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Chromatin accessibility is a generic property of the eukaryotic genome, which
refers to the degree of physical compaction of chromatin. Recent studies have
shown that chromatin accessibility is cell type dependent, indicating chromatin
heterogeneity across cell lines and tissues. The identification of markers used to
distinguish cell types at the chromosome level is important to understand cell
function and classify cell types. In the present study, we investigated
transcriptionally active chromosome segments identified by sci-ATAC-seq at
single-cell resolution, including 69,015 cells belonging to 77 different cell
types. Each cell was represented by existence status on 20,783 genes that
were obtained from 436,206 active chromosome segments. The gene features
were deeply analyzed by Boruta, resulting in 3897 genes, which were ranked in a
list by Monte Carlo feature selection. Such list was further analyzed by incremental
feature selection (IFS) method, yielding essential genes, classification rules and an
efficient random forest (RF) classifier. To improve the performance of the optimal
RF classifier, its features were further processed by autoencoder, light gradient
boosting machine and IFS method. The final RF classifier with MCC of 0.838 was
constructed. Some marker genes such as H2-Dmb2, which are specifically
expressed in antigen-presenting cells (e.g., dendritic cells or macrophages),
and Tenm2, which are specifically expressed in T cells, were identified in this
study. Our analysis revealed numerous potential epigenetic modification patterns
that are unique to particular cell types, thereby advancing knowledge of the critical
functions of chromatin accessibility in cell processes.
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1 Introduction

Chromatin accessibility is a generic property of the eukaryotic
genome, which refers to the degree of physical compaction of
chromatin (Klemm et al., 2019). Chromatin is a complex of
DNA and associated proteins that form chromosomes and
present varied states across genomes, tissues, and cell types (Lee
et al., 2004). Nucleosome occupancy is variably dynamic, indicating
that densely arranged nucleosomes lead to closed chromatin,
whereas partially depleted nucleosomes result in accessible or
permissive chromatin (Lee et al., 2004; Poirier et al., 2008;
Sheffield and Furey, 2012; Klemm et al., 2019). Evidence
demonstrates that nucleosomes are typically depleted at the
transcriptional regulatory region, including enhancers, promoters,
and other transcription factor binding loci (Ozsolak et al., 2007;
Thurman et al., 2012). The distinct chromatin accessibility patterns
directly reflect different functional states, and they are modulated
through a variety of mechanisms, such as histone methylation,
acetylation, and DNA methylation (Allis and Jenuwein, 2016).
These modifications change the interplays between
transcriptional regulators and DNA targets, thereby altering the
downstream gene expressions and affecting cell functions. Various
changes in chromatin structure and modification have been
involved in a range of traits and diseases (Hendrich and
Bickmore, 2001). Therefore, characterizing the chromatin
accessibility is a critical demand for understanding their
functional roles in gene regulation during development and in
disease contexts.

In general, the measurement of chromatin accessibility is
dependent on the physical access of enzymes to target fragments.
Hewish et al. first noticed the periodic hypersensitivity of chromatin
to DNA endonucleases across the genome, indicating the accessible
regions among nucleosomes (Hewish and Burgoyne, 1973).
Combine with next-generation sequencing techniques, a genome-
wide profiling of chromatin accessibility was carried out, which was
known as DNase I hypersensitive site sequencing (DNase-seq)
(Boyle et al., 2008). An alternative assay, namely, ATAC-seq, can
profile chromatin accessibility based on Tn5 transposon
(Buenrostro et al., 2013). ATAC-seq shows a higher sensitivity
on low-input samples, and the protocol is less complex compared
with DNase-seq. Therefore, this approach is commonly used in
recent research to generate chromatin accessibility profiles.

Chromatin accessibility is cell type dependent, indicating the
chromatin heterogeneity across cell lines and tissues (Thurman
et al., 2012). Previous studies with bulk chromatin accessibility
profiles usually attempt to obtain homogeneous cell samples to
avoid bias derived from cell heterogeneity. Recently, single-cell
epigenomic assays emerged and provided a new way to
investigate the regulatory mechanism of chromatin accessibility
in complex tissues. However, accurate cell type annotation in
single-cell ATAC-seq data remains a great challenge. Thus, three
main strategies of cell type annotation in single-cell ATAC-seq data
were implemented, including annotation using cis-regulatory
elements, annotation using cell type-specific feature set, and
annotation using RNA sequencing data as reference (Corces
et al., 2016; Schep et al., 2017; Pliner et al., 2018; Stuart et al.,
2019). These strategies show certain limitations that either rely on
reliable cell type markers or require additional reference datasets. A

combinatorial indexing assay, namely, sci-ATAC-seq, was applied to
profile the genome-wide chromatin accessibility in single cells from
different mouse tissues (Cusanovich et al., 2018a). Based on these
data, the heterogeneity in chromatin accessibility within cell types
was characterized, and candidate tissue-specific patterns of
chromatin accessibility were identified. Considering that a
relatively traditional workflow was applied for analysis and only
a few epigenetic markers had been found, several potential
characteristic patterns of chromatin accessibility across cell types
remain undiscovered.

In this study, based on the single-cell chromatin accessibility
data from the atlas (Cusanovich et al., 2018a), we applied several
machine learning methods to identify relevant characteristic
chromatin accessibility patterns that can serve as cell-type-
specific markers. The Boruta (Kursa and Rudnicki, 2010) and
Monte Carlo Feature Selection (MCFS) (Micha et al., 2008) were
applied to the data one by one, yielding a list containing 3897 genes.
Then, the list was subjected to incremental feature selection (IFS)
(Liu and Setiono, 1998) method, containing decision tree (DT)
(Safavian and Landgrebe, 1991) and random forest (RF)
(Breiman, 2001). IFS with RF can help to construct an efficient
classifier, whereas IFS with DT was used to generate classification
rules, which represent the quantitative characteristics of chromatin
accessibility for distinguishing different cell types. Features used in
the optimal RF classifier were further processed by autoencoder,
light gradient boosting machine (LightGBM) (Ke et al., 2017) and
IFS method for accessing a better classifier. The final analysis was
focused on top features in the list and classification rules, confirming
some potential epigenetic modification patterns in particular cell
types. This study gave an important contribution to a
comprehensive understanding of the essential roles of chromatin
accessibility in cell functions.

2 Materials and methods

2.1 Data

Large-scale sci-ATAC-seq data were accessed from the GEO
database under accession number of GSE111586 provided by
Cusanovich et al. (Cusanovich et al., 2018b). The sci-ATAC-seq
data were collected on 77 different cell types from 13 different tissues
that contained 69,015 cells, and 77 different cell types were used as
classification targets in our research. The number of cells contained
in each cell type is shown in Supplementary Table S1. A total of
436,206 chromosome segments mapped to 20,783 genes were
obtained by sci-ATAC-seq, and these genes and their existence
status (one for existence and 0 for non-existence) in each cell were
used as features in this study. Using this quantitative representation,
we converted enriched chromosome segments into biologically
interpretable genes, thereby providing comprehensive
understanding of the classification process.

2.2 Boruta

The Boruta algorithm is a feature selection wrapper that can be
used to any classification method that generates a variable
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significance measure (Kursa and Rudnicki, 2010). Boruta searches
for all features that contain relevant information that may be utilized
for prediction rather than concentrating on finding a restricted
group of features with the lowest classification error. The Boruta
algorithm consists of the following steps: 1) For each explanatory
variable, a shadow variable is made, and its association with the
target variable is eliminated by randomly rearranging its values. 2)
RFs are built to fit the expanded data. 3) An accuracy loss z-score is
applied to each variable including the original and shadow variables.
4) The original attributes are selected if their z-scores are
significantly higher than those of shadow counterparts. The
process is repeated until all features have been accepted or
disregarded. The z-score of the original attributes must be
statistically and significantly higher than the maximum z-score of
the shadow attributes to identify the most pertinent features of the
original attributes.

In this study, we opted for the Boruta program from https://
github.com/scikit-learn-contrib/boruta_py and selected the default
parameters for subsequent analysis.

2.3 Feature ranking algorithms

2.3.1 Monte carlo feature selection
Monte Carlo feature selection is a DT-based feature importance

evaluation algorithm commonly used to process biological data (Micha
et al., 2008; Chen X. et al., 2019; Li et al., 2020). In MCFS, m features
were randomly selected. Based on these features, t DTs are built with t
randomly selected sample sets. Above procedure is repeated s times.
Finally, s × t DTs were constructed. The relative importance (RI) of a
feature, as measured by how many times it has been selected by these
trees and how much it contributes to predicting the class of these trees,
is estimated as follows:

RIg � ∑st

τ�1 wAcc( )u ∑
ng τ( ) IG ng τ( )( ) no.in ng τ( )

no.in τ
( )v

(1)

where wAcc is the weighted accuracy, IG(ng(τ)) is the information
gain (IG) of node ng(τ), (no.in ng(τ)) is the number of samples in
node ng(τ), and (no.in τ) is the sample size in the tree root. In
addition, u and v are two settled positive integers. After each feature
is assigned a RI score, all features are ranked in a list with the
decreasing order of their RI scores.

This study adopted the MCFS program sourced from http://
www.ipipan.eu/staff/m.draminski/mcfs.html. It was executed using
its default parameters.

2.3.2 Light gradient boosting machine
The LightGBM is deemed as a strong machine learning

algorithm that combines several weak DTs (Ke et al., 2017). It
improves the gradient boosting decision tree (GBDT) by increasing
the efficiency and reducing memory usage. According to the
constructed DTs, LightGBM can also be used to evaluate the
importance of features. If K DTs are constructed, the total
number of times, denoted by T Split, for each feature is
computed, which is defined as the overall used times in all DTs, i.e.,

T Split � ∑K

i�1Spliti (2)

where Spliti is the used times of this feature in the ith DT. Evidently,
if T Split for one feature is large, i.e., it occurs in lots of DTs, this
feature is quite important. Thus, LightGBM sorts all features in a list
with the decreasing order of their T Split values.

In the present study, we utilized the LightGBM program sourced
from https://lightgbm.readthedocs.io/en/latest/and ran the analysis
by using the default settings.

2.4 Incremental feature selection

It is still quite difficult to extract essential features from a feature
list to comprise an optimal feature space for a given classification
algorithm. Here, we introduced IFS, a well-liked method for
determining the optimal feature space (Liu and Setiono, 1998;
Chen L. et al., 2019; Zhang et al., 2020; Huang et al., 2023a;
Huang et al., 2023b). The main steps of IFS are as follows: 1)
From the feature list, lots of feature subsets are constructed with a
fixed step, each of which contained some top features in the list. 2)
One classifier is built on each constructed feature subset with a given
classification algorithm and it is evaluated by 10-fold cross-
validation (Kohavi, 1995). 3) The classifier with the best
classification performance is selected as the optimal classifier and
features used in this classifier are referred as the optimal features.

2.5 Synthetic minority oversampling
technique

Among the 77 cell types, a 70-fold difference was observed
between the largest number of cells and the smallest number of cells.
It was not easy to build a fair classifier on such imbalanced dataset.
The SMOTE is a data augmentation technique, which can be used to
balance out the imbalanced dataset (Chawla et al., 2002). It tackles
the imbalanced problem by employing new samples to minority
classes. In particular, a sample is randomly selected from each
minority class. Then, k closest neighbors of this sample in the
same class are picked up and one neighbor is randomly selected.
With this sample and its randomly selected neighbor, a synthetic
sample is constructed at a randomly selected location in the feature
space between them. In this study, the SMOTE algorithm was
implemented via Python. Each class except the largest class was
processed by SMOTE so that it contained the same number of
samples in the largest class.

2.6 Classification algorithm

Classification algorithm is necessary for IFS method. Here, two
algorithms were used: DT (Safavian and Landgrebe, 1991) and RF
(Breiman, 2001). Their brief introduction is as below.

2.6.1 Decision tree
DT is a basic classification and regression method with tree-like

structures (Safavian and Landgrebe, 1991; Zhang et al., 2021). A DT
model represents the classification and discrimination of data as a
tree-like structure with nodes and directed edges. Based on one path
of a DT from the root node to the leaf node, a rule can be set up,
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where each internal node corresponds to the rule’s condition, and a
leaf node displays the outcome of an associated rule. Thus, a
collection of if–then rules can be extracted from a DT. In
implementing DT, we used the CART method and the scikit-
learn package, with Gini coefficients serving as the IG (Pedregosa
et al., 2011).

2.6.2 Random forest
RF is an ensemble method, and its basic unit is DT (Breiman,

2001; Li et al., 2022; Ran et al., 2022; Yang and Chen, 2022; Wang
and Chen 2023). Each DT was created based on randomly selected
features and samples. For a given test sample, each tree provides its
prediction. RF integrates these predictions using majority voting. In
this study, the RF package from Python’s scikit-learn module was
used for constructing RF classifiers.

2.7 Autoencoder

Autoencoders are a type of deep learning algorithm that are very
useful in the field of unsupervised learning (Hinton and
Salakhutdinov, 2006; LeCun et al., 2015). They are a specific type
of feedforward neural networks that are designed to receive an input
and transform it into a different representation, which compress the
data and reduce its dimensionality. Autoencoders compress the
input into a lower-dimensional embedding and then reconstruct
the output from this embedding, which is a lower-dimensional
representation for a higher-dimensional data.

Autoencoders consist of three modules: encoder, embedding
and decoder. The encoder maps the input data into the embedding.
The embedding contains the compressed knowledge representation,
which is typically smaller than the input data. The decoder
reconstructs the input data back from the embedding.
Autoencoder networks would perform as close to the perfect
reconstruction as possible.

Assume we have an input data x with d-dimension,
autoencoders first learn a mapping from x to y.

y � f Wx + b( ) (3)
where f is a non-linear function. After this mapping is done,
autoencoders learn a mapping from the embedding y back to
reconstruction z of the same shape as x, which can be expressed as:

z � g WTy + b′( ) (4)
where g is another non-linear function. The loss function used to
train autoencoders is called reconstruction loss, which is typically
measured using MSE Loss or L1 Loss between x and z.

L � x − z‖ ‖ (5)
where z represents the predicted output and x represents the
input data.

The reconstruction loss can be minimized by any mathematical
optimization technique, but usually be accomplished by stochastic
gradient descent (SGD) (Le, 2013). Z can be used as the low-
dimensional embeddings of the samples.

In this study, autoencoder was used to process the optimal
features obtained by IFS method. The reconstructed features were

evaluated by LightGBM and the generated list was fed into IFS
method again to set up a more efficient classifier.

2.8 Performance evaluation

The MCC is a comparatively balanced indicator that can be
applied when the sample size is unbalanced. The range of MCC is
[−1, 1], where a value of one indicates that predictions and actual
results match up perfectly; a value of 0 indicates that the predictions
are like random predictions, and −1 indicates that the actual
outcomes differ from the prediction in a negative way. Thus,
MCC can describe the strength of the correlation between the

FIGURE 1
Flowchart of the machine learning procedure in this study. The
transcriptionally active chromosome segments are identified by sci-
ATAC-seq at single-cell resolution, including 69,015 cells belonging to
77 different cell types and 436,206 active chromosome
segments mapped to 20,783 genes. The Boruta algorithm is used to
filter genes, and then genes are ranked in accordance with the Monte
Carlo feature selection algorithm. Subsequently, the optimal classifier
and corresponding optimal feature subsets are obtained using
incremental feature selection (IFS) and two classification algorithms.
The classification rules are mined by the optimal decision tree (DT)
classifier. Finally, the optimal features for random forest (RF) are
reconstructed by autoencoder. The reconstructed features are
evaluated by LightGBM, resulting in a feature list. IFS method is applied
on such list to set up the final optimal RF classifier.
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expected and actual results. For the multi-class classification
problem, MCC can be calculated by using the following formula
(Gorodkin, 2004; Liu et al., 2021; Pan et al., 2022; Tang and Chen,
2022; Wang and Chen, 2022; Zhang et al., 2022; Wu and Chen,
2023):

MCC � cov X, Y( )																
cov X,X( )cov Y, Y( )√

�
1
K∑N

n�1∑K
k�1 Xnk − �Xk( ) Ynk − �Yk( )																																		∑N

n�1∑K
k�1 Xnk − �Xk( )2∑N

n�1∑K
k�1 Ynk − �Yk( )2√ , (6)

where N is the number of samples, K denotes the number of classes,
X is the binary matrix into which the predicted class of each sample
is converted by one-hot encoding; Y is the binary matrix into which
the true class of each sample is converted by one-hot encoding, and
cov(X,Y) is the covariance of two matrices. �Xk and �Yk are the
means of the k-th column of matricesX andY, respectively.Xnk and
Ynk are the elements in the n-th row and k-th column of the matrices
X and Y, respectively. In this study, MCC was adopted as the major
measurement to assess the performance of classifiers.

In addition, we also employed other two measurements:
individual accuracy and overall accuracy (ACC). Individual
accuracy indicates the prediction quality of the classifier on one
class, which is defined as the proportion of correctly predicted
samples in this class. ACC represents the overall performance of
the classifier. It is defined as the proportion of correctly predicted
samples to all samples.

3 Results

In the current work, we used efficient feature selection methods
and classification algorithms to mine significant features in various
cell types to identify relevant characteristic chromatin accessibility
patterns that can serve as cell-type-specific markers. Figure 1
displays the overall analysis framework. The description of the
outcomes connected to each step was listed in this section.

3.1 Feature ranking results

The current study included 77 cell types with a total of
69,015 and 20,783 genes. The gene features were first analyzed by
Boruta. 3897 features were selected by Boruta, which are provided in
Supplementary Table S2. Then, these features were investigated by
MCFS, resulting in a feature list. Such list is also provided in
Supplementary Table S2. The list would be entered into the IFS
approach to determine the optimal features for constructing the
optimal classifiers.

3.2 Results of IFS with RF and DT algorithms

After the Boruta and MCFS feature selecting methods,
3897 genes were sorted in a list. Such list was then partitioned
into 779 feature subsets by five-step intervals in IFSmethod. On each
feature subset, one DT classifier and one RF classifier were built.
Their performance was evaluated through 10-fold cross-validation.

As mentioned in Section 2.8, MCC was selected as the major
measurement. The IFS curves, as shown in Figure 2, for the two
classification algorithms were plotted, where MCC and number of
features were set as the Y-axis and X-axis, respectively. The detailed
results of IFS are provided in Supplementary Table S3.

The IFS curve indicated that RF had the greatest MCC (0.780) at
445 features. When the top 210 features were used in DT, the
greatest MCC were 0.595. Accordingly, the optimal RF and DT
classifiers were constructed. The ACC values of these two classifiers
were 0.789 and 0.609, respectively, as listed in Table 1. The
individual accuracies of them are also shown in Supplementary
Table S3, which are illustrated in Figure 3. Evidently, the optimal RF
classifier was superior to the optimal DT classifier. For the
445 features used in the optimal RF classifier, we used
FindAllMarkers function in Seura package to extract differentially
expressed genes for each cell type and adopted logFC to rank these
genes in each cell type. The top gene in each cell type was selected,
resulting in 73 genes. After excluding genes differentially expressed
in more than 1 cell type, 47 genes were obtained. Their expression
levels on 77 cell types are illustrated in a heatmap, as shown in
Figure 4. It can be observed that some gene features shown good
ability to distinguish different mouse cell types and application
potential as marker genes for certain cell clusters.

3.3 Classification rules created by the
optimal DT classifier

Although the DT classifiers were generally inferior to the RF
classifiers, it can provide more medical insights than RF as it is a
classic white-box algorithm. Its readability of the working
mechanism serves as its strongest distinguishing ability. We
could produce a quantitative representation of the features used
for different cell type classifications by exploiting the single-tree
structure of DT to extract the classification rules.

As the optimal DT classifier adopted the top 210 genes
features, all cells were represented by these features. A large
tree was learnt from such dataset by DT. 24,257 rules were
extracted from this tree, as shown in Supplementary Table S4.
Each rule established a limit on the existence of gene features,
indicating the relevance of the existence (value >0.5) or non-
existence (value ≤0.5) of genes in distinguishing various cell
types. Detailed analysis of these rules can be seen in Section 4.
However, some rules can distinguish a small number of samples,
which is out of the scope of our analysis.

3.4 Classification performance optimization
using autoencoder and LightGBM

In improving the classification performance, we introduced
autoencoder to optimize feature representation. Based on the IFS
results, RF achieved the optimal classification performance with
MCC of 0.780 when top 445 features were used. These 445 gene
features were reconstructed by autoencoder. The reconstructed
features were ranked by LightGBM to generate a feature list.
Such list was fed into IFS by one-interval step to obtain the
optimal feature subsets and optimal RF classifier.
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Similar to Figure 2, the IFS curve was plotted, as shown in
Figure 5. The detailed IFS results are shown in Supplementary Table
S5. The optimal RF classifier was constructed with MCC of
0.838 using the top 32 features in the feature list. The ACC of
this classifier was 0.844 (Table 1). Compared with the previous
optimal RF classifier (MCC = 0.780 and ACC = 0.789, see Table 1),
the MCC was improved by 0.058 and ACC increased 0.055 after
reconstructing features by autoencoder. All individual accuracies of
this classifier are shown in Figure 6. All of them were quite high

(higher than 0.6). Compared with the performance of the previous
optimal RF classifier (Figure 3), they were evidently improved. Such
result proved the effectiveness of autoencoder. The final constructed
RF classifier can be used for the classification of cells based on single-
cell ATAC-seq data.

4 Discussion

Our study presented a computational pipeline for analyzing the
cell types of mice in single-cell ATAC-seq data. Cells isolated from
13 distinct tissues were further divided into 77 different cell types. By
characterizing the chromatin accessibility at single-cell resolution,
the status of chromatin accessibility within the gene region was
considered as features. They were analyzed by feature selection
methods, IFS method and classification algorithms. Lots of
essential genes and classification rules were obtained. Here, we
focused on some gene features and rules to discuss the relevance
of chromatin accessibility in cell type discrimination, which may
reveal the important roles of chromatin accessibility in
transcriptional regulation and identify cell-type-specific regulatory
patterns.

4.1 Analysis of chromatin accessibility
features by MCFS

The genes were ranked in a list according to the evaluation
results of MCFS. Genes with high ranks were more important than
others. Here, we selected some top genes for detailed analysis, which
are listed in Table 2.

Our analysis identified the chromatin accessibility at the gene
region ofH2-Dmb2 to be highly related to the classification of cell
types. The protein products encoded by H2-Dmb2 belong to the
MHC class II beta chain paralogues, which are anchored in the
membrane, and such products play a central role in peptide
binding. MHC class II molecules are specifically expressed in

FIGURE 2
Incremental feature selection (IFS) curves of decision tree and random forest. The optimal classification performance alone with the optimal feature
number for each algorithm has been labeled on the curve. Random forest has better classification results than decision tree.

TABLE 1 Performance of the key classifiers.

Classification algorithm Number of features ACC MCC

Decision tree 210 0.609 0.595

Random forest 445 0.789 0.780

Random forest 32 0.844 0.838

FIGURE 3
Violin plot to show the performance of two optimal classifiers on
all cell types. RF classifier is evidently superior to DT classifier.
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antigen presenting cells such as dendritic cells or macrophages,
thereby generating a biased expression of H2-Dmb2 primarily in
the spleen, lymph node, and other immune-activated tissues
(Rudensky et al., 1991; Cresswell, 1994; Yue et al., 2014).
Given the specific expression pattern of H2-Dmb2 across
tissues and cells, gene H2-Dmb2 shows high indicative value
for distinguishing antigen-presenting cells and immune-
activated tissues; thus, this gene can serve as a biomarker. The
ortholog gene ofH2-Dmb2 in human, namely,HLA-DMB, plays a
critical role in the interaction between antigenic peptides and
MHC class II molecules. The aberrant expression of HLA-DMB is
associated with many diseases, including diabetes mellitus,
autoimmune disease, infection, and cancer (Siegmund et al.,
1999; Morel et al., 2004; Callahan et al., 2008; Aissani et al.,
2014). Although the detailed mechanisms underlying disease
progression remain unknown, the important role of HLA-
DMB in antigen presentation cannot be neglected.

Understanding the chromatin accessibility in HLA-DMB will
contribute to revealing the regulatory mechanism and
potential targets for disease treatment.

Among the most relevant features identified by our analysis, we
found that alterations in chromatin accessibility are associated with
many T cell receptor (TCR)-related genes, such as Trbd1, Trbd2, and
Trbj2. In a single cell, the TCR beta chain is generated by the somatic
recombination of variable V), joining J), diversity D), and constant
C) gene segments. The recombination of different segments
provides a wide range of antigen recognition for T cell function
(Bassing et al., 2002). TCR genes are particularly expressed in T cells;
therefore, they display a biased expression pattern in tissues with
high infiltration of T lymphocyte. A TCR-β-targeting study by
Mathieu et al. demonstrated that chromatin remodeling is
associated with the control of TCR gene activation through
several epigenetic regulatory mechanisms, and this process can
influence the developmental control of TCR gene recombination

FIGURE 4
Heatmap of genes in the optimal gene subset obtained byMCFS and IFS. The bright color corresponding to the gene in the heatmap in some classes
indicates that this gene is transcriptionally active in these classes. Similarly, if the gene is darker in the class, then it is transcriptionally inactive in this class.
The marker genes identified by this research can distinguish different cell types.
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(Mathieu et al., 2000). This finding indicates the important role of
chromatin accessibility in modulating gene expression and
consequent function alterations, which provides support for our
results, that is, chromatin accessibility of TCR-related genes is highly
related to cell functions and cell type classification.

The chromatin accessibility status of gene Tenm2 (also called
ODZ2) was identified as another relevant feature for distinguishing
cell and tissue types. Tenm2 is a protein coding gene, which is
involved in neural development and cellular signal transduction
(Rubin et al., 2002). Given the pivotal role of Tenm2 in neuronal
cells, its transcriptional products exhibit a biased expression
primarily in the central nervous system, brain, and other neural-
related tissues as demonstrated by Mouse ENCODE transcriptome
data (Yue et al., 2014). Although gene Tenm2 has been reported to be
associated with diseases such as periodontitis and anosmia (Alkelai
et al., 2016; Sayad et al., 2020), the linkage between Tenm2 and
diseases was primarily built on the basis of genomic studies. Our
analysis highlighted the epigenetic modification on gene regulation,
indicating that chromatin accessibility at the gene region plays a
crucial role in the selective expression of genes, which can serve as
cell type-specific markers.

4.2 Analysis of decision rules of chromatin
accessibility by DT

In improving the explicability of the features implicated in the
classification, we performed a quantitative computational analysis
using DT. A large number of decision rules involving 210 critical
features were built to identify 77 cell types. We focused on the
associations between the quantitative features and indicated cell
types. Thus, we explored the relevance of the chromatin accessibility
tendency of genes in distinguishing cell types through a literature
review. Our study provided insights into disentangling cell-type-
specific chromatin accessibility and suggested the new epigenetic
markers of each cell type.

In the decision rules for identifying the cell type of heart
cardiomyocyte, the Myh6 gene required a relatively high

chromatin accessibility, whereas the Trbv31 and Nrxn1 genes
required low chromatin accessibility. The Myh6 gene encodes
the alpha heavy chain subunit of cardiac myosin, which is the
key component of muscle cells. As demonstrated by the Mouse
ENCODE transcriptome study, the expression of Myh6 is highly
restricted toward heart tissues (Yue et al., 2014). A recent
publication proposed that the repressive chromatin assembly on
theMyh6 promoter can silence the expression of Myh6 and impair
cardiac contraction (Han et al., 2016). This finding confirmed the
crucial role of Myh6 chromatin modification in cardiac
phenotypes, which indicates that the accessible chromatin status
of Myh6 is an essential marker for functional cardiomyocytes.
Trbv31 is a TCR-related gene, and it displays specific expression in
T cells (Isobe et al., 1985). The criterion requiring a low chromatin
accessibility of Trbv31 reflects a low gene expression, which is
consistent with the actual condition, that is, rare lymphocytes
reside within the heart cardiomyocyte environment. Nrxn1
encodes a single-pass type I membrane protein, which belongs
to the neurexin family. Given that neurexins are cell-surface
receptors that are restrictedly located at nervous synapses
(Südhof, 2008), the Nrxn1 protein is not expressed in heart
cardiomyocytes. Therefore, Nrxn1 serves as a negative marker
indicating heart cardiomyocytes.

Among the decision rules for liver hepatocytes, 43 features were
involved in the criteria, 42 of which required low chromatin
accessibility of genes, whereas only one gene displayed a positive
marker, that is, Slc27a2. The protein encoded by Slc27a2 is a fatty-
acid coenzyme, which plays a key role in lipid biosynthesis and fatty
acid degradation (Steinberg et al., 1999). The biased expression of
Slc27a2 in liver and kidney tissues has been demonstrated by a
previous study (Yue et al., 2014). The decision rules by our analysis
indicate that a high chromatin accessibility of Slc27a2 is a positive
marker indicating liver hepatocytes. The negative features for liver
hepatocytes are mostly specific markers of other cell types, such as
the aforementioned genes Trbv31 and Myh6, which are specifically
expressed in T and cardiac cells, respectively. In addition, another
gene (Lef1) was identified as a negative marker for liver hepatocytes.
This gene encodes a transcription factor that can bind to T-cell

FIGURE 5
Incremental feature selection (IFS) curves of random forest based on the list by applying LightGBM to the features reconstructed by autoencoder.
The optimal MCC of 0.838 is achieved when the number of features is 32, which is better than that based on the original 0–1 representation of genes.
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receptor enhancer, and it is involved in the Wnt signaling pathway
(Petropoulos et al., 2008). A biased expression of Lef1 in the thymus
and spleen was demonstrated, which is consistent with its specificity

in lymphocytes (Yue et al., 2014). These observations indicated that
positive and negative features identified in this analysis contribute to
the classification of corresponding cell type.

FIGURE 6
Lollipop plot of individual accuracies yielded by the final random forest classifier for distinguishing different cell types. The circles represent the
number of cells contained in different cell types. Some individual accuracies of this classifier optimized by autoencoder can reach up to 1, whereas no
individual accuracies are lower than 0.6, indicating the effectiveness of the classifier for cell type classifications.
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The relatively high chromatin accessibility of TCR-related
genes such as Trbv31 and Trbj2 was required to indicate the cell
type of thymus T cells. In addition, another positive feature,
which is the chromatin accessibility of gene Lrmp, was identified
to be involved in the decision rules for thymus T cells. Lrmp, also
known as Irag2, encodes a lymphoid-restricted membrane
protein, which can regulate the development of lymphoid cell
lines (Behrens et al., 1994). RNA profiling data sets generated by
the Mouse ENCODE project demonstrated the biased expression
of Lrmp in thymus tissue (Yue et al., 2014). Our results indicated
that in addition to post-transcriptional regulations,
modifications of chromatin accessibility play important roles
in gene expression control, which can be used as epigenetic
markers for distinguishing lymphoid cells.

The decision rules for identifying sperm cells from testes include
45 criteria, among which the high chromatin accessibility of gene
Nol4 was identified by our analysis. Nol4 is a cancer/testis antigen,
and it has been reported to be involved in cancer progression (Kim
et al., 2021). Cancer/testis antigens are a group of proteins with
normal expression restricted to testicular germ cells but not in adult
somatic tissues. In this study, our analysis showed that the
chromatin accessibility pattern of the Nol4 gene was highly
related to the classification of testicular sperm cells, presenting a
reasonable relevance between the expression of Nol4 and testicular
cells in non-malignant contexts and indicating the potential
mechanism of cancer/testis antigen expression through chromatin
accessibility modifications.

In this study, a series of quantitative rules was constructed to
predict the category of cerebellar granule cells. Among these
decision rules, Cbln1 and Arpp21 genes required high chromatin
accessibility to distinguish cerebellar granule cells. Gene Cbln1
encodes a cerebellum-specific precursor protein, namely,
precerebellin, which is highly enriched in postsynaptic
structures of Purkinje cells (Urade et al., 1991). Research by
Hirai et al. demonstrated that Cbln1 was secreted from cerebellar
granule cells, which have important functions in Purkinje
neurons (Hirai et al., 2005). Arpp21 encodes a cAMP-

regulated phosphoprotein, which is enriched in the cerebellar
cortex. The high level of Arpp21 mRNA was detected in the
cerebellar cortex by in situ hybridization and Northern blot
analysis (Brene et al., 1994). All these results confirmed the
biased expression of Cbln1 and Arpp21 in cerebellum tissues,
which support the predictive values of these genes for
distinguishing cerebellar granule cells.

5 Conclusion

This study computationally investigated the characteristic
chromatin accessibility of different mouse cell types at single-
cell resolution. The most relevant features and quantitative
decision rules were identified through several machine
learning algorithms, indicating the potential epigenetic
markers for each cell type. Detailed discussion was performed
to explore the functional linkage between the chromatin
accessibility pattern of genes and the indicated cell types.
Many of the identified genes were biased or restrictedly
expressed in specific tissues or cells, meaning they can serve as
potential biomarkers for the corresponding cell types based on
existing experimental evidence and publications. In addition, our
study highlighted the epigenetic modification of chromatin in
gene expression regulation, implying the critical roles of
chromatin accessibility in cell function. Considering the
interpretability of features, we primarily focused on features of
the chromatin accessibility pattern of genes in cell type
discrimination. The classifiers using features reconstructed by
autoencoder showed excellent performance. Our study also
provides insight into a comprehensive understanding of the
genome-wide chromatin accessibility and generic markers in
cell lines and tissues.
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10 Trbj2-5 T cell receptor beta joining 2–5

11 Trbj2-7 T cell receptor beta joining 2–7

12 Tenm2/Odz2 teneurin transmembrane protein 2
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