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Introduction: Zoonotic transition of Influenza A viruses is the cause of epidemics
with high rates ofmorbidity andmortality. Predictingwhich viral strains are likely to
transition from their genetic sequence could help in the prevention and response
against these zoonotic strains. We hypothesized that features predictive of viral
hosts could be leveraged to identify biomarkers of zoonotic viral transition.

Methods:We trained deep learningmodels to predict viral hosts based on the virus
mRNA or protein sequences. Our multi-host dataset contained 848,630 unique
nucleotide sequences obtained from the NCBI Influenza Virus and Influenza
Research Databases. Each sequence, representing one gene from one viral
strain, was classified into one of the three host categories: Avian, Human, and
Swine. Trained models were analyzed using various neural network interpretation
methods to identify interesting candidates for zoonotic transition biomarkers.

Results: Using mRNA sequences as input led to higher prediction accuracies than
amino acids, suggesting that the codon sequence contains information relevant to
viral hosts that is lost during protein translation. UMAP visualization of the latent space
of our classifiers showed that viral sequences clustered according to their host of
origin. Interestingly, sequences from pandemic zoonotic viral strains localized at the
margins between hosts, while zoonotic sequences incapable of Human-to-Human
transmission localizedwith non-zoonotic viruses from the samehost. In addition, host
prediction for pandemic zoonotic sequences had lowprediction accuracy, whichwas
not the case for the other zoonotic strains. This supports our hypothesis that
ambiguously predicted viral sequences bear features associated with cross-species
infectivity. Finally, we compared misclassified sequences to well-classified ones to
extract interesting candidates for zoonotic transitionbiomarkers.While features varied
significantly between pairs of species and viral genes, several codons were conserved
in Swine-to-Human and Avian-to-Human misclassified sequences, and in particular
in the NA, HA, and NP genes, suggesting their importance for zoonosis in Humans.

Discussion: Analysis of viral sequences using neural network interpretation
approaches revealed important genetic differences between zoonotic viruses
with pandemic potential, compared to non-zoonotic viral strains or zoonotic
viruses incapable of Human-to-Human transmission.
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1 Introduction

Influenza is one of the most common zoonotic viral infections
that affects both Humans and animals. Although most influenza
infections are from annual seasonal epidemics, sporadic global
pandemic outbreaks also occur involving influenza A virus
strains of zoonotic origin. Pandemic influenza is characterized by
the introduction of a new strain of influenza A virus for which there
is no pre-existing immunity in Humans, as the new strain is
antigenically different from previously circulating strains. This
lack of pre-existing immunity is often associated with increased
infection severity, and an increase in mortality (Krammer et al.,
2018).

Identifying biomarkers that are predictive of viral hosts, whether
from surface protein or from other structural and functional viral
genes, is of interest to identify features that could play a role in
zoonotic viral transition. Influenza A viruses circulate not only in
Humans but also in domestic animals, pigs, horses and poultry and
in wild migratory birds. Viral hosts are usually identified using
empirical evidence derivation methods such as laboratory testing,
surveillance, and other epidemiological evidence, including
phylogenetic analysis. However, bioinformatics tools have been
incorporated into influenza research in recent years to improve
our understanding of interspecies transmission. Computational
approaches are now playing an important role, with the
deployment of novel methodologies combining bioinformatics,
machine learning and deep learning approaches to predict
emerging zoonotic viral strains. Several research groups have
searched for host-specific markers across the entire influenza A
virus genome. Various bioinformatics methods based on multiple
sequence alignment (Chen et al., 2006; Finkelstein et al., 2007; Allen
et al., 2009; Miotto et al., 2010), information theory (Sjaugi et al.,
2015), and combinatorial modeling (Khaliq et al., 2016) have also
been used to identify specific amino acid residues or motifs within
viral proteins that differentiate between Avian and Human viruses.
Others have attempted to apply machine-learning approaches to
build computational models to predict Avian-to-Human
transmission of influenza A viruses directly using protein
sequences (Qiang and Kou, 2010; Wang et al., 2013a; Wang
et al., 2013b).

Deep neural networks have a significant advantage over other
machine learning methods for sequence classification, as they can
extract relevant and complex classification features from genetic
sequences without prior knowledge. Deep neural networks have
already demonstrated outstanding results in the analysis of viral
sequences; Mohamed et al. (2021) proposed an approach for
predicting sequences using the seq2seq LSTM neural network
considering sequences as text data, for accurate and fast
prediction of mutations of RNA viruses in the development of
antiviral drug resistance. The effectiveness of their proposed
model was established against the Influenza Virus Dataset and
the New Castle Disease Database, with 98.9% and 96.9%
accuracy, respectively. Their results illustrate the potential of
LSTM neural networks for solving sequence analysis issues in
bioinformatics. Mock et al. (2021) constructed a deep neural
network to predict viral hosts for three different virus species
based on viral genome sequences only. Their model achieved a
very high accuracy with AUC ranging between 0.94 and 0.98.

In this work, we analyzed 848,630 unique nucleotide sequences
of Influenza A viruses extracted from the NCBI Influenza Virus
(Schoch et al., 2020) and Influenza Research Databases (Zhang et al.,
2017) in search of zoonotic transition biomarker candidates that
could be used to predict which viral strains are most likely to
transition between Avian, Swine and Humans. We elected to use
state-of-the-art Natural Language Processing algorithms that have
been previously applied with great success to biological sequence
analyses: Bidirectional LSTMs (Hochreiter and Schmidhuber, 1997),
and Transformers (Vaswani et al., 2017). We first built host
classification models capable of classifying Influenza A viral
mRNA and protein sequences using Bidirectional LSTM and
Transformers. Both types of Deep Learning models showed
greater accuracy when trained on mRNA sequences, rather than
protein sequences, suggesting that mRNA sequences contain
information relevant to predict viral host that is lost during
protein translation. We then tested the hypothesis that sequences
that are difficult to classify should bear features that are typically
associated with other species, and thus could be the best candidates
for zoonotic transition makers. We evaluated how zoonotic viruses
were classified by our models and whether zoonotic viruses capable
of Human-to-Human transmission would be differentiated by our
model from zoonotic viruses that are not capable of Human-to-
Human transmission. Results showed that sequences of zoonotic
viruses capable of Human-to-Human transmission are ambiguous
to our model and behave very differently compared to non-zoonotic
viruses and zoonotic viruses that are not capable of Human-to-
Human transmission. These results confirmed that our model was
able to detect sequences of zoonotic strains with pandemic potential
and supported our hypothesis that these pandemic strains presented
features that made them ambiguous to the network. Finally, we
analyzed sequences that were misclassified by our best model using
statistical tests (Student’s t-test, Fisher’s Exact test), information
theory (Kullback-Leibler divergence), and machine learning
interpretation methods (LIME (Zhang et al., 2019)) to extract
features associated with these misclassified sequences that
represent interesting candidates for zoonotic transition
biomarkers in Influenza A viruses.

2 Materials and methods

2.1 Data source and preprocessing

Data was obtained from the NCBI Influenza Virus Database,
which contains the sequences of all influenza A viruses in the EMBL/
DDBJ/GenBank databases (Schoch et al., 2020), and Influenza
Research Database (FLU DB, https://legacy.fludb.org/brc/home.
spg?decorator=influenza) (Zhang et al., 2017). Each sequence
represents one gene from one viral strain. Duplicated sequences,
i.e., that were found in both databases, were removed to keep unique
sequences only. The combined dataset contained 848,630 unique
nucleotide sequences, with 264,579 Avian, 467,415 Human, and
116,636 Swine sequences (Supplementary Figure S1A).

As the number of sequences per host was not balanced, an
under-sampling strategy was used to ensure that the networks were
presented with the same number of examples for each host at each
training epoch. The protein dataset was obtained by translating
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nucleotide sequences. Models were trained on 70% of the dataset,
15% were reserved for the validation set and 15% for the test set.
116,636 sequences per host were kept, for a total of
349,908 sequences used for training, validation and testing of the
models (Supplementary Figure S1B).

To make sequences digestible to deep learning algorithms,
mRNA and protein sequences were further processed by
associating a unique index to every codon and amino acid
(indexes of 1–20 for amino acids and 1–61 for codons, stop
codons being removed, see Supplementary Figure S2A). Input
size was fixed to the maximum sequence length of 770 codons or
amino-acids (from the PB2 gene) and zero padding at the end of the
gene sequences was used to ensure that all input sequences have the
same length (Supplementary Figure S2B). Finally, hosts were
encoded with a unique identifier (Supplementary Figure S2C).

2.2 Prediction models

Two different models were trained to predict hosts from mRNA
or protein sequences (Supplementary Figure S3). The architecture of
the first model consists of an embedding layer followed by a
Bidirectional LSTM layer. Bidirectional LSTMs are recurrent
neural networks reading the sequence from both ends to identify
relevant patterns (Hochreiter and Schmidhuber, 1997). Their
recurrent aspect allows them to handle both long and short-term
dependencies in sequences. The LSTM layer is followed by a dropout
layer to prevent overfitting, then two dense fully connected layers for
integrating the output of the LSTM. Each layer consists of 100 units,
with the exception of the output layer, which has three units, one for
each species.

The second architecture also starts with an embedding layer,
followed by a Transformer layer that generates a vector for each time
step of the input sequence, followed by a dropout layer, then two
dense and dropout layers, each layer consisting of 100 units, and
finally a Softmax output layer with three units. In contrast to the first
network, Transformers use attention mechanisms to identify
relevant patterns in sequences (Vaswani et al., 2017). All models
were built with the Python package Keras using the Tensorflow
back-end.

Hyperparameters were optimized using random sampling over:
Batch size, Number of layers and Size of layers. The best architecture
was selected on the validation set and final results were reported on
the separate test set. Number of epochs were optimized using early-
stopping on the validation set. For everything else, including layer
parameter initialization and Adam optimizer we used the default
values of Keras version 2.12.0. The best results were obtained after
16 epochs for the Bidirectional LSTM, and 20 epochs for
Transformers. Hyperparameters were optimized on the validation
set (Supplementary Table S1). Host class imbalance was handled

using an under-sampling strategy, ensuring that models were
trained using the same number of examples for each host.
Networks were trained using the categorical cross-entropy loss
and the Adam optimizer. Host prediction accuracy is reported
for the test set.

2.3 Predictions on zoonotic virus sequences

To assess their performance in predicting viral hosts, a total of
584 zoonotic viral sequences were analyzed using trained models.
Importantly, these zoonotic sequences were not included in the
training, nor the validation set (see Supplementary Tables S2, S3 for
information and accession numbers of zoonotic sequences
analyzed). Zoonotic sequences included in Supplementary Table
S2 were identified following a direct transmission from Avian-to-
Human (n = 23) or Swine-to-Human (n = 85) without subsequent
Human-to-Human transmission (Subbarao et al., 1998; Garten
et al., 2009; Shinde et al., 2009; Schoch et al., 2020). Sequences in
Supplementary Table S3 are all from the Swine 2009 pandemic
influenza strain (n = 476), thus originating from Swine but with the
capacity for Human-to-Human transmission (Garten et al., 2009).
Predicted viral hosts for these zoonotic mRNA sequences as
classified by the Bidirectional LSTM model were extracted. Then,
UMAP (McInnes et al., 2018) was used to visualize the zoonotic
sequences in the previous latent space. The centroid of each
cluster was obtained using the K-means algorithm on the UMAP
output. Finally, the Euclidean distance was calculated (using the
UMAP dimensions) between each sequence and each host cluster
centroid.

Euclidean distances for each set of zoonotic sequences was
compared to those of well-classified non-zoonotic viruses from
each host class using a Kruskal–Wallis test, followed by a post
hoc Dunn test. Adjusted p values from the Dunn test are reported.

Proportions of well-classified and misclassified sequences in
each zoonotic subset were compared using Fisher’s exact test.

2.4 Extracting features in misclassified
sequences with UMAP

After selecting the best models for both mRNA and protein
sequences, we extracted misclassified sequences for further analyses.
For this analysis, we used a combination of the test set and of all
sequences discarded during undersampling. Thus, a total of
598,414 sequences are included in the statistical evaluation of
features associated with misclassified sequences. If the prediction
of the viral host is the same as the ground truth, the sequence is
considered well-classified. Misclassified sequences were then
compared to well-classified sequences to determine features that
make them different. We use the notation < ground-truth-host>_
to_<predicted-host > to denote misclassified sequences, e.g., Avian-
to-Human refer to Avian viral sequences that were predicted to be
virus from Human host. Misclassified sequences are always
compared to the well-classified from their ground truth host, e.g.,
Avian-to-Human misclassified sequences (i.e., sequences from
strains from Avian hosts classified by the network as strains from
Human hosts) will be compared to well-classified Avian sequences.

TABLE 1 Accuracy of host classification models.

Bidirectional LSTM Transformers

mRNA 0.9565 0.9511

Proteins 0.9333 0.9352
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We used two statistical tests to identify biomarkers that are
significantly enriched or depleted in misclassified sequences:
Student’s t-test, used to measure the differences between the
means of two groups, and Fisher’s exact test, used to determine if
there are nonrandom associations between two categorical variables.
In addition, we used the Kullback-Leibler divergence to measure the
divergence in distribution of features betweenmisclassified and well-
classified sequences.

Finally, we used LIME (Zhang et al., 2019) to understand the
impact of specific features on the predictions of our models. This
approach was used in the analysis of zoonotic transition
biomarkers in overall sequences and within specific genes.
LIME works by modulating the input to the model, by
randomly modifying a specific input to the network and
monitoring the impact on the predictions to determine how
specific features influence predictions. In the context of
sequence classification, this consists in randomly replacing or
masking codons or amino acids to determine which ones
influence the prediction the most.

Finally, results of the four aforementioned methods were
combined to calculate a consensus score of zoonotic transition
features. When a feature is identified as significantly different
by one of the four methods, it is attributed a score of 1. When it is
identified as significantly different by three of the four methods, it
is attributed a score of 3, and so on. The sign of the score (+ or −)
is then assigned depending on whether the feature is enriched
(more frequent) in misclassified sequences (+) or depleted (less
frequent) in misclassified sequences (−) compared to well-
classified ones.

3 Results

3.1 Using mRNA instead of protein
sequences as input increases prediction
accuracy

We first investigated which of mRNA or protein sequences were
more informative in predicting viral host using artificial neural
networks. Bidirectional LSTM and Transformers models were tested
in parallel for both types of input datasets. Both models achieved a
higher accuracy when receiving mRNA sequences as inputs (Table 1;
Supplementary Table S4). Proportions of well-classified and
misclassified sequences for each model, type of input and host
are shown in Supplementary Table S5. These results suggest that
mRNA sequences contain information relevant to the prediction of
viral host that is lost during translation in proteins.

3.2 Misclassified and zoonotic viral
sequences localize at the margins of host
clusters

We next used neural network interpretation methods to extract
relevant biological information from viral sequences. We first
visualized the latent space of our classifiers using the UMAP
algorithm (McInnes et al., 2018). As expected from the high
accuracies of all models, sequences are clearly separated by
hosts (Figure 1, left; Supplementary Figure S4A). Interestingly,
sequences that were misclassified by the models were generally

FIGURE 1
UMAP projection of latent spaces of the Bi-LTSMmodel trained on mRNA sequences. On the left is shown the UMAP visualization of well-classified
sequences by hosts (red: Avian, yellow: Human, green: Swine). On the right is shown the UMAP visualization of misclassified sequences in the same latent
space. Opacity shows the degree of model inaccuracy. The darker the color, the more inaccurate the prediction, meaning that the network assigned a
larger probability to an incorrect class. Each dot represents one gene from one viral strain.
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localized at the margins between different host clusters (Figure 1,
right; Supplementary Figure S4B). Of note, UMAP projections
compress a complex dimensional space in a 2D space. Thus, the
true margins between clusters of sequences have a more complex
shape than shown in Figure 1, as the original latent space has
7 dimensions. Nonetheless, these visualizations are helpful to
build an intuitive understanding of how deep learning networks
represent viral sequences.

Because of the high accuracy obtained on host prediction, we
hypothesize that the features learned by the network are highly
indicative of the host infected by the strain. We further reasoned
that a sequence that is ambiguous to the model, i.e., is located at
the margin of a class or misclassified by the network, likely bears
features of strains associated with more than one host and thus
represent interesting candidates for zoonotic transition
biomarkers.

FIGURE 2
Zoonotic sequences of pandemic potential are located at the margins of host clusters. Localization of zoonotic sequences in the model’s latent
space is projected over well-classified non-zoonotic viral sequences for the three different hosts (Avian: red, Human: yellow and Swine: green). (A)
Sequences from zoonotic virus derived from direct animal-to-Human transmission (DT) are shown according to their host of origin (Avian, n = 23: dark
blue, Swine, n = 85: light blue). (B) Sequences from the 2009 pandemic H1N1 Swine Influenza A (purple, n = 476). (C–E) Euclidean distances from the
clusters’ centroid for each group of viral sequences. Distance from the Avian (C), Swine (D) and Human (E) clusters are shown separately. Distribution of
distances were compared using Kruskal–Wallis test for nonparametric distributions, followed by a post hoc Dunn test for pair comparisons. Euclidean
distances for the well-classified viral sequences were calculated on a randomly selected subset of 1,000 sequences per host. (F) Proportions of well-
classified andmisclassified sequences in the zoonotic virus subsets. Percentage of well-classified sequences are shownwith full colors (lower bars), while
the percentage of misclassified sequences is shown with transparency (upper bars). Significance is assessed using Fisher exact test.
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To test this hypothesis, we assessed whether sequences from
zoonotic viral strains would locate at the margins between hosts and/
or would be misclassified by the network. We analyzed two different
sets of zoonotic viral sequences: one containing 108 sequences
(85 sequences from Swine and 23 from Avian) from zoonosis
originating from a direct Swine-to-Human or Avian-to-Human
transition (Supplementary Table S2), and one containing
476 unique sequences from the 2009 pandemic H1N1 strains
(Supplementary Table S3). These two sets of viruses differ in that
the first set contains viruses that were not capable of Human-to-
Human transition, while the 2009 H1N1 strains did. Of note, these
sequences were not in the training or validation sets.

FIGURE 3
Codons likely to enhance or reduce zoonotic transition for each pair of species. Codon scores were clustered for (A) all pairs of species, or (B) for
Human and Swine pairs, in both transition directions. Scores represent the number of methods which identified a codon as significantly enriched (positive
sign, shown in red) or depleted (negative sign, shown in blue) in misclassified sequences.

TABLE 2 Best candidates for zoonotic transition markers in Swine-to-Human
and Avian-to-Human misclassified sequences.

Swine-to-Human Avian-to-Human

Score Codons Score Codons

+3 — +3 TTA, TTG

+2 ATA, AAG, CCG, ACA,
GTA, GTC

+2 TGT, GGC, AGC

−2 AGT, CGC, CTG, CTT,
GTG, TCC

−2 CGG, GGG,
ATC, GTC

−3 ACC −3 GCG
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To evaluate whether these sequences are ambiguous to the
model, we extracted their coordinates within the latent space of
the model (Bidirectional LSTM trained on mRNA) and
projected them using the same UMAP projection. As shown
in Figure 2A, sequences from zoonotic viruses from direct
contact with an animal tended to localize within their original
host clusters. In contrast, pandemic zoonotic sequences from the
2009 H1N1 Swine Influenza located at the margins of the Swine
and Human cluster (Figure 2B). These results show that the
model is able to detect genetic features that are unique to viral
strains of pandemic potential, different from both non-zoonotic
viruses and zoonotic viruses without Human adaptation.

To formally compare the positioning of zoonotic sequences in
the latent space, we trained a K-means algorithm to determine the
centroid of each host cluster. We then calculated Euclidean distances

between each sequence and the centroid of each host cluster. We
compared the distances of zoonotic sequences to the cluster
centroids to that of well-classified viral sequences from non-
zoonotic viruses of each host. Zoonotic viruses derived from
direct transmission were treated separately according to their
host of origin.

Zoonotic viruses derived from direct transmission showed the
same distribution of distance from the centroid of their host cluster
as well-classified (non-zoonotic) viruses of the same host (see
Figure 2C for direct transmission from Avian viruses;
Figure 2D for direct transmission from Swine viruses). In
contrast, the sequences from the Swine pandemic
H1N1 strains behaved very differently, being significantly
further from the centroids of all host clusters compared to
non-zoonotic viruses (Figures 2C–E). This pattern was found

FIGURE 4
Candidate zoonotic transition biomarkers differ between viral genes. Codons’ scores were clustered for (A) Swine-to-Human, or (B) for Human-to-
Swinemisclassified sequences. Scores represent the number of methods which identified each codon as significantly enriched (positive sign) or depleted
(negative sign) in misclassified sequences.
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TABLE 3 Best candidates for zoonotic transition markers for each gene in Swine-to-Human and Avian-to-Human misclassified sequences.

Gene Swine-to-Human Avian-to-Human

Score −3 −2 +2 +3 −3 −2 +2 +3

HA ACC ACG, CCT, CGA, CGC,
CGG, CGT,

CTC, CTT, TTA

ATA, GGC, GTA — GTC ACC, CCT, CTC,
CTT, GAT, GCT,

GGT, TCC

CCG, GGC,
TCA, TTG

GCC

MP — ACC, ACT, CAG, CAT, CCC,
CGA, CGC, CTA, CTC,
CTG, GCT, GGA, GGT,
TCC, TGC, TGT, TTT

AAC, ATT, CAA,
CCG, GAC, GTA,
GTC, TAC, TAT,

TCA, TCT, TTC, TTG

TGG — GAT, TAC TTG GCT

NA — ACG, CCC, CGG,
CTC, CTG,

CTT, GCC, GCG

AAT, CCG,
GAC, GCA, GTC,

TAC, TTA

— CCC, GCA,
GGG, TCC

AGG, CAC, CAT,
CCA, CTG,
GCG, GTC

ACC, ATG, CAA,
CGT, GCC, GCT,
GGC, TCT, TTG

—

NP TGT CAT, CCT, CGC, CGG,
CGT, GCG, TTT

AAG, AGA, CAC, CCG,
GCA, GGC, GTC, TTG

CTA — AAC, AGA, CAG,
CCG, CGT,
GAG, GTG

AAA, ATA, CTT, TCC TTA

NS CGA, CTT ACC, ACT, AGC, AGG,
AGT, CAT, CCC, CCT, CGC,
CGT, CTG, GCT, GGT, GTC,

GTG, TCC, TGC, TTT

AAG, ACA, ATT, CAC,
CCA, GCA, GGC, GGG,

GTA, TAT, TCT, TTA, TTC

GAC, TAC, TCA — CTC, CTG,
GAA, GAC

AAC —

PA ACG, CCT AAT, AGT, CAC,
CAG, CAT, CCC,
CGA, CTC, GCC,

GGT, GTT

AGC, CCA, CGC, CGG,
GAA, GAC, GGC, GTC,
TAC, TCA, TGT, TTG

— — CCG, CGA, CTG,
GAA, GAT, GCA,
GCG, TCT, TGC

ACT, CTT,
TGT, TTG

GGA

PB1 ACC, GCT AGT, ATC, ATG, CAA,
CAG, CCC, CCT,

CGA, CTT,
GCC, GGT, GTT, TCC

AAG, AAT, ACA, CAC, GGC, GTC, TCT, TGG,
TGT, TTA

— AGG TAC, TTG AGA, CTA,
GGG, TTA,

TTT

—

PB2 CCT, TAT,
TCC, TGC

AAC, ACC, AGT, CAC, CCC, CGA,
CGC, CGG, CGT, CTC,
CTT, GCC, GGT, TTA

AGA, CCA, CCG, GTA,
GTC, TGG, TGT, TTC

GGC, TAC ATC,
CTA, TTC

AAG,
ACA, CGC

AAA, ACT,
AGA, AGC

—
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in all genes separately (Supplementary Figure S5). This is in line
with results from Garten et al. (2009) which showed that the
2009 Swine pandemic strains did not have molecular markers for
Human adaptation and is coherent with the fact that the
sequences from the 2009 pandemic H1N1 strains do not
overlap the Human virus cluster either (Figures 2B, E).

We also compared the proportion of well-classified and
misclassified sequences in each subsets of zoonotic viral
sequences. While only 17.4% and 17.7% of sequences of
zoonotic viruses from direct transmission were misclassified
by the model, 84.0% of the Swine 2009 pandemic
H1N1 sequences were misclassified (Figure 2F). These results

FIGURE 5
Candidate zoonotic transition biomarkers by position for Swine-to-Human misclassified sequences. Codon features analyzed separately for each
section of 30 codons in each Influenza genes for for Swine-to-Human misclassified sequences. Scores represent the number of methods which
identified each codon as significantly enriched (positive sign) or depleted (negative sign) in misclassified sequences. Important gene domains are shown
above in green shades.

Frontiers in Genetics frontiersin.org09

Hatibi et al. 10.3389/fgene.2023.1145166

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1145166


show that both the localization in the latent space and the
prediction of the model are informative as to the pandemic
potential of the viral sequence.

Taken together, these results show that zoonotic sequences
localize with misclassified sequences at the margins between the
different host classes. This distinct localization of sequences from
zoonotic strains of pandemic potential far from their host cluster,
along with the lower host prediction accuracy of the model, reveals
that the network was able to capture genetic features that are key to
cross-species infectivity.

3.3 Extracting features of misclassified
sequences as candidates for zoonotic
transition markers

Zoonotic sequences and viral sequences misclassified by our
models tend to concentrate into the marginal space between hosts
(Figures 1, 2). This suggests that the neural networks have
identified signals, or unique features within viral sequences
that could render the viruses more likely to cross species
boundaries. These signals constitute interesting candidates for
zoonotic transition biomarkers. Therefore, to identify and
characterize these features and understand what makes them
ambiguous to the networks, we compared the misclassified
sequences to well-classified ones. As prediction results
obtained with the Bidirectional LSTM were superior to those
obtained with the Transformers, we elected to use this network
for the fine-grained analysis of mRNA sequences.

To identify candidates for zoonotic transition markers, we first
assess codon usage on viral sequences by comparing misclassified
sequences to well-classified ones for each pair of species. We elected
to combine four different methods to detect significant enrichment
in codon usage: (1) Student’s t-test, (2), Fisher’s exact test, (3),
Kullback Leibler and (4) LIME (see Section 2 for more details). We
then calculated a score for each codon which reflects the number of
methods that identified this codon as significantly different between
well-classified and misclassified sequences (between 0 and 4). We
assigned a positive (+) or negative (−) sign to the score to represent
whether a codon was enriched or depleted, respectively, in
misclassified sequences compared to well-classified ones. For
instance, a given feature significantly enriched in misclassified
sequences according to two methods will be attributed the score +2.

Codons showing differential usage between well-classified
and misclassified sequences are shown in Figure 3A (details
for each codon and each pair of species can be found in
Supplementary Table S6). Several codons appear to enhance
or to reduce zoonotic transitions. For instance, AAG(Lys),
ACA(Thr), ATA(Ile), CCG(Pro), GTA(Val), and GTC(Val)
have a score of +2 in Swine-to-Human transition, which
suggests that they could enhance zoonotic transition from
Swine to Human (Figure 3A, third column). In contrast,
ACC(Thr), AGT(Ser), CGC(Arg), CGT(Arg), CTG(Leu),
CTT(Leu), GTG(Val) and TCC(Ser) have a score
of −2 or −3 in Swine-to-Human transition, suggesting that it
reduces the likelihood of zoonotic transition in this pair of
species. Of note, several codons identified as having
differential usage between well-classified and misclassified

FIGURE 6
Conserved candidate zoonotic transition biomarkers by position in Swine-to-Human and Avian-to-Human misclassified sequences. Number of
codons (counts) with scores ≤ −2 or ≥2 in both Avian-to-Human and Swine-to-Human for each gene region. Only codons with similar type of divergence
(both ≤ −2 or both ≥2) are shown.
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TABLE 4 Codons conserved in Swine-to-Human and Avian-to-Human misclassified sequences per ROI.

Gene ROI Enriched Depleted

HA [0,29] AAG, ACC, AGG, ATA, ATT, CAA, GAC, GCG, GGA, TTA, TTT ATC, GTA

[30,59] AAC, AAG, ATT, CAA, CTT, GGA, TCT ACA, ACG, CAC, CTG, GAG, GCT, GGG, GTG, TTG

[60,89] AAC, CGA, CTC, TCA AAG, CCT, CGG, CTA, CTT, GAC, TGC

[90,119] GTG —

[180,209] — GTT

[360,389] — AAA

[480,509] TTT —

[510,539] AAC, AGT, TTG TTT

[540,569] ATC, CAG, CTG, GGG, TCC AAC, TCA, TGC

MP [0,29] ACA, CTG —

[30,59] GGA, TGC —

[330,359] — AAT

NA [0,29] ACA, GGA, TTA CTA, GTA, GTT

[30,59] AGC, CAA, CAC, CTT, GGA, GTA, GTT, TCA, TGC ACC, ATA, CTG, GCT, GGG. GTG, TTC

[60,89] GAC, GCC, TTT AAG, AGA, AGG, ATT, GTA

[90,119] TCC —

[390,419] CAG, GAG, GGG AGC, CAA

[420,449] AAC, ACT, CGA, CTA, GGG, GTT, TTC ATT, GAG, GGA, TCA, TTT

[450,479] GAG AAT, ACA, ATA, CAA, CTA, GAT, GGA, GGG, TTC

NP [0,29] ACA, CAA, GAG, GAT, GCG AAT, CAG, GTT, TCT

[30,59] AGA, ATT, CTA, CTT, GAT, TGG AGT, CAG, CAT, CTG, GAA

[60,89] CTT ACA

[390,419] — TCT

[420,449] AAC, AAT, CAG, CGA, CTC, GAC, TTC TCA, TTT

[450,479] AAG, GAG, TAC, TCC, TTG ATC, CCT, GAA, GAT, GTT, TCT

[480,509] AAC, AGT, GGG, TAC, TTT AAT, GAG, GGA, TAT, TTC

NS [0,29] GGA, GGG —

[30,59] TCA —

PA [0,29] AAC, GGA —

[30,59] AAT, CAA, GTT TTC

[60,89] GTT CCT, GAT, GGG

[90,119] ATA, GCT —

PB1 [0,29] GAC, TTT —

[30,59] GAT ACG, AGG, CCG

[60,89] GCT CGG, TTA

[90,119] AGG, ATA CAG

PB2 [0,29] AAC, AAG, AGG —

[30,59] TAC AAA, GAA, TGT

(Continued on following page)
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sequences are synonymous codons (e.g., Glycine codons GGC
and GGG have scores of +2 and −2 for Avian-to-Human
sequences, respectively, or Threonine codons ACC and ACA
have scores of −3 and +2 for Swine-to-Human, respectively),
suggesting that codon usage is likely contributing to the capacity
of a virus to transition from one species to the other
(Supplementary Table S6). Best candidates for Swine-to-
Human and Avian-to-Human zoonotic transition biomarkers
are listed in Table 2.

Interestingly, patterns of codons that appear to enhance or reduce
transition are very similar for the Avian-to-Human and Avian-to-
Swine pairs, as well as for the Human-to-Avian and Swine-to-Avian
pairs, as shown by their clustering in Figure 3A. This suggests that
similar codon features could be associated with zoonotic transition
from Avian to any of the other two species and vice versa.

Interestingly, some codons appear to have inverse effects in a
given pair of species. For instance, CGC(Arg) has a score of −2 for
Swine-to-Human transition and +2 for Human-to-Swine transition,
while ATA(Ile) has a +2 score for Swine-to-Human and −2 for
Human-to-Swine transition (Figure 3B). This inverse relationship
suggests that CGC(Arg) is better suited for viral infections in
Human, while ATA(Ile) would be better suited for Swine. Some
codons appear to favor zoonotic transitions in one direction only
(e.g., CAG(Gln) has a score of 0 in Swine-to-Human transition, but
+3 for Human-to-Swine transition). Results for other species pairs
can be found in Supplementary Figure S6; Supplementary Table S6.
Taken together, these results suggest an important degree of
complexity in how codon usage affects the likelihood of a virus
to transition from one species to another.

3.4 Zoonotic transition biomarkers differ by
gene and by position

Using the same approach, we further analyzed codon features of
misclassified sequences within specific genes. Interestingly, codons
identified as significantly enriched or depleted for a given pair of
species are different between genes (Figure 4 for Swine-Human pairs,
see Supplementary Figure S7 for Avian-Human pairs). For instance,
TTA(Leu) shows a score of −2 for HA and PB2 but a score of +2 for
NA, PB1 and NS in Swine-to-Human misclassified sequences
(highlighted in Figure 4A). Similarly, GTT(Val) shows an
enrichment for NP (score of +3) and PA (+2), but a depletion for
PB1 and HA (−2) in Human-to-Swine misclassified sequences
(Figure 4B). Best candidates per gene for Swine-to-Human and
Avian-to-Human zoonotic transition biomarkers are listed in Table 3.

We next evaluated whether certain regions of interest (ROI) of
each gene were more likely to contain significantly different features
in misclassified sequences. We focused our analysis on the number

of appearances of codons in slices of 30 consecutive codons. We
define ROIs for a given pair (i.e., codon and gene) as the regions in
that gene sequence where a codon mutation is likely to be most
impactful on zoonotic transition. As shown in Figure 5, most
significantly enriched or depleted features are localized at the
beginning of each gene in Human-Swine pairs of species. For
HA, NP and NA genes, several codons were significantly
enriched or depleted at the end of the gene as well. This was also
the case for the Human-Avian pairs (Supplementary Figure S8).

We evaluated whether some codons were identified as candidate
biomarkers for zoonotic transition in the same ROI and with the
same type of divergence (either enrichment or depletion) in both
Avian-to-Human and Swine-to-Human misclassified sequences.
We focused our analysis on codons with
scores ≤ −2 or ≥2 Avian-to-Human and Swine-to-Human.
Interestingly, HA, NA, and NP genes showed the greatest
number of codons that were conserved in misclassified sequences
in both Avian-to-Human and Swine-to-Human misclassified
sequences, which tend to locate and the beginning and end of
these three genes (Figure 6). This highlights the importance of
these three genes in zoonosis in Humans. These conserved
codons therefore represent the best candidates for zoonotic
transition biomarkers in Humans (shown in Table 4).

Taken together, these results underline a great degree of
complexity in what might influence zoonotic transition from one
species to another and suggest that zoonotic transition biomarkers
are likely to differ for each gene according to their position in the
sequence.

4 Discussion

Predicting which viral strains are likely to transition from one
species to another from their genetic sequence could help in the
prevention and response against these zoonotic strains. We
hypothesized that features that are predictive of viral hosts could
be leveraged to identify biomarkers of zoonotic transition. We first
investigated the usability of Deep Learning for the prediction of
hosts (Avian, Human, and Swine) from viral mRNA or protein
sequences. We compared two deep learning methods, namely,
Bidirectional LSTM and Transformers. In all cases, we obtained
very high accuracies on both protein and mRNA sequences, with the
highest accuracies obtained using mRNA sequences. This is
consistent with previous results of Behura and Severson, (2013);
Velazquez-Salinas et al. (2016) highlighting the importance of codon
usage bias for viral evolution. These results also suggest that codons
are better markers of zoonotic transition than amino acids, in
accordance with previous studies (Wong et al., 2010; Fancher
and Hu, 2011; Sun et al., 2020).

TABLE 4 (Continued) Codons conserved in Swine-to-Human and Avian-to-Human misclassified sequences per ROI.

Gene ROI Enriched Depleted

[60,89] GTT GGG

[90,119] ATC, GAT ATT, GTC, TAC, TGT

[120,149] — CAC
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One of the most salient features of the model was its capacity to
specifically distinguish zoonotic viral sequences from strains with
pandemic potential. Indeed, pandemic zoonotic sequences from the
2009 H1N1 Swine Influenza located at the margins of the Swine and
Human clusters and were mostly misclassified by the model. This
was not the case for viruses extracted from a direct Swine-to-Human
transmission, which did not subsequently result in Human-to-
Human transmission. Interestingly, the same patterns were found
for all genes separately. These results are in line with the study from
Garten et al. (2009) which showed that the 2009 Swine pandemic
strains did not have molecular markers for Human adaptation.
These results strongly suggest that the model can detect genetic
features that are unique to viral strains of pandemic potential,
different from both non-zoonotic viruses and zoonotic viruses
without Human adaptation.

In the second part of the study, we use Deep Neural Networks
interpretation techniques to identify candidates for zoonotic
transition biomarkers. More specifically, we compared sequences
that were misclassified by the network to well-classified sequences
using statistical tests, the Kullback-Leibler divergence and the LIME
Deep Learning interpretation method (Zhang et al., 2019). We
showed that candidate features vary significantly between pairs of
species, sometimes appearing to have inverse effects in a given pair
of species, sometimes appearing to favor transition in only one
direction. We also showed that candidate features differed between
different viral genes and tended to be more prominent at the
beginning and end of each gene. Interestingly, several of those
candidate biomarkers were the same in both Swine-to-Human
and Avian-to-Human misclassified sequences, suggesting their
importance for zoonosis in Humans. The number of conserved
codons in these two groups of misclassified sequences were
particularly high at the N- and C-terminal of NA, HA and NP
genes, highlighting their crucial role in cross-species infectivity.

Our results suggest two levels of viral adaptation to the host. The
first level is the global codon adaptation to the host, in accordance
with previous studies (Wong et al., 2010; Fancher and Hu, 2011; Sun
et al., 2020). Indeed, viruses are subjected to evolutionary pressures
to adapt their mRNA sequences to their hosts. As different hosts
have different codon usage biases and different tRNA pools, viruses
often evolve to adapt by adapting their global codon usage to their
hosts (Chen et al., 2020). Our results also suggest a second and more
fine-grained level of adaptation where the position of the codon in
the sequence is also important. This could be due to translation
kinetics that require codons at a certain position to modulate
translation efficiency and accuracy and therefore protein folding
(Rodnina, 2016). Previous studies have also linked codon usage to
protein misfolding and the generation of Defective Ribosomal
Products (DRiPs) (Drummond and Wilke, 2008) that are rapidly
degraded by the proteasomal machinery and are preferentially
presented by the MHC-I antigen presentation machinery
(Cannarozzi et al., 2010; Plotkin and Kudla, 2011). The usage of
specific codons at certain positions that we have identified could be
an evolutionary strategy to reduce the production of DRiPs.

Globally, our results support the use ofDeep Learningmodels in the
study of genetic sequences. The models used herein allow a higher
resolution analysis to unlock a better understanding of the genetic
nuances that can influence a given biological phenomenon. This
approach is sufficiently general to be applied not only to other types

of viruses, but also in other biological contexts. Because neural network
models take into accountmore data (e.g., codon usage by position), they
are also likely to be more accurate in predicting the targeted outcome
and their interpretation can be leveraged to identify novel biomarkers.
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