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As one of the main types of structural variation in the human genome, copy
number variation (CNV) plays an important role in the occurrence and
development of human cancers. Next-generation sequencing (NGS)
technology can provide base-level resolution, which provides favorable
conditions for the accurate detection of CNVs. However, it is still a very
challenging task to accurately detect CNVs from cancer samples with
different purity and low sequencing coverage. Local distance-based CNV
detection (LDCNV), an innovative computational approach to predict CNVs
using NGS data, is proposed in this work. LDCNV calculates the average
distance between each read depth (RD) and its k nearest neighbors (KNNs)
to define the distance of KNNs of each RD, and the average distance between
the KNNs for each RD to define their internal distance. Based on the above
definitions, a local distance score is constructed using the ratio between the
distance of KNNs and the internal distance of KNNs for each RD. The local
distance scores are used to fit a normal distribution to evaluate the significance
level of each RDS, and then use the hypothesis test method to predict the
CNVs. The performance of the proposed method is verified with simulated and
real data and compared with several popular methods. The experimental
results show that the proposed method is superior to various other
techniques. Therefore, the proposed method can be helpful for cancer
diagnosis and targeted drug development.
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1 Introduction

Copy number variation (CNV) is one of the important types of structural variation
(SV) in the human genome, which enables humans to induce cancer and complex
diseases (Mccarroll and Altshuler, 2007; Beroukhim et al., 2010; Pos et al., 2021).
Compared to other types of SVs, CNV belongs to a medium-to-large-scale SV, which can
lead to the deletion or amplification of genomic fragments that are not less than 1 kb in
length compared to the reference genome (Freeman et al., 2006; Yuan et al., 2018). The
human genome has a high rate of CNVs (Redon et al., 2006; Handsaker et al., 2015),
which directly leads to changes in the base content and influences the expression level of
genes and structural reorganization of the human genome (Sebat et al., 2004; Sharp et al.,
2005; Nowakowska, 2017). Therefore, accurate detection of CNVs is crucial for clinical
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diagnosis, localization of oncogenes, and targeted drug
development. The emergence of next-generation sequencing
(NGS) technology has made it possible to realize precise CNV
detection. Compared with conventional detection technology
(array comparative genomic hybridization and fluorescence in
situ hybridization) (Carter, 2007; Buysse et al., 2009), NGS
technology has many advantages such as high speed, low cost,
high-throughput, flexible sequencing coverage, and high
resolution (Shendure and Ji, 2008; Meyerson et al., 2010). Due
to the complexity of the structure of CNVs and the alignment
errors, the existing methods still have low accuracy in detecting
CNVs from cancer samples with different purity and low
sequencing coverage.

To date, the vast majority of CNV detection methods are
developed based on read depth (RD) strategy. The basic principle
of RD strategy is that the number of short reads aligned to the
reference genome is proportional to the number of copies at that
position (Yoon et al., 2009). The advantage of this strategy is that it
can in principle predict copy number gain and loss of any size, but
its drawback is the low resolution of breakpoint detection. A large
number of CNV detection methods have been developed based on
RD strategy, including CNV-LOF (Yuan et al., 2021), SeqCNV
(Chen et al., 2017), BIC-seq2 (Xi et al., 2016), dpCNV (Xie et al.,
2021), iCopyDav (Dharanipragada et al., 2018), CNVnator
(Abyzov et al., 2011), SPCNV (Liu et al., 2023), CNVkit
(Talevich et al., 2016), among others. CNV-LOF performs
successive and non-overlapping divisions of RD profiles to
form a set of RD segments, and performs the cyclic binary
segmentation (CBS) algorithm (Venkatraman and Olshen,
2007) on each segment. CNV-LOF uses local outlier factor
algorithm to assign an abnormal score for each RD segment,
and declares CNVs using a boxplot procedure. Its performance in
detecting low-coverage samples is uneven between recall and
precision, and it is insensitive to detecting low purity cancer
samples. SeqCNV extracts RDs from paired samples, constructs
a maximum penalized likelihood estimation model, and chooses
an appropriate threshold to predict CNVs. It is sensitive to
detecting copy number gains and not suitable for detecting
copy number losses. BIC-seq2 can preprocess sequencing data
at the nucleotide level and uses bayesian information criteria
(BIC) to segment RD profiles and predict CNVs. When it
detects low purity cancer samples, its performance is balanced
between recall and precision. However, when detecting medium
and high purity cancer samples, recall far outperforms precision.
dpCNV uses the density peak clustering algorithm to extract two
features of RD, namely, the minimum distance and local density,
then uses these features to fit a gaussian distribution and estimate a
probability value for each RD segment to finally predict CNVs
using hypothesis testing. Due to the bias between the distribution
of features and distribution of fitting, dpCNV detects a large
number of CNVs but with low precision, especially in the
detection of high-purity cancer samples. iCopyDav can
automatically evaluate or customize bin size, perform GC
content and mappability bias calibration on RD profiles, and
use the CBS algorithm to segment preprocessed RD profiles
and predict CNVs. iCopyDav is not suitable for the detection
of low-purity cancer samples. CNVnator performs GC content
calibration for each bin, and uses the mean-shift approach with

multiple bandwidths to segment RD files and predict CNVs.
CNVnator is suitable for the detection of long CNVs and high-
purity cancer samples, and not sensitive to breakpoint detection,
which results in a large number of false positives in the test results.
SPCNV uses the k nearest neighbors of each RD to define the
shortest path, shortest path relationship and shortest path weight.
Based on the above definitions, SPCNV further constructs the
relative shortest path score. Each RD is assigned a relative shortest
path score, and the boxplot is used to predict CNVs. It is
insensitive to detect short CNVs in low-purity cancer samples.
CNVkit extracts the targeted reads and the non-specially captured
off-target reads to predict CNVs. Its performance is unbalanced
between recall and precision, and it is not suitable for detecting
low-purity cancer samples and copy-number deletion areas. Based
on the analysis and discussion of the aforementioned methods, the
performance of the methods shows low robustness when detecting
cancer samples with different purity and low coverage.

In this work, a new method for CNV detection called
LDCNV (local distance-based CNV detection method) is
proposed along with consideration of the problems with
existing methods. It is capable of efficiently identifying CNVs
across the whole genome using NGS data. The core idea of
LDCNV is constructed based on the idea of local distance
(Zhang et al., 2009). First, LDCNV uses the mean of the
distances between each RD and its k nearest neighbors to
define a KNN distance, and the mean of the distances
between the k nearest neighbors to define a KNN internal
distance. Second, a local distance score (LDS) is constructed
using the ratio between the KNN distance and KNN internal
distance. Finally, each RD is assigned an LDS. Based on the LDS
profile, we use the normal distribution to evaluate the p-value of
each RD, and the hypothesis test to predict CNVs (Yuan et al.,
2021). Compared with existing techniques, the main
contributions of the proposed method are as follows: 1) Due
to the comparison error, GC content deviation, sequencing
error, repetitive regions, sample contamination and low
sequencing coverage, the difference between normal RDs and
abnormal RDs signals is not obvious, which will lead to some
locally insignificant CNVs being considered normal events. The
local distance is more conducive to the recognition of the CNVs
than traditional methods. 2) By fully considering the global RD
trend and the local difference between each RD and its
neighboring RDs, we calculate the average distance between
an RD and its k nearest neighbors, and the average distance
between the k nearest neighbors. Based on the above
calculation, we further construct the LDS, which objectively
reflects the abnormality of each RD. The degree of divergence
between an RD and its k nearest neighbors is observed from a
local perspective, which is more advantageous to discover CNVs
than traditional methods.

The remainder of this article is organized as follows. Section 2
includes the workflow of LDCNV, data preprocessing, construction
of LDS, and output of CNVs. In section 3, simulation and real data
are used to verify the performance of the proposed method, various
well-known methods are selected for comparison, and the
experimental results are analyzed and discussed. Section 4
summarizes this work, points out the shortcomings of the
proposed method, and discusses future work perspectives.
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2 Method and materials

2.1 Workflow of LDCNV

LDCNV is an RD-based CNV detection method that can
efficiently identify CNVs from whole-genome sequencing data.
Figure 1 describes the LDCNV workflow in details. The
sequenced sample is a Fastq format file, which consists of a large
number of short reads. The short reads are aligned to the reference
genome using the BWA tool (Li and Durbin, 2010), which generates
sequence alignment files. The read count (RC) profiles are extracted
from sequence alignment files using the SAMtools tool (Li et al.,
2009). A bin program is executed on the RC profiles, which
generates the RD profiles. The preprocessing of RD profiles
mainly includes filtering bins containing “N" positions,
calibrating the GC content bias, removing noise, and
transforming the dimensions of RD profiles. Based on the
preprocessed RD profiles, LDS is constructed based on the theory
of local distance, and LDCNV allocates an LDS for each RD. Based
on the LDS profiles, the right tail function of the normal distribution
is used to evaluate the p-value of each RD, and then we use the
hypothesis test to predict CNVs. In addition, LDCNV is developed

using Python and R languages, and its source code can be
downloaded at https://github.com/gj-123/LDCNV/releases.

2.2 Data preprocessing

The main purpose of the preprocessing step is to obtain a
reasonable and valid RD profile. First, the BWA tool is used to
align the sequencing reads to the reference genome in order to
generate a sequence alignment file. The RC profile is extracted from
the sequence alignment file using the SAMtools tool and expressed
using Eq. 1.

RC � RC1, RC2, RC3, · · ·, RCn{ }, (1)
where RCn represents the value of the n-th RC, which is equal to
the number of reads on the n-th position of the reference
genome. Next, a bin program (Yuan et al., 2021) is executed
on the RC profile, which is divided into consecutive and non-
overlapping partitions to generate an RD profile. This process is
described in Eq. 2.

RD � RD1, RD2, RD3, · · ·, RDj{ }, (2)

FIGURE 1
The workflow of LDCNV.
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where RDj represents the value of the j-th RD, which is equal to the
mean RC in the j-th bin. The reference genome contains a large
number of “N" positions that represent uncertain base positions
during the sequencing process. The reads cannot be aligned to the
positions, which will lead to the misinterpretation that copy number
loss occurs at the positions. Here, the strategy of published methods
is adopted to filter out the bins that contain “N" positions (Yuan
et al., 2021). At the same time, the median method (Yoon et al.,
2009) is used to calibrate the GC content in each bin, which is
described by Eq. 3.

RD′
i �

RDi · RDm
sum

RDm
gc

, (3)

where RD′
i represents the calibrated value of the i-th RD, RDm

sum

denotes the mean of all RDs, RDi represents the value of the i-th
original RD, and RDm

gc denotes the mean of RDs that possess the
same GC content. The total variation model (Condat, 2013; Duan
et al., 2013) denoises the RD profile to generate an RD segment
(RDS) profile. The one-dimensional RDS profile is converted into a
two-dimensional RDS′ profile, which consists of RDS ratios and
differences between adjacent RDS ratios and is described by Eq. 4
(Liu et al., 2020).

RDS′ � RDSHi, RDSLi( )∣∣∣∣i ∈ N*, 1≤ i≤ n{ }, (4)

where RDSHi represents the i-th RDS ratio, RDSLi denotes the i-th
differences between adjacent RDS ratios. The first dimension can
observe the magnitude of RDs from a global perspective, and the
second dimension can observe the local difference of RDs from a
local perspective. The two dimensions are very beneficial to find
insignificant CNVs, and provide an effective dataset for the next step
to build a local distance score.

2.3 Construction of local distance scores

With the RDS’ profile, an LDS is computed for each RDS.
Here, each element in the RDS’ is treated as an object x. The LDS
reflects the degree of isolation of an object relative to its k
nearest neighbors from a local perspective. The principle of LDS
is very suitable for detecting CNVs especially some locally
insignificant ones. The LDS of an object depends on the ratio
of the mean of the distances between the object and its k nearest
neighbors to the mean of the distances between its k nearest
neighbors. Before constructing an LDS, it is necessary to
introduce some related theories and definitions (Zhang et al.,
2009), which mainly include the k-distance, the k-distance
neighborhood, KNN distance, and KNN internal distance of
an object.

Definition 1. (k-distance of x): The k-distance of an object x is
defined as

k − dist x( ) � dist x, y( ), (5)
where x represents any object in RDS’, y represents the k-th object
closest to x in RDS′\ x{ } in ascending order of distance, dist(x, y)
represents the Euclidean distance between x and y, k represents a
positive integer.

Definition 2. (k-distance neighborhood of x): The k-distance
neighborhood of an object x is defined as a set of objects, and
the distance defined in Eq. 6 between each object in the set and x is
no greater than k − dist(x).

Sk−dist x( ) � z
∣∣∣∣z ∈ RDS′\ x{ }, dist x, z( )≤ k − dist x( ){ }. (6)

Definition 3. (KNN distance of x): The KNN distance of an object x
is defined in Eq. 7 as the average distance from x to those objects
in Sk−dist(x).

knn − dist x( ) � 1
k

∑
zi∈Sk−dist x( )

dist x, zi( ), (7)

where x represents any object in RDS′, and zi represents the i-th
object in Sk−dist(x).

Definition 4. (KNN internal distance of x): The KNN internal
distance of an object x is defined in Eq. 8 as the average distance
between objects in Sk−dist(x).

knn − indist x( ) � 1
k k − 1( ) ∑

zi,zj∈Sk−dist x( ),i≠j
dist zi, zj( ), (8)

where zi and zj represent the i-th and j-th objects in Sk−dist(x),
respectively.

Definition 5. (LDS of x): The LDS of an object x is defined in Eq. 9
as the ratio between knn − dist(x) and knn − indist(x).

LDS x( ) � knn − dist x( )
knn − indist x( ), (9)

where LDS(x) represents LDS of x, which is defined as a ratio
between KNN distance and KNN internal distance of x. The larger
the value of LDS, the more likely the object is a CNV, which indicates
that the object is isolated from its k nearest neighbors. The smaller
the value of LDS, the more likely the object is a normal one, which
means that the object is close to its k nearest neighbors.

To further illustrate the core idea of LDS, the following example
describes theKNNdistance, KNN internal distance, and LDS of a normal
object and an abnormal object in details. As shown in Figure 2A, the red
points represent a normal object m, all black points represent the
10 nearest neighbors of m, and the blue dot o1 represents the center
position of all black points. knn − dist(m) is equal to the distance
between m and o1. The blue dashed circle with o1 as the center
represents the reconstructed nearest neighbor region of m, and knn −
indist(m) is equal to the radius. From Figure 2A, it can be seen thatm is
close tomost of its nearest neighbors, and knn − dist(m) ismuch smaller
than knn − indist(m). Therefore, since the LDS ofm is very small, it can
be inferred thatm is a normal area. In Figure 2B, the red points represent
an abnormal object n, all black points represent the 10 nearest neighbors
of n, and blue dot o2 represents the center position of all black points.
knn − dist(n) is equal to the distance between n and o2. The blue dashed
circle with o2 as the center represents the reconstructed nearest neighbor
region of n, and knn − indist(n) is equal to the radius. From Figure 2B, it
can be seen thatn is isolated by its nearest neighbors, and knn − dist(n) is
much larger than knn − indist(n). Therefore, since the LDS of n is very
large, it can be inferred that n is a CNV.
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2.4 Inference of CNVs

After calculating the LDS for each object, it cannot be
determined whether the objects are CNVs or normal ones yet.
Therefore, we need to choose a reasonable cutoff strategy to
distinguish between normal and abnormal objects. In this step,
we evaluate the significance level for each LDS. First, we define a null
hypothesis that there is no CNVs in the genome, and then all LDSs
fit a normal distribution LDS ~ N(μLDS, σ

2
LDS). Secondly, we

calculate the p-value for each LDS using the right tail function of
the normal distribution, which is described by using Eq. 10.

P x( ) � 1



2π

√
σLDS

∫
+∞

x
e
− t−μLDS( )2

2σLDS
2 dt, (10)

where μLDS represents the mean value of LDSs, and σ2LDS represents
the variance of LDSs. Here, we choose the right tail function of the
normal distribution to calculate the p-value of each LDS. The higher
the LDS, the more likely the object is to be a CNV. Finally, we choose
a significance level α as the baseline for judging CNVs. If the LDS of
an object is greater than α, it is considered as a CNV. Along with the
declared CNVs, the type of CNVs (gain and loss) is distinguished.
Here, the mean value of RD of normal objects is taken as the baseline
for judging gain and loss. If the RD of an abnormal object is greater
than the mean RD of normal objects, it is considered as a gain.
Otherwise, it is considered as a loss.

3 Results and discussion

With the construction of LDCNV, it is very important to
design a reasonable and efficient experimental scheme to verify
the performance of the proposed method. In this work,
simulation and real data are used to test the performance of
the proposed method, and five well-known methods (SPCNV,
CNV-LOF, CNVnator, BIC-seq2, and CNVkit) are used for

comparison. In the simulation data experiments, we evaluate
the performance of each method from three perspectives. First,
four datasets with different configurations are used to analyze
and discuss the performance of each method in terms of recall,
precision, and F1-score. Secondly, we analyzed and discussed
the true positive rate (TPR) and false discovery rate (FDR) of
each method to detect CNVs of different sizes. Finally, we
analyze the influence of the selection of k parameter on the
performance of the proposed method. In the real data
experiments, six real human data samples are selected from
1000 Genomes Project to test the performance of the proposed
method and the five comparison methods. The detection results
of previous studies of the samples are recorded in the Database
of Genomic Variants (DGV) (Macdonald et al., 2014), which
can be used as ground truth to approximate the calculation of
three performance metrics (recall, precision, and F1-score) for
each method. In order to verify the operation efficiency of the
proposed method, LDCNV and other comparison methods are
executed on a group of samples, and the operation time of each
method is analyzed and discussed at the same time.

3.1 Simulation data experiments

A comprehensive genome structural variation simulation
software called IntSIM (Yuan et al., 2017) is employed to
generate multiple sets of simulation datasets with different
configurations. Each simulated sample has two key parameters:
tumor purity (TP) and sequencing coverage (SC). In this study,
SC is set to 5x, and TP is set to 0.2, 0.4, 0.6 and 0.8, respectively. Each
simulation sample contains a total of 14 CNVs, which are composed
of 6 gains and 8 losses, and their lengths range from 10k bp to 50k
bp. Under these configuration conditions, a total of 4 sets of
simulation data are generated by the software, and each set of
data contains 50 samples. To ensure the stability of the test

FIGURE 2
(A) The construction process of the local distance score of a normal objectm. The red point represents a normal objectm, all black points represent
the 10 nearest neighbors ofm, the blue point o1 represents the center of all nearest neighbors, and the blue dotted circle represents the reformed nearest
neighbor region. The distance between m and o1 represents knn − dist(m), and the radius of the blue dotted circle represents knn − indist(m). (B) The
construction of a local distance score for an abnormal object n. The red point represents an abnormal object n, all black points represent the
10 nearest neighbors of n, the blue point o2 represents the center of all nearest neighbors, and the blue dashed circle represents the reformed nearest
neighbor region. The distance between n and o2 represents knn − dist(n), and the radius of the blue dotted circle represents knn − indist(n).
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results, three performance indicators of each set of data are averaged
over the 50 samples of the dataset.

Along with the simulation dataset, the performance of the
proposed method and five compared methods is evaluated by
calculating recall, precision and F1-score. Recall is defined as the
ratio between the number of correctly detected CNVs and the
number of simulated CNVs (Magi et al., 2013), precision is
defined as the ratio between the number of correctly detected
CNVs and the total number of detected CNVs (Magi et al.,
2013), and F1-score is defined as the harmonic mean of recall
and precision. Figure 3 presents the detection results of each
method in details. Overall, the performance of each method
shows an upward trend as TP increases gradually. For example,
when the TP is equal to 0.2, the recall, precision and F1-score of
SPCNV are equal to 0.31, 0.4 and 0.35, respectively. When the TP is
equal to 0.8, the recall, precision and F1-score of SPCNV are equal to
0.85, 0.89 and 0.87, respectively. The three performance indicators of
SPCNV are increased by about 50%, which indicates that the
performance of the method is sensitive to the change of TP.
CNVkit get the lowest recall and precision in each group of
samples, because it detects CNVs most of which belong to losses.
The performance of BIC-seq2 is balanced between recall and
precision at low and medium TP. When the TP is equal to 0.8,

its recall is far better than precision, and its F1-score is lower than
that when TP is equal to 0.6. This shows that BIC-seq2 is not good at
detecting high-purity cancer samples. The recall of CNVnator is
better than the precision in each group of samples because it detects
a large number of long CNVs, most of which are false positive
positions. Therefore, CNVnator gets low precision. CNV-LOF gets a
medium F1-score when TP is equal to 0.2. F1-scores of CNV-LOF
have little change when TP is equal to 0.4, 0.6 and 0.8, respectively.
SPCNV obtains better F1-scores than other four comparison
methods (CNV-LOF, CNVnator, BIC-seq2, and CNVkit) in each
group of samples. In terms of precision, LDCNV gets the best
precision in each group of samples, followed by SPCNV, CNV-LOF,
and other three methods. In terms of recall, LDCNV obtains the best
recall in each group of samples, followed by SPCNV, and other four
methods. In general, LDCNV gets the best F1-score in each group of
samples, followed by SPCNV, and other four methods.

In order to verify the performance of each method in detecting
CNVs of different sizes (10kb, 20kb and 50 kb), six methods are
executed on four groups of samples with different configurations.
Here, we use the true positive rate (TPR) and false discovery rate
(FDR) to evaluate the performance of each method, and the
corresponding comparison results are described in detail in
Figure 4 and Figure 5. TPR is equal to the number of correctly

FIGURE 3
Comparison of LDCNV and five comparisonmethods in terms of recall, precision, and F1-score, four sets of simulation samples. The F1-score levels
are depicted with black arcs from 0.1 to 0.9. The equations on the left and right sides of the comma represent the tumor purity (TP) and sequencing
coverage (SC), respectively.
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detected CNVs divided by the number of all correct CNVs in each
length of CNVs. FDR is equal to the number of false positive events
divided by the number of all predicted events. Except when TP is
equal to 0.6 and CNV size is equal to 50kb, LDCNV gets the best
TPR and FDR, respectively. This shows that the sensitivity of
LDCNV is the best among the six methods almost in each group
of samples. CNVkit obtains the lowest TPR and highest FDR in each
group of samples. When TP is equal to 0.2 and CNV size is

sequentially equal to 10k, 20k and 50k, TPR of SPCNV ranks
third, third and second, respectively. The above analysis shows
that the method is suitable for detecting long CNVs. Under the
same configuration conditions, TPR of CNV-LOF ranks third,
second and fourth, respectively. This implies that CNV-LOF is
suitable for detecting medium length CNVs. Similarly, TPR of
BIC-seq2 ranks first, fourth and third, respectively. This shows
that BIC-seq2 is good at detecting short CNVs. When TP is
equal to 0.2, TPR of CNVnator ranks fifth. The performance of
CNVnator and CNVkit is lower than other four comparison
methods, and the reason for this result is consistent with the
above experimental analysis. Except when TP is equal to 0.2,
SPCNV‘s TPR ranks second. CNV-LOF and BIC-seq2 get the
best TPR at the same time when TP is equal to 0.4 and CNV
size is equal to 10k, but their FDRs are lower than LDCNV. when TP
is equal to 0.4 and CNV size is sequentially equal to 20k and 50k,
TPR of CNV-LOF ranks third and fourth, and TPR of BIC-seq2
ranks fourth and third, respectively. The performance of TPR of
CNVnator is consistent with that under the condition that TP is
equal to 0.2. When TP is equal to 0.6 and CNV size is equal to 50k,
TPR of LDCNV ranks second. When TP is equal to 0.6, TPR of
CNV-LOF ranks first, fourth and fourth, and TPR of BIC-seq2 ranks
fourth, third and first, respectively. The ranking of TPR of
CNVnator is consistent with that under the condition that TP is
equal to 0.2. When TP is equal to 0.8 and CNV size is sequentially
equal to 10k, 20k and 50k, TPR of CNV-LOF ranks first, fifth and
fifth, TPR of CNVnator ranks fourth, third and fourth, and TPR of

FIGURE 4
Comparison of TPR of LDCNV and five comparison methods at CNVs of different sizes on four sets of simulation samples. TP and SC represent
tumor purity and sequencing coverage, respectively.

FIGURE 5
Comparison of FDR of LDCNV and five comparison methods at
CNVs of different sizes on four sets of simulation samples. TP and SC
represent tumor purity and sequencing coverage, respectively.
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BIC-seq2 ranks third, fourth and third, respectively. In terms of
FDR, LDCNV gets the best FDR, followed by SPCNV, CNV-LOF,
and other three methods. In general, the performance of LDCNV in
detecting different size CNVs is robust in cancer samples of different
purity.

To verify the performance of each method in detecting gains
and losses, we used the number of gains and losses detected by
each method as an evaluation indicator. Figures 6A, B provide
detailed descriptions of each method for detecting gains and
losses, respectively. Except for CNVkit, the remaining methods
detect more gains than losses in the vast majority of samples. As
the TP increases, the number of gains and losses detected by
each method shows an upward trend, indicating that the
performance of each method is sensitive to TP. In Figure 6A,
we can see that LDCNV detects the most gains with a purity of
0.2. In other cases, LDCNV ranks second. CNV-LOF detects the
most CNVs at TPs of 0.4, 0.6, and 0.8, respectively. When TP is
equal to 0.2, both CNV-LOF and SPCNV rank second. When TP
is sequentially equal to 0.4, 0.6, and 0.8, SPCNV ranks third.
BIC-seq2, CNVnator and CNVkit rank fourth, fifth, and sixth,
respectively. In Figure 6B, we can see that LDCNV detects the
most losses at TPs of 0.2, 0.4, and 0.8, respectively. In other
cases, LDCNV ranks second. When TP is equal to 0.6, BIC-seq2
detects the most CNVs. BIC-seq2 ranks second at TP of 0.2 and
0.4, respectively. When TP is equal to 0.8, BIC-seq2 ranks fifth.
SPCNV ranks third at TPs of 0.2, 0.4 and 0.6, respectively. When
TP is equal to 0.8, SPCNV ranks second. CNV-LOF detects the
fewest losses at TP of 0.6 and 0.8, respectively. When TP is equal
to 0.2 and 0.4, CNV-LOF ranks fourth. CNVnator ranks fifth at
TPs of 0.2 and 0.4. When TP is sequentially equal to 0.6 and 0.8,
CNVnator rank fourth and third, respectively. When TP is
sequentially equal to 0.2 and 0.4, CNVkit detects the fewest
losses, and ranks fifth and fourth at TPs of 0.6 and 0.8,
respectively. On the whole, LDCNV detects more gains and
losses than most comparison methods, which indicates that the
performance of the proposed method is the most balanced in
detecting gains and losses.

The number of nearest neighbors (k) is a key parameter in the
proposed method, which will affect the accuracy of detection results.
Figure 7 describes the F1-scores of the proposed method under
different k values (20, 40, 60, 80, 100, 120 and 140). We can see that

the performance of the proposed method increases rapidly when the
value of k is from 20 to 80, and the performance of the proposed
method is basically stable when the value of k is from 100 to 140. The
above analysis shows that if the value of k is greater than or equal to
100, the proposed method can achieve a good and stable
performance.

3.2 Detection of real data from the
1,000 Genomes Project

To verify the performance of the proposed method on real
data, six real human blood samples (NA12878, NA12891,
NA12892, NA19238, NA19239, and NA19240) are selected
from the 1000 Genomes Project (http://www.internationalgenome.
org/). The DGV database records the partial detection results of
these samples, which are regarded as ground truth to approximate
the recall, precision, and F1-score of the six comparison methods.
Figure 8 describes the detection results of each method in details.
LDCNV obtains the best F1-score, precision and moderate recall
in each sample. SPCNV’s F1-score ranks third in NA12878 and
NA12892, and rank second in NA12891, NA19238, NA19239 and
NA19240, respectively. CNV-LOF’s F1-score ranks fourth in

FIGURE 6
(A) Comparison of the number of gains detected by each method. (B) Comparison of the number of losses detected by each method.

FIGURE 7
Analysis of the effect of different k parameters on the
performance of the proposed method. TP and SC represent tumor
purity and sequencing coverage, respectively.
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NA12878, NA12891, NA12892 and NA19239, respectively. It
ranks second and fifth in NA19238 and NA19240, respectively.
F1-score of CNVnator rank fifth in NA12878, NA12891 and
NA12892, and rank sixth in NA19238, NA19239 and
NA19240, respectively. The F1-score of BIC-seq2 ranks fourth
in NA19240, ranks fifth in NA19238 and NA19239, respectively.
It does not detect the correct CNVs compared with the ground
truth in the remaining three samples. CNVkit’s F1-scores rank
second in NA12878 and NA12892, and rank third in NA12891,
NA19238, NA19239 and NA19240, respectively. SPCNV’s
precision ranks second five times, and ranks third in NA19238.
CNV-LOF’s precision ranks fourth in NA12878, NA12891and
NA12891, ranks second in NA19238, and ranks fifth in
NA19239 and NA19240, respectively. CNVnator obtains the
lowest precision in each sample, the reason of which has been
analyzed in the simulation data experiment. In NA19238,
NA19239, and NA19240, BIC-seq2 ranks fifth, fourth and
fourth, respectively. BIC-seq2’s precision ranks third five times,
and ranks fourth in NA19238. CNV-LOF, CNVnator and CNVkit
obtain better recall than other comparison methods in most

samples, but their precision is very low. SPCNV gets moderate
recall, and BIC-seq2 gets lowest recall in each sample. The recall of
each method is better than the precision in most samples. Overall,
the performance of LDCNV is the most balanced between recall
and precision.

3.3 Comparison of running time

The massive amount of NGS data brings great challenges to the
execution efficiency of each method. To this end, the proposed
method and other five comparison methods are tested on
50 samples, while they run on a PC with 2.50 GHz CPU and
16.0 GB RAM. Here, the running time is used to evaluate the
execution efficiency of each method, and the running time of
each method is calculated as the mean of 50 samples. The
comparison results are recorded in Table 1. In terms of running
time, LDCNV is the fastest in all methods, followed by SPCNV,
CNVnator, CNV-LOF, CNVkit and BIC-seq2. In general, LDCNV
is an efficient and reliable CNV detection method.

FIGURE 8
Comparison of the performance of LDCNV and five comparison methods in terms of recall, precision and F1-score on six real human data samples
from 1000 Genomes Project. The F1-score levels are depicted with black arcs from 0.1 to 0.9.

TABLE 1 Comparison of running time of six methods.

Method LDCNV SPCNV CNV-LOF CNVnator BIC-seq2 CNVkit

Running time (s) 14.6 14.81 15.49 15.15 75.72 53.42
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4 Discussion and conclusion

In the study of genomic structural variation detection, the
detection of CNV is an important component for us to analyze
genomic variation. In this work, a novel method called LDCNV is
proposed for CNV detection using NGS data. LDCNV is developed
based on the core idea of local distance, and utilizes a local idea to
identify CNVs, which is different from conventional detection
methods that use the idea of global statistical modeling to predict
CNVs. LDCNV can effectively extract RD profiles from cancer
samples, filter abnormal locations, calibrate GC content, remove
noise, and transform the dimension of RD profiles. Based on the
pretreated RD profile, the LDS is constructed by using the ratio of
the mean distance between each RD and its nearest neighbor to the
mean distance between the nearest neighbors, which fully reflects
the degree of isolation between each RD and its k nearest neighbors.
LDCNV fully considers the fluctuation range of the overall RDs and
the difference between the local RDs, which is nonlinearly
transformed into an LDS that can objectively reflect the degree of
abnormality and is more conducive to detecting CNVs than directly
using the RD. The LDS can objectively reflect the abnormal degree of
each RD. At the same time, the LDSs are used to fit a normal
distribution, the distribution function of which is used to evaluate
the p-value of each LDS, and the hypothesis test is used to predict
the CNVs.

Simulation and real data experiments are designed to verify the
performance of the proposed method, and five methods of the same
type are selected for comparison. In the simulation data experiment,
LDCNV achieves the best balance between recall and precision, gets
the best TPR and FDR in the detection of CNVs of different sizes,
and obtains the best operation efficiency. Then, the selection of k
parameters is further analyzed and discussed, which can help users
obtain good performance in the process of using the software. In real
data application scenarios, six real human blood samples are selected
to test the performance of six methods. LDCNV achieves the best
F1-score in each sample, which further reflects that the proposed
method is an effective and reliable CNV detection tool.

While applying the proposed method, it is found LDCNV has
some shortcomings that need to be improved in future work. The
function of LDCNV needs to be further expanded. Its function
currently only allows for the detection of a single sample, and does
not support the detection of paired or multiple samples, which
results in the inability to distinguish the heritability of CNVs or
identify recurrent CNVs. LDCNV only extracts two features of RD,
and the next step will incorporate other features, such as base
alignment quality and GC content, to improve the detection
accuracy. The resolution of the proposed method needs to be
further improved, which can reduce the false positive positions in
the detection results and improve the accuracy of identifying the
boundary of CNVs. We will extract split reads and the insertion size
of paired reads together with RDs to locate the breakpoint position
and further improve the accuracy of CNVs. At the same time, we will

introduce detection algorithms from other fields to improve the
accuracy of the proposed method (Tuo et al., 2020). In future work,
the above issue will be addressed, which enables LDCNV to be
applied to numerous scenarios.
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