucosa were
taken from COAD patients who had surgery at the First Affiliated
Hospital of Nanjing Medical University between 2014 and 2018.
From a previous study, specific information about the samples could
be obtained (Shen et al., 2021). The First Affiliated Hospital of
Nanjing Medical University’s Ethics Committee approved all of the
experiments, and each patient gave their informed consent before
participating in this study.
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Western blot analysis

Using the total protein extraction kit (RS0024, Immunoway,
China), the total protein samples from the tissues were extracted in
accordance with the manufacturer’s instructions. To measure the
total protein, a BCA Protein Assay kit (P0012, Beyotime,
Shanghai) was used. SDS-PAGE gel with a 10% concentration
was used to transfer the protein samples to nitrocellulose (NC)
membranes (HATF00010, Millipore, Shanghai). These
membranes were treated with the MOGS primary antibody (1:
1000; 17859-1-AP, Proteintech, Hubei) overnight at 4°C after being
blocked for 60 min with 5% skim milk powder. The HRP-
conjugated Affinipure Goat Anti-Rabbit IgG (1:10000; SA00001-
2, Proteintech, Hubei) was then incubated on the membrane for
60 min at 37°C before the proteins were detected. Also, the straps’
gray-scale values were detected using ImageJ software for
quantitative analysis.

Immunohistochemistry (IHC)

The 18 pairs tissue sections were rehydrated with an alcohol
gradient after being deparaffinized with xylene for IHC examination.
For 10 min at room temperature, the samples were exposed to 3%
H2O2 to inhibit endogenous peroxidase activity. The samples were
put in an EDTA buffer for antigen retrieval (PH 9.0; AFIHC010,
Aifang, Hunan). The samples underwent an overnight incubation at
4°C with the MOGS antibody (1:100; 17859-1-AP, Proteintech,
Hubei), followed by a 30-minute incubation at room temperature
with the IHC antibody kit (AFIHC001, Aifang). After applying the
DAB chromogenic kit (AFIHC004, Aifang) to the samples, the
nuclei were counterstained with hematoxylin. Finally, a digital
microscope camera was used to record each sample image
(AE41, Motic). The percentage of stained samples that were
positive was calculated as 0 = negative, 1 = < 10%, 2 = 10%–
49%, and 3 = ≥ 50%. According to the intensity scale, 0 indicates no

FIGURE 1
LRGs screening and PLRGs genetic mutations. (A) Intersection of tumor and non-tumor DEGs and LRGs. (B) Genetic variation in 28 PLRGs. (C)
Frequency of CNV in 28 PLRGs. (D) PLRGs distribution across 23 chromosomes. (E) Correlation network of 28 PLRGs in the TCGA cohort. (F)Gene-gene
interaction of 28 PLRGs predicted by GeneMANIA.
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staining, 1 is little, 2 is moderate, and 3 is strong (Karpathiou et al.,
2021). The percentage and intensity were multiplied to determine
the final results for each section.

Statistical analysis

To find the difference between the two groups, the Wilcoxon
rank-sum test was performed. To ascertain if the clinicopathological
indicators may be employed as independent prognostic factors,
univariate and multivariate Cox regression were used. Every
experimental result was displayed as Mean ± SD (standard
deviations). All statistical evaluations were performed in R
4.1.2 and GraphPad Prism 9. Statistical significance was set at p < 0.05.

Results

Screening of the PLRGs and description of
the genetic mutations

First, 456 tumor and 41 normal samples obtained from the
TCGA-COAD cohort were subjected to differential gene analysis
(log FC > 1, p-value <0.05). This process identified 5485 DEGs.
Then, using the GO database, 876 LRGs were collected. Finally,
213 LRGs in total were intersected (Figure 1A). The Cox regression
method was then used to test these genes for prognosis-related
genes. The univariate Cox regression screening cutoff was p < 0.05,
and 28 genes with related HR values were discovered
(Supplementary Table S2). Then, 28 PLRGs in the COAD cohort
were examined for the presence of CNVs and somatic mutations. As

shown in Figure 1B, 148 (33.11%) samples had mutations in the
TCGA cohort. The most often mutated of the genes was LRP2,
followed by ARGN and GPRASP1. All 28 PLRGs can be shown to
have copy number changes in Figure 1C. On each chromosome,
28 PLRGs were mapped according to their position (Figure 1D). The
extensive landscape of 28 PLRGs interactions, regulator
interconnections, and clinical outcome in COAD patients were
clearly displayed by the PLRGs network (Figure 1E). The
network of the 28 PLRGs and the 20 most frequently altered
neighboring genes was also built (Figure 1F).

Establishment of subtypes based on PLRGs

To further investigate the relationship between PLRGs and
COAD, we employed a consensus clustering analysis to divide
TCGA-COAD patients into two clusters (Cluster A: n = 116,
Cluster B: n = 297; Figure 2A, Supplementary Figure S1A-H).
The two clusters had a significant difference in OS time (p =
0.009; Figure 2B). And, the two clusters had a significant
difference in DFS (p = 0.012; Supplementary Figure S1I).
Heatmaps of clinical information were connected between the
two clusters, as seen in Figure 2C. Finally, we investigated
differences in biological function using GSVA enrichment
analysis. Cluster A was abundant in cancer-associated pathways
such as colorectal cancer, thyroid cancer, pancreatic cancer, renal
cell carcinoma, P53 signaling pathway, AK STAT signaling pathway,
and apoptosis, according to the findings of the GSVA analysis. T cell
receptor signaling pathway, B cell receptor signaling pathway,
natural killer cell mediated cytotoxicity, Toll like receptor
signaling pathway, and chemokine signaling pathway were also

FIGURE 2
Tumor classification based on PLRGs. (A) The consensus clustering matrix (k = 2) was used to divide COAD patients in the TCGA group into two
subtypes. (B) A KM analysis of the two clusters was performed. (C) Clinicopathological features and gene expression heatmaps for the two clusters.
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abundant in Cluster A (Figure 3A). Surprisingly, cluster A also
enriched a variety of metabolic pathways.

Analysis of the TME of the two subtypes in
COAD

Since the results of GSVA analysis showed more enrichment of
immune-related pathways, we performed ESTIMATE analysis, ssGSEA
analysis, and an analysis of the differences in the expression of immune-
related genes between the two clusters to better understand the TME
differences between the two clusters. We can see that there were
significant differences in StromalScore and ImmuneScore between the
two groups (Figure 3B). Most immune cell infiltrations were found to
differ significantly between the two clusters using ssGESA analysis
(Figure 3C). Cluster A was dominated by activated B cells, activated
CD4 T cell, activated CD8 T cell and so on, while Cluster B was
dominated by Natural killer T cells. Finally, in the difference analysis of

immune checkpoint and immune activation related genes (Figure 3D),
for example, PDCD1, CD274, and CTLA4 were highly expressed in
Cluster A, whereas Cluster B only had high levels of TNFSF4.

DEGs identification and construction of the
prognostic model

The above analyses revealed significant differences in clinical
prognosis, signaling pathways, and tumor microenvironment
between the two clusters. The two clusters were analyzed for
differential genes for further study, and 2,129 differential genes were
eventually obtained (Supplementary Table S3). The obtained
differential genes were then analyzed for GO/KEGG enrichment
(Figures 4A, B). Simultaneously, differential genes were used in the
following analysis. Univariate Cox analysis was used to identify 23 genes
associated with prognosis (Supplementary Table S4), followed by Lasso
analysis to identify 15 genes (Figures 4C, D), and finally, the

FIGURE 3
Differences in tumor immune microenvironment between the two clusters. (A) KEGG pathway enrichment analysis between two clusters. (B)
Estimate algorithm between two clusters. (C) The infiltration of 23 immune cells between the two clusters was analyzed using the ssGSEA algorithm. (D)
Differences expression in immune checkpoint and immune activation-genes between the two clusters. (p < 0.05 *; p < 0.01 **; p < 0.001 ***).
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multivariate Cox algorithm was used to identify 7 genes
(Supplementary Table S5), from which the prognosis model was built.

Risk score = (−0.08209* expression of ZDHHC3) + (−0.01682*
expression of GSR) + (0.08702* expression of HEYL) + (0.053025*
expression of TRIP10) + (0.059997* expression of MOGS) +
(0.052277* expression of UCHL1) + (0.017473* expression of
PODXL).

Figure 4E showed the connection between clusters, risk, and
survival state. As can be seen from prior studies showing that Cluster
A had a better prognosis than Cluster B, Figure 4F demonstrated
substantial differences between the two clusters, with Cluster A
having a lower risk score.

Survival analysis in TCGA group and
validation in the GEO group

The risk of PLRGs_score distribution plot in the TCGA group
revealed that as PLRGs_score increased, survival time decreased

(Figures 5A, B). The KM survival curves showed that patients with
high scores had a considerably shorter OS duration than individuals
with low scores (Figure 5C). Furthermore, AUC values of 0.726,
0.736, and 0.743 were used to represent the 1-, 3-, and 5-year survival
rates of PLRGs_score, respectively (Figure 5G). The same findings
were observed in the external validation group, with patients with a
higher risk score having a worse prognosis (Figures 5D–F). And
AUC values of 0.588, 0.596 and 0.619 were used to represent the 1-,
3-, and 5-year survival rates of PLRGs_score in the validation group
(Figure 5H).

Construction of a nomogram

Univariate and multivariate Cox analysis were conducted to
test if the model’s scores could be utilized as independent
prognostic indicators, and the findings revealed that risk scores
were capable of serving as independent prognostic variables for
COAD patients (Figures 6A, B). We then calculated the 1-, 3-, and

FIGURE 4
Construction of a prognostic model based on differential genes between the two clusters. (A,B) GO/KEGG analysis between the two clusters; (C)
LASSO regression based on differential genes between the two clusters. (D) Cross-validation of the LASSO model based on 7 genes. (E) The Sankey
diagram with clusters, prognostication models, and outcomes for survival. (F) Differences in risk scores between the two clusters.
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5-year OS time for these patients based on age, stage, and risk
(Figure 6C). The calibration curves of this well-established
nomogram showed excellent concordance between observed
reality and anticipated values (Figure 6D). Additionally, we
calculated these clinical parameters’ AUC values for predicting
OS time (Figure 6E), as well as the AUC values of stage and TNM
stage for 1-, 3- and 5- years, respectively (Supplementary
Figure S2).

Association of PLRGs_Score with mutation,
TMB, MSI, and CSC score

To check for variations in the distribution of COAD patients’
somatic mutations, we first searched the TCGA database. While
the mutation rates of the other genes were higher, it was
discovered that the mutation rates of APC, TP53, and USH2A
were lower in the low-risk group as compared to the high-risk
group (Figures 6F, G). Numerous studies have demonstrated the
value of TMB and MSI as indicators of the tumor immune
response and the therapeutic potential of ICP inhibitors in
patients with high TMB or MSI. We thus performed TMB and
MSI investigations. The TMB of the high-risk group was lower

than that of the low-risk group, as shown in Figure 7A, suggesting
that the low-risk group may have had a higher degree of
immunotherapy efficacy. Significant differences existed
between MSS and MSS-H, as well as between MSS-H and
MSS-L, but no difference existed between MSS and MSS-L
(Figure 7C). The low-risk group may respond better to
subsequent immunotherapy since the high-risk group had a
higher proportion of MSS while the low-risk group had a
higher proportion of MSS-H (Figure 7B). Then, in order to
assess their possible importance in COAD, we merged the
PLRGs_score and CSC scores (Figure 7D). There was a
substantial negative association between the risk scores and
the CSC scores, showing that the lower the risk scores, the
more significant the stem cell properties of COAD cells were
and the lower the degree of cell differentiation.

Clinical correlation and drug sensitivity
analysis

Clinical staging is currently the world’s most authoritative
tumor staging method, and we want to see if the risk score
obtained in this study is related to clinical staging.

FIGURE 5
Examination of the prognostic model in the TCGA database and external validation of the model in the GEO database. (A,B)Distribution and survival
of each patient in the TCGA group. (C)OS time difference between the two groups in the TCGA group. (D,E)Distribution and survival of each patient in the
GEO group. (F)OS time difference between the two groups in the GEO group. (G) Time-dependent ROC curves in the TCGA group. (H) Time-dependent
ROC curves in the GEO group.
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Consequently, an examination of the connection between the risk
score and the Stage and TNM stage was carried out. Significant
differences existed between Stage 1&2 and Stage 3&4, T1&2 and
T3&4, N1, N2 and N3, and M0 and M1, and poorer clinical
grades were positively connected with greater risk ratings
(Figures 7E–H). We also investigated the relationship between
risk scores and age and gender, but no differences were
discovered (Supplementary Figure S3). Following that, the IPS
was used to validate our hypothesis by assessing how colon
cancer patients responded to immunotherapy pairs. When the
high-risk group did not respond well to PD1 therapy and when
CTLA4 was either positive or negative, there was a substantial
difference between them and the low-risk group. However, the
other conditions were not statistically significant (Figures 7I–L).
Finally, we ran a drug sensitivity analysis in COAD, calculated
the IC50 values for each drug, and selected four representative
drugs to display. The high-risk group responded better to
Cisplatin and Metformin, as seen in the figure. Imatinib and
Paclitaxel both performed well in the low-risk group
(Figures 7M–P).

TME discrepancies between the high- and
low-risk groups

First, we looked into the relationship between immune cell
enrichment, seven genes, and risk scores in the model. Figure 8A
illustrated the significant correlation between the 7 genes and risk
scores and immune cell enrichment. The risk score was mostly
related to Tregs, T cells with resting CD4 memory, activated NK
cells, Macrophages M0, and resting dendritic cells. The two
groups’ StromalScore and ESTIMATEScore, as determined by
ESTIMATE analysis, significantly differed from one another
(Figure 8B). After examining the risk ratings for ssGSEA
enrichment, most immune cells displayed appreciable
enrichment differences between the high and low risk groups
(Figure 8C). Finally, employing immune checkpoint and immune
activation-related genes, researchers found that the majority of
immunological activation-related genes were significantly
expressed differently between the high and low risk groups.
Unfortunately, the bulk of immune checkpoint genes were
similar in both groups (Figure 8D).

FIGURE 6
Evaluation of the risk model and the mutation difference between the two groups. (A,B) Analysis of risk scores and clinical information using
univariate andmultivariate Cox analyses. (C) Establishment of a nomogram for OS prediction. (D)Calibration curves for the 1-, 3-, and 5-years OS. (E) The
ROC curves of the nomogram. (F,G) Waterfall diagram of mutations between high and low risk groups.
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Detection of MOGS expression in colon
adenocarcinoma

Except for MOGS, all six of the prognostic model’s genes
have been investigated previously in cancer. As a result, we
were able to confirm for the first time the link between MOGS
and COAD. First, we chose 5 pairs of COAD tissues and
normal tissues and then used Western Blot to confirm that
MOGS was highly expressed in tumor tissues compared to
normal tissues at the protein level (Figures 9A, B). IHC was
then used to show that MOGS was highly expressed in tumor
tissues (Figures 9C, D).

Discussion

Lysosomes are centres of signaling and cell breakdown that are
essential for cell growth, senescence, and homeostasis (Yang andWang,
2021). Increasing evidence points to the role of lysosomes in the
development, occurrence, and recurrence of cancer. Since lysosome-
mediated programmed cell death in cancer cells is achieved by lysosome

disruption (Kreuzaler and Watson, 2012), lysosomes may offer new
therapeutic options for the treatment of cancer progression brought on
by apoptosis (Aits and Jäättelä, 2013). In addition to cell death,
lysosomes now have some new roles in tumor growth, invasion, and
metastasis (Ballabio and Bonifacino, 2020). Lysosomal autophagy has
also been linked to prostate cancer, glioblastoma, pancreatic
cancer, and lung cancer, according to earlier research
(Kimmelman and White, 2017). And lysosomes in COAD
have also been extensively researched. For instance, COAD
tissues have elevated expression levels of the lysosome
associated membrane proteins 1 and 2 (LAMP-1 and LAMP-
2) (Furuta et al., 2001). LAPTM4B genetic variation may increase
the chance of developing COAD (Cheng et al., 2008). After
ATP6V0E2 is knocked down, anlotinib’s capacity to trigger
lysosome function is reduced, which leads to apoptosis of
colon tumor cells (Sun et al., 2020). As previously stated,
single lysosome-related gene have been widely concerned and
studied, however, we focus on multiple LRGs and associate them
with COAD in order to investigate the subtype analysis of
multiple LRGs in COAD and the development of a prognosis
model.

FIGURE 7
Multifaceted analysis between high and low risk groups. (A) Relationships between PLRGs_score and TMB. (B,C) Relationships between PLRGs_
score and MSI. (D) Relationships between PLRGs_score and CSC index. (E–H) Clinical stage and TNM stage in different PLRGs_score groups. (I–L) IPS in
different PLRGs_score groups. (M–P) Relationships between PLRGs_score and drug sensitivity.
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Prior to selecting genes for unsupervised clustering, the
researchers crossed LRGs whose expression varied across
tumor and normal tissues. The clustering results revealed
that among other things, there were significant differences
between the two subtypes in terms of prognosis, tumor
microenvironment, immunological checkpoint, and
enrichment pathway. Cluster A had a better prognosis than
Cluster B, and more immune-related genes were expressed
there. In addition, pathways related to immunology,
metabolism, and malignancies were shown to be enriched,
according to the GSVA enrichment research. Based on the
aforementioned results, a lasso prognostic model was created
using the difference genes between the two subtypes. We
discovered that the high-risk and low-risk groups had
significantly different overall survival times, with the high-

risk group having a worse prognosis. Additionally, Cluster
A’s lower risk score is in line with its earlier improved
prognosis. Using univariate and multivariate Cox regression,
it was then demonstrated that this risk score was an
independent predictive predictor for colon cancer. We
created nomograms based on the Cox results, and ROC
curves confirmed the accuracy of the 1-year, 3-year, and 5-
year OS projections.

Our prognostic signature consists of seven genes: Previous
studies on cervical and breast cancer found that ZDHHC3, Zinc
Finger DHHC-Type Palmitoyltransferase 3, was highly expressed in
cervical cancer (Choi et al., 2007) and showed copy number
amplification after HPV infection (Li et al., 2021b).
ZDHHC3 inhibits breast cancer cell growth while also promoting
oxidative stress and aging (Sharma et al., 2017). Simultaneously,

FIGURE 8
TME, immune checkpoints and immune activation-related genes analysis of the risk model. (A) Correlations between the abundance of immune
cells and 7 genes and risk scores. (B) Differences between both immune and stromal scores in the two groups. (C) The infiltration of 23 immune cells
between the high and low risk groups. (D) Differences expression in immune checkpoints and immune activation-related genes between the high and
low risk groups. (p < 0.05 *; p < 0.01 **; p < 0.001 ***).
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inhibiting the expression of this molecule can improve the immune
response of T cells to tumors (Yao et al., 2019). GSR, Glutathione-
Disulfide Reductase, has been extensively researched in a variety of
cancers. According to a recent study (Wang et al., 2020),
AMPK1 promotes the occurrence of colorectal cancer by
regulating GSR phosphorylation. By inhibiting this gene, it has
been demonstrated that HEYL functions as an interaction
between the TGF- and Notch signaling pathways (Han et al.,
2014). And it has also been shown to promote tumor metastasis
in lung cancer (Wang et al., 2021) and may also promote metastasis
in colorectal cancer (Weber et al., 2019). TRIP10, also known as
CIP4, is controlled by AKAP9 and aids in the development of
colorectal cancer (Hu et al., 2016). It had been demonstrated that
colorectal cancer enhanced high levels of TRIP10 expression. At the
same time, it promotes tumor metastasis in cancers like
nasopharyngeal cancer, breast cancer, lung cancer, and others
(Rolland et al., 2014; Cerqueira et al., 2015; Meng et al., 2017).
UCHL1, Ubiquitin C-Terminal Hydrolase L1, which has been
extensively studied in tumors such as lung and breast cancer as
well as colorectal cancer (Yang et al., 2022), plays a catalytic role in
colorectal cancer (Zhong et al., 2012). PODXL, whose
overexpression promotes pancreatic cancer development
(Taniuchi et al., 2022); TGF and its mediated PODXL, like the
previously mentioned genes, play corresponding roles in

colorectal cancer. Patients with radiotherapy-resistant
colorectal cancer may benefit from treatment interventions
targeting TGF inhibition and PODXL activation (Lee et al.,
2021). The preceding chart summarized the progress of six
genes in cancer research, with a focus on colorectal cancer.
MOGS, or Mannosyl-Oligosaccharide Glucosidase, was rarely
mentioned in cancer research. As a result, we performed Western
Blot and IHC experiment on it. For the first time, we investigated
MOGS expression in COAD, and the findings demonstrated that
MOGS was substantially more expressed in tumor tissues than in
adjacent normal tissues.

Then, we performed several analyses utilizing two groups
with high and low risk scores. Cancer development is linked to
mutations in cancer cell genes (Iranzo et al., 2018). Because of
this, we performed a tumor mutation load analysis. The results
demonstrated that a lower TMB in the high-risk group was
associated with a poor prognosis and that the low-risk group
had greater gene mutation rates than the higher-risk group. Since
stromal cells are thought to reflect genetic stability and may be a
target for reducing tumor resistance and recurrence, as shown in
Figure 8B, the StromalScore and ESTIMATEScore scores of the
high-risk group were substantially higher than those of the low-
risk group (Quail and Joyce, 2013). Positive recommendations
for extra treatment in the high-risk category follow as a result of

FIGURE 9
Expression of MOGS at the protein level in COAD. (A) Protein level of MOGS detected by Western Blot in 5 matched primary tumor and adjacent
normal tissues. (B) The relative expression of MOGS protein levels in COAD tissues. The histogram indicated the signal intensity of the proteins against
GAPDH (mean ± SD, n = 5, p < 0.0001 ****). (C) Representative IHC staining of MOGS in 3 COAD tissues and paired adjacent normal tissues. Scale bar,
100 μm. (D) Relative IHC score. (n = 18, p < 0.01 **).
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this. We also found a strong relationship between risk scores and
macrophage M0, which is implicated in tumor invasion and
metastasis (Overacre-Delgoffe and Vignali, 2018), and Tregs
cells, which are known to be effective inhibitors of anti-tumor
immunity (Cassetta and Pollard, 2018). When we analyzed the
high and low risk groups of immune-related genes, we found that
the majority of the genes showed significant differences. We
discovered that Paclitaxel and Imatinib were more sensitive in the
low-risk group whereas Cisplatin and Metformin were more
sensitive in the high-risk group, helping us to better
understand the effects of our prognostic model on
immunotherapy and drug sensitivity. As a result, we might
infer that lysosome-related genes are important contributors
to the tumor immunological environment and appealing
immunotherapy targets. We looked at the connection between
the model and clinical staging because we all know that clinical
TNM staging, as an internationally accepted standard, has
guiding value for the treatment and prognosis of tumor
patients. We discovered a connection between the high-risk
group and a higher Stage and TNM stage, which helped us
understand why they had a worse prognosis.

Our research had certain limitations, of course, despite our
thorough analysis of LRGs and COAD. The majority of
prospective research, in vitro experiments, and in vivo tests
are necessary to validate our findings because all of the
investigations we performed utilizing the public database
were retrospective (Jiang et al., 2016). Due to a paucity of
data in this investigation, it was not possible to analyze other
clinical variables, including whether surgery, neoadjuvant
chemotherapy, and postoperative chemotherapy were
carried out.

Conclusion

In conclusion, our study found two separate subtypes of PLRGs
in COAD, and the prognosis and TME of these two subtypes were
noticeably different. Following that, the PLRGs_Score created using
DEGs between the two subtypes had significant clinical importance
and may offer recommendations for each patient’s subsequent
treatment. Also, we were able to confirm for the first time that
COAD had a highly MOGS expression.
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