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Introduction: Ubiquitination is involved in many biological processes and its
predictive value for prognosis in cervical cancer is still unclear.

Methods: To further explore the predictive value of the ubiquitination-related
genes we obtained URGs from the Ubiquitin and Ubiquitin-like Conjugation
Database, analyzed datasets from The Cancer Genome Atlas and Gene
Expression Omnibus databases, and then selected differentially expressed
ubiquitination-related genes between normal and cancer tissues. Then,
DURGs significantly associated with overall survival were selected through
univariate Cox regression. Machine learning was further used to select the
DURGs. Then, we constructed and validated a reliable prognostic gene
signature by multivariate analysis. In addition, we predicted the substrate
proteins of the signature genes and did a functional analysis to further
understand the molecular biology mechanisms. The study provided new
guidelines for evaluating cervical cancer prognosis and also suggested new
directions for drug development.

Results: By analyzing 1,390 URGs in GEO and TCGA databases, we obtained
175 DURGs. Our results showed 19 DURGs were related to prognosis. Finally,
eight DURGs were identified via machine learning to construct the first
ubiquitination prognostic gene signature. Patients were stratified into high-
risk and low-risk groups and the prognosis was worse in the high-risk
group. In addition, these gene protein levels were mostly consistent with
their transcript level. According to the functional analysis of substrate
proteins, the signature genes may be involved in cancer development
through the transcription factor activity and the classical P53 pathway
ubiquitination-related signaling pathways. Additionally, 71 small molecular
compounds were identified as potential drugs.

Conclusion: We systematically studied the influence of ubiquitination-related
genes on prognosis in cervical cancer, established a prognostic model through a
machine learning algorithm, and verified it. Also, our study provides a new
treatment strategy for cervical cancer.
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1 Introduction

Among cancers in females, cervical cancer incidence and
mortality are high (Siegel et al., 2021; Sung et al., 2021). Because
of the increasing implementation of systematic screening and the
introduction of the HPV vaccine, its incidence was partly decreased.
However, the incidence remains high in places with poor economic
levels (Zhao and Qiao, 2019). In addition, most patients were in late
stages when diagnosed, and the prognosis was poor. Therefore,
prognostic biomarkers still need to be investigated to distinguish
high-risk patients for personalized treatment and follow-up strategy.

Ubiquitination, a post-translational modification, regulates
protein function or degradation (Nakamura, 2018). In
eukaryotes, the process of protein ubiquitination is a three-step
thioester cascade process involving enzymes including E1s
(ubiquitin-activating enzymes), E2s (ubiquitin-conjugating
enzymes), and E3s (ubiquitin-protein ligases) (Zheng and Shabek,
2017). The E1 enzyme activates the 76-amino acid ubiquitin
followed by transferring activated ubiquitin to the E2 enzyme.
Finally, E3 is responsible for recruiting a specific substrate and
catalyzing ubiquitin transfer from E2 to the protein (Song and Luo,
2019). Among the seven lysine residues and one methionine residue
that comprise ubiquitin, each has the ability to bind another
ubiquitin moiety, producing a protein that is either
monoubiquitinated or polyubiquitinated, making it a highly
versatile and elaborate post-translational modification
(Weissman, 2001). In addition, ubiquitin on substrate proteins
can be removed by deubiquitinating enzymes (DUBs), leading to
a reverse process of ubiquitination (Komander et al., 2009). One of
the most well-known functions of ubiquitination is to facilitate
protein degradation (Muratani and Tansey, 2003). Since
ubiquitination targets a wide range of substrates, it contributes to
most intracellular molecular biological processes, regulating tumor
progression, and mediating therapeutic resistance as well (Hoeller
and Dikic, 2009; Huang and Dixit, 2016).

Ubiquitination is attracting increasing attention, and several
studies proved ubiquitination involved cervical cancer. Martin et al.
demonstrated that HPV E6 protein promoted p53 degradation by
ubiquitin-dependent proteinases (Scheffner et al., 1990). Then,
further study revealed that E6 binds to ubiquitin-ligase E6AP,
promoting the development of cervical cancer by degrading p53
(Martinez-Zapien et al., 2016). Huh et al. reported that HPV16 E7-
associated cullin 2–ubiquitin ligase complex contributes to the
aberrant degradation of the pRB tumor suppressor (Huh et al.,
2007). In addition, ubiquitination proteins are potentially promising
targets for cancer therapy (Wang et al., 2021; Yang et al., 2021).
Morgan et al. (2021) demonstrated that USP13 deubiquitinates and
stabilizes Mcl-1, promoting the proliferation in cervical cancer.
Additionally, they found that BH3 mimetic inhibitor, a
USP13 inhibitor, could induce cell death by reducing Mcl-1
expression. Yi et al. (2020) found UBE2L3 caused excessive
p53 ubiquitination by nuclear export of HP1γ. They also found
that doxorubicin promoted HP1γ-mediated UBE2L3 inhibition,
increasing p53 stability and activity in cisplatin-resistant cervical

cancer cells. With its extensive substrates and the ability to regulate
protein levels, the ubiquitination pathway has become a promising
therapeutic route (Huang and Dixit, 2016). Therefore, systematic
analysis of ubiquitination-related genes and construction of a
ubiquitination-related gene signature to predict prognosis in
cervical cancer is undoubtedly necessary.

In this study, we obtained ubiquitination-related genes by
searching the Ubiquitin and Ubiquitin-like Conjugation Database
(IUUCD) and analyzed the dataset from TCGA and GEO databases.
We identified several ubiquitination-related genes associated with
prognosis significantly, including RBBP4, SRM, GCH1, USP14,
TRAIP, CBX4, VEZF1, and TOM1. Also, these ubiquitination-
related genes were used to develop a reliable prognostic
signature. The ubiquitination-related prognostic signature was
used to differentiate patients into two groups, with the high-risk
groups having worse outcomes. Therefore, our signature can help
doctors to establish personalized treatment and follow-up plans
according to risk stratification. In addition, to find a mechanism for
how ubiquitin proteasome regulates cervical cancer, we predicted
the substrate proteins and did the functional analysis. Through the
CMap database, we identified 71 small molecular compounds
identified as potential compounds, and they were involved in
34 mechanisms, including the inhibitor of actin polymerization,
AKT, ALK, aurora kinase, CDK, dehydrogenase, DNA-dependent
protein kinase, FLT3, focal adhesion kinase, glucosyltransferase,
DNA protein kinase, HDAC, HMGCR, IGF-1, EGFR, IKK, JNK,
MEK, RAF, VEGFR,MTOR, PI3K, protein kinase, protein synthesis,
DNA synthesis, topoisomerase, tyrosine kinase, Coflilin signaling
pathway activator, estrogen receptor antagonist, glucokinase
activator, HIF modulator, mitochondrial oxidative
phosphorylation uncoupler, retinoid receptor ligand, and T-type
calcium channel blocker. The study provides new guidelines for
evaluating cervical cancer outcomes and suggests new directions for
drug development.

2 Methods

2.1 Obtained and processed datasets

Gene expression data, along with clinical information, were
collected from the NCBI Gene Expression Omnibus (GEO)
database1 and The Cancer Genome Atlas (TCGA) database2.
Since these are public databases, this study is exempted from
ethical review and does not require patients to sign informed
consent. The selection criterion required the dataset to have
relevant clinical information. Finally, GSE39001, GSE52903,
GSE44001, and TCGA-CESC datasets were enrolled for analysis
(Table 1).

1 https://www.ncbi.nlm.nih.gov/geo/.

2 https://portal.gdc.cancer.gov/.
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The GSE39001 data include data from two sequencing
platforms, GPL201 and GPL6244, in which the GPL201 platform
includes 12 normal samples and 43 cancer samples, and the
GPL6244 platform included five normal samples and 19 cancer
samples (Espinosa et al., 2013). GSE52903 was derived from the
GPL6244 platform and included 17 normal samples and 55 cancer
samples (Medina-Martinez et al., 2014). For data from different
platforms, we only combined data from the same company to reduce
the batch effect. Since both GSE39001 and GSE52903 are
Affymetrix-sequencing companies, so we integrated the two
cohorts to increase the sample size. Then, a metadata cohort was
created and used to identify genes differentially expressed between
cancer and normal samples. In both prognostic studies and further
mechanistic studies, we used study cohorts with GSE52903 and
GSE39001 integration.

As a unified standardized process, Affymetrix microarray
datasets were preprocessed and normalized using the RMA
function in the Affy package including background correction
and normalization (Irizarry et al., 2003). Moreover, batch effects
were removed using the SVA package’s combat function (Leek,
2014). Following the batch effect removal, normalization was
performed using the normalizeBetweenArrays method. Principal
component analysis (PCA) is used to extract principal components
and can be used to distinguish the distribution of samples by the
prcomp function using the ggbiplot package.

TCGA RNA sequencing data (TPM format) were downloaded
from the Genomic Data Commons2. In addition, for the
GSE44001 dataset from the Illumina company containing
300 samples, the clinical outcome was disease-free survival
(DFS), and the signature accuracy in predicting disease
progression was examined (Lee et al., 2013). The TCGA-CESC
cohort is also from the Illumina platform, and we used the
TCGA-CESC cohort as a validation cohort to explore the
signature accuracy. We also downloaded annotation files from
NCBI GEO for various microarray platforms. Gene symbols were
generated based on the probe annotation files for each dataset. The
probe average was calculated for gene symbols with more than one
probe.

The integrated annotations for the Ubiquitin and Ubiquitin-like
Conjugation Database contains E1s, E2s, E3s, DUBs, UBDs, and
ULDs for 74 families of all 68 animals, 39 plants, and 41 fungal
species. In addition, the IUUCD provides annotation information
for all these proteins in the database. We downloaded the human

ubiquitination-related genes from IUUCD and organized them. In
total, 1,390 ubiquitination-related genes (URGs) were obtained from
the IUUCD3 (Gao et al., 2013; Zhou et al., 2018).

To clearly show the process of this study, we drew a flow chart as
shown in Supplementary Figure S1A.

2.2 Screened DURGs

We identified differentially expressed genes (DEGs) between
tumors and normal samples by the R package limma. Our screening
criterion was adjusted p-values <0.001. R package VennDiagram
was used to intersect DEGs with URGs to identify differentially
expressed URGs. Plotting of ubiquitination-related DEGs (DURGs)
expression data in all samples was performed by the pheatmap
package.

2.3 Functional analysis and visualization

We conducted Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment for DURGs by the
clusterProfiler package (Yu et al., 2012). The visualization and
localization of KEGG pathways were performed based on
DURGs by the pathview packages.

On the KEGG pathway legend, genes are categorized according
to their differential significance and increase or decrease, in which
red indicates upregulation and green indicates a decrease. In
addition, the color shades correspond to the value of log10 [fold
change]. Significant pathways had p-value <0.05.

2.4 Established and validated the prognostic
gene signature

We identified DURGs that have an association with the overall
survival through univariate Cox regression in metadata data. After
the filtration of DURGs associated with overall survival, candidate
DURGs were selected via integrated analysis of two machine

TABLE 1 Overview of details of the datasets.

GEO accession Platform Total Normal Cancer Clinical outcome

GSE39001 GPL201 [HG-Focus] Affymetrix Human HG-Focus Target Array 55 12 43 OS

GPL6244 [HuGene-1_0-st] Affymetrix Human Gene 1.0 ST Array
[transcript (gene) version]

24 5 19

GSE52903 GPL6244 [HuGene-1_0-st] Affymetrix Human Gene 1.0 ST Array
[transcript (gene) version]

72 17 55 OS

GSE44001 GPL14951 Illumina HumanHT-12 WG-DASL V4.0 R2 expression
beadchip

300 0 300 DFS

TCGA-CESC Illumina 309 3 306 OS

OS, overall survival and DFS, disease-free survival.

3 http://iuucd.biocuckoo.org/.
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learning algorithms consisting of the Least Absolute Shrinkage and
Selection Operator (LASSO) algorithm with penalty parameter
tuning conducted by 10-fold cross-validation and the Support
Vector Machine-Recursive Feature Elimination (SVM-RFE)
algorithm searching for lambda with the smallest classification
error to determine the variable (Duan et al., 2005).

We performed LASSO regression using the R package glmnet.
Furthermore, SVM-RFE was performed by msvmRFE.R4 based on
the e1071 R package. Next, we merged the results of LASSO and
SVM-RFE to identify the top-ranking common genes. Following
the aforementioned filtration process, prognostic gene signatures
were constructed by multivariate Cox regression. Also, we
calculated patients’ risk scores, the cutoff value of which was
ensured by the function of surv_cutpoint in the survminer
package. Then, two groups of patients were categorized as high-
and low-risk. In addition, we further explored the prognostic
performance of each gene in the prognostic gene signature for
cervical cancer.

Additionally, the prognostic gene signature was validated in
TCGA cohorts. To further explore the predictive effect of the gene
signature on tumor progression, we used GSE44001 for
verification. For TCGA and GSE44001, risk scores were
calculated in the same way, and the same method was used to
group patients. The Kaplan–Meier analysis with log-rank test and
univariate and multivariate Cox regression was performed by the
survival package and the ROC curve was constructed by the
survivalROC package. From the ROC curve, we also calculated
the area under the ROC curve (AUC). The value of AUC ranges
between 0.5 and 1. The closer the AUC is to 1.0, the higher the
authenticity. If it is equal to 0.5, the authenticity is the lowest and
has no application value.

In addition, we also further explore the role of the risk score
calculated from the gene signature in the diagnosis of cervical cancer
by logistic analysis using the rms package.

2.5 Analysis of signature genes protein
expression in the HPA database

The Human Protein Atlas5 (HPA) offers open access to data for
exploring the proteome of humans and has helped many
academicians. We used the HPA database to detect the protein
levels of signature genes by immunohistochemistry (IHC), and we
obtained IHC images from the database (Uhlen et al., 2015).

2.6 Predicted substrate proteins and
performed functional enrichment analysis

It has been known that E3s and DUBs bind specifically to
substrates among these enzymes. UbiBrowser6 was used to
predict the substrate protein of E3s and DUBs (Li et al., 2017;

Wang et al., 2022). Afterward, we selected 20 substrate proteins with
the highest prediction scores and known substrate proteins for
functional enrichment analysis by the clusterProfiler package.

2.7 Identified potential drugs by connectivity
map analysis

The Connectivity Map7 (CMap) is a chemical genomics
database, and its resource can help researchers identify
relationships between small molecules, diseases, and drugs
(LAMB et al., 2006). We used the query function in the CMap to
identify potential drugs. According to guidelines, up- and
downregulated DURGs were uploaded on the online tools. In
general, a negative enrichment value relates to a drug’s potential
for treating the disease, with a greater value indicating more efficacy.
Compounds identified by the CMap were filtered based on
enrichment scores (ES, Score < −90).

2.8 Statistical analysis

Statistical analyses are performed by R version 4.1.3. All analyses
were two-sided with p < 0.05 considered statistically significant.

3 Results

3.1 Grouped samples and identified
prognostic DURGs

We integrated two datasets, namely, GSE52903 and GSE39001,
into a comprehensive dataset for investigating gene expression in
cervical cancer after removing the batch effects by sva package and
normalizing by normalizeBetweenArrays methods. Following this,
the distributions of the samples were determined by PCA before and
after correction. Figures 1A,C present the distributions of the
original datasets, while Figures 1B,D show the removal of
confounding factors. From Figure 1, we can see that before
removing the batch effect, the samples of each dataset are
clustered together, and after removing the batch effect, the
samples are evenly distributed.

After integration, the total number of gene probes was 7,824.
Additionally, differential expression analysis revealed 2,464 DEGs in
the metadata, including 1,268 upregulated genes and
1,196 downregulated genes. In addition, expression levels were
also shown visually in Supplementary Figure S2. In total,
1,390 URGs were found in the IUUCD .

We obtained 175 DURGs from a cross-section of DEGs and
URGs (Figure 1E). Among the 175 DURGs, upregulations totaled
108 and downregulations totaled 67. In total, 19 DURGs, RBBP4,
KAT2B, SRM, UBA2, GCH1, USP14, TRAIP, LYST, CBX4, HERC1,
PAFAH1B1, LYN, BARD1, VEZF1, CBLC, FYCO1, TOM1, UBE2S,
and PELI1, were associated with OS based on univariate Cox

4 https://github.com/johncolby/SVM-RFE.

5 http://www.proteinatlas.org.

6 http://ubibrowser.ncpsb.org. 7 https://clue.io/.
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regression analysis, with seven genes associated with poor outcomes
and 12 genes associated with good outcomes (Figure 1F).

3.2 Functional enrichment analysis and
ubiquitination mechanism assessment by
KEGG map

We performed functional enrichment analysis on these
175 DURGs. According to GO analysis, DURGs were primarily
involved in ubiquitin-dependent protein catabolic processes,
protein polyubiquitination, and regulation of protein
ubiquitination regulation. Based on KEGG analysis, DURG
functions were involved in ubiquitin-mediated proteolysis, Fc
gamma R-mediated phagocytosis, proteasome, and NF-kappa B
signaling pathway. Based on KEGG and GO enrichment analysis,
we found that genes were mainly enriched in ubiquitination-
related pathways, so we visualized using the KEGG annotation
map. From this, we recognized the DURGs in the ubiquitination
pathway and their effect on cancer progression (Supplementary
Figure S1B).

3.3 Constructed gene signature to predict
prognosis with eight hub DURGs

Considering that too many candidate genes were identified by
univariate Cox regressions, we used LASSO regression and SVM-RFE
to ensure the genes we selected were important in the development of
the disease. SVM-RFE analysis first identified the candidate genes. Eight
genes, which were RBBP4, SRM, GCH1, USP14, TRAIP, CBX4,
VEZF1, and TOM1, were identified (Figures 2A,B). In addition,
LASSO analysis also identified 14 key genes, RBBP4, SRM, UBA2,
GCH1, USP14, TRAIP, LYST, CBX4, HERC1, BARD1, VEZF1,
FYCO1, TOM1, and PELI1, from 19 genes (Figures 2C,D). The
intersection of LASSO and SVM-RFE analyses revealed eight hub
genes in cervical cancer, which were RBBP4, SRM, GCH1, USP14,
TRAIP, CBX4, VEZF1, and TOM1 (Figure 2E). Eventually, we
performed multivariate Cox analysis on eight hub genes to construct
the gene signature to predict the prognosis (Figure 2F). Based on the
coefficients of each gene, the risk score was calculated as follows: risk
score = (−2.1476*RBBP4)+(−1.6532*SRM)+(−1.9507*GCH1)+
(1.1985*USP14)+(2.0422*TRAIP)+(2.5609*CBX4)+(−1.4570*VEZF1)
+(−2.6949*TOM1). Additionally, the gene signature was visualized by

FIGURE 1
Data preprocessing and differential expression analysis. PCA analysis before (A) and after (B) batch effect adjustment and normalization. Barplot
before (C) and after (D) batch effect adjustment and normalization. (E) Intersection analysis of DEGs and ubiquitination-related genes. (F) Results of
univariate Cox regression analysis of DURGs.
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using a nomogram (Figure 2G). The gene signature’s AUC at 1, 3, and
5 years were 0.946, 0.885, and 0.882, respectively, indicating the model
had high accuracy and reliability (Figure 2H).

In addition, we further explored the prognostic value of each
gene in the gene signature, and the results were shown in
Supplementary Figure S3. The results showed that the tags were
more predictive of the prognosis than any one of the genes.

3.4 Prognostic gene signature validated in
GEO datasets and TCGA cohort

We calculated the risk scores in the metadata and based on the
cutoff points calculated, using the survminer package, and we
classified all patients into high- and low-risk groups (Figures
3C,D). Patients with high risk in the metadata cohort had worse
outcomes than patients with low risk, according to Kaplan–Meier
log-rank analysis (Figure 3A). Figure 3B showed the mRNA
expression level of eight signature genes in the metadata.

We calculated the risk scores in TCGA-CESC and grouped
patients as mentioned previously to validate the gene signature
reliability (Supplementary Figure S4D, E). As shown in
Supplementary Figure S4A, high-risk patients also had significantly
worse prognoses in TCGA cohort. Additionally, the heatmap showed

the landscape of the eight signature genes in TCGA-CESC cohort
(Supplementary Figure S4B). In addition, the ROC curve also proved
the conclusion (Supplementary Figure S4C).

In the GSE44001 cohort, the outcome variable was disease-free
time. To investigate whether gene signature plays a role in disease
progression, we used GSE4401 to explore further. We also calculated
the risk scores and grouped patients as mentioned previously
(Supplementary Figure S5D, E). We found that disease-free
survival time was shorter in a high-risk group (Supplementary
Figure S5A). Additionally, Supplementary Figure S5B showed
eight signature gene expressions in GSE44001.

The AUC of 1, 3, and 5 years DFS were 0.621,0.610, and 0.588,
respectively, all over 0.5, indicating that they had a certain reference
value in predicting disease progression (Supplementary Figure S5C).
It is further suggested that our gene signature had good performance
on the occurrence and development of cervical cancer and may be
indispensable in cervical cancer.

3.5 Constructed a nomogram by risk scores
and clinical factors

A systematic analysis was performed based on their risk scores
generated by the gene signature and clinical characteristics, such as

FIGURE 2
Machine learning analysis and establishment of a prognostic model. Two algorithms were used for feature selection: SVM-RFE (A and B) and LASSO
(C and D) algorithms. (E) Intersection of two algorithms. (F) Forest plot of multivariate Cox regression analysis by eight hub genes. (G) Nomogram of the
gene signature for predicting patient survival. (H) ROC curves of the gene signature on 1-, 3-, and 5-year OS in the metadata.
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FIGURE 3
Internal validation of the prognosticmodel. (A) Kaplan–Meier curves with log-rank test in themetadata. (B)Heatmap of the hub genes between low-
and high-risk groups in the metadata. (C and D) Risk scores distribution of the metadata.

FIGURE 4
Effect of prognostic models and clinicopathological factors on survival. (A) Univariate Cox analysis of risk scores and other clinical features. (B)
Multivariate Cox analysis showed the risk score was an independent prognostic factor. (C) Nomogram constructed by the risk score and clinical factors.
(D) K–M analysis of the nomogram. (E) ROC curves of the nomogram on 1-, 3-, and 5-year OS.

Frontiers in Genetics frontiersin.org07

Hao et al. 10.3389/fgene.2023.1142938

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1142938


stage and age to explore the gene signature relationship with clinical
factors. Figure 4A shows the risk score was closely correlated with
OS. Also, the risk score was an independent prognostic factor
demonstrated by multivariate Cox regression analysis
(Figure 4B). Moreover, we studied the risk scores between
different histological types and different stages, as shown in
Supplementary Figure S6B-C. The results showed that there was
no significant difference in the risk scores among different
histological types. However, the later the clinical stage, the higher
the risk score. We further explored the value of the risk score
calculated by the gene signature in cervical cancer diagnosis. The
AUC was 0.679 (Supplementary Figure S6A). The result indicated
that the gene signature was also valuable in the diagnosis of cervical
cancer.

Then, we took the risk score as a variable to construct the other
nomogram to predict the patient’s OS (Figure 4C). The results showed
that the nomogram has an excellent performance on the predicted 1-
year OS. Also, the nomogram also can divide the patients clearly
(Figure 4D). The AUC of the nomogram for 1-, 3-, and 5-year OS
were 0.980, 0.868, and 0.874, respectively (Figure 4E).

Calibrate curves showed the comparison between the predicted
probability and the observed probability of 1-, 3-, and 5-year OS. In
addition, almost perfect calibration curves were observed in Figures
5A–C. To compare the predictive effect of the nomogram with the
risk score and other clinical factors for predicting the prognosis, we
further constructed decision curves. The results showed that the
nomogram calculated by the risk score and clinical factors has the
best performance (Figure 5D).

3.6 Validation of the protein levels of the
signature genes

We obtained immunohistochemistry staining from the HPA
database to further explore the signature genes’ protein levels. The
results are shown in Figures 6A–H. As mentioned previously, the
mRNA expression level of eight signature genes in the metadata are
shown in Figure 3B. Among these genes, GCH1, USP14, CBX4,
TRAIP, VEZF1, and TOM1 protein levels were consistent with the
transcript. Tumors and normal groups both had high
RBBP4 protein levels, and SRM protein levels were moderate in
both normal and tumor groups.

3.7 Detection of the substrate proteins for
E3s and DUBs in the gene signature and
functional enrichment analysis

UbiBrowser was used to predict the possible substrate proteins for
the signature genes to determine the potential functional impact.
Among the eight genes, RBBP4, CBX4, and TRAIP are E3s and
USP14 is DUBs. SRM is a predicted E3 and has not been
experimentally confirmed to have substrate proteins. The number of
the predicted substrate proteins of RBBP4, CBX4, and TRAIP was 71,
110, and 317, respectively. In addition, TRAIP has one known substrate
protein. USP14 is a DUB that has 18 known substrate proteins and
382 predicted substrates proteins. Further functional analysis was
carried out on the top 20 predicted substrates (Figure 7A).

FIGURE 5
Internal validation of prognostic models with clinicopathological factors. (A–C) Calibration curves of the nomogram constructed by the risk score
and clinical factor. (D) Decision curve of the nomogram constructed by the risk score and clinical factor.
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According to GO analysis, substrate proteins participate in the
regulation of transcription factor activity, histone modification,
protein modification, regulating the classical P53 pathway, and
ubiquitination-related signaling pathways (Figure 7C). Additionally,
according to KEGG analysis, the substrate proteins were associated
with the human papillomavirus infection pathway, which also
confirmed the gene signature validity. In addition, the substrate
proteins also participated in some intriguing pathways, such as cell
cycle, p53 signaling pathway, cytosolic DNA-sensing pathway, and
NF-kappa B signaling pathway (Figure 7B). Our signature genes are
involved in these pathways, illustrating that they may promote
cervical cancer development through these pathways. Also, it helps
us to identify the potential therapeutic drugs.

3.8 Identified small molecular compounds
for cervical cancer

In addition, we screened the DURGs for potential therapeutic
drugs for cervical cancer using the CMap database. There were
71 small molecular compounds identified as potential compounds,
and they were involved in 34 mechanisms, including the inhibitor of
actin polymerization, AKT, ALK, aurora kinase, CDK,
dehydrogenase, DNA dependent protein kinase, FLT3, focal
adhesion kinase, glucosyltransferase, DNA protein kinase,
HDAC, HMGCR, IGF-1, EGFR, IKK, JNK, MEK, RAF, VEGFR,
MTOR, PI3K, protein kinase, protein synthesis, DNA synthesis,
topoisomerase, tyrosine kinase, Coflilin signaling pathway activator,

estrogen receptor antagonist, glucokinase activator, HIF modulator,
mitochondrial oxidative phosphorylation uncoupler, retinoid
receptor ligand, and T-type calcium channel blocker (Table 2).

4 Discussion

It has been reported that protein ubiquitination regulates the
growth or death of tumor cells through various biological processes
by changing the ubiquitination level of the substrate protein,
inducing the degradation or stabilization of the substrate protein
(Wang et al., 2019). Further research of these URGs will help
broaden our horizons in cervical cancer development and
prognosis of cervical cancer patients. Through bioinformatics
methods, a few previous studies have been focused on cervical
cancer prognosis. Pan et al. screened the m6A RNA methylation
regulator genes and constructed a prognostic signature (Pan et al.,
2020). Jiang et al. identified the autophagy-related gene and
constructed a prognostic model (Jiang et al., 2021). Until now,
no bioinformatics study has been conducted on the ubiquitination of
cervical cancer. Therefore, we focused on protein ubiquitination to
develop a prognostic model.

Cervical cancer URGs were systematically investigated. By
analyzing 1,390 URGs in the GEO and TCGA databases, we
obtained 175 DURGs. Also, 19 DURGs were related to OS
among these DEGs. Then, we screened eight hub DURGs by
SVM-RFE and LASSO regression analysis, and then the eight
hub DURGs had multivariate Cox regression performed to

FIGURE 6
(A-H) Eight genes protein levels between normal and cancer tissues from the HPA database.
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construct the prognostic model. The model’s AUC were 0.946,
0.885, and 0.882 at 1-, 3-, and 5- years OS, which indicated that
it can accurately predict the prognosis of patients. Next, the risk
scores were calculated and classified patients into high- and low-risk
groups. Based on the results, cervical cancer patients with different
survival outcomes could be accurately separated. We can formulate
treatment plans and follow-up strategies according to different risk
stratifications. In addition, the model’s reliability and stability were
further validated in TCGA-CESC cohort, and it could also
accurately predict the prognosis and divide patients into two
groups with different prognoses, which indicated that the
prognostic gene signature was stable. We further integrated the
clinical factors into analysis including age, histology, and stage and
multivariate Cox analysis revealed the risk score was an independent
prognostic factor.

Among these genes in the prognostic gene signature, it has been
confirmed that RBBP4 could control HPV16 transforming activity
in cervical cancer. When overexpressed, it inhibited cell growth and
tumor formation significantly (Kong et al., 2007). Also, RBBP4 was
also associated with radiosensitivity. Zheng et al. found that
RBBP4 could enhance radiosensitivity in vivo and in vitro (Zheng
et al., 2013). As for USP14, Xu et al. found that USP14 could stabilize
MDM2 (Xu et al., 2020). MDM2 could mediate p53 ubiquitination

and induce p53 degradation (Hock and Vousden, 2014).
Furthermore, USP14 selective inhibitor IU1 decreased
MDM2 expression, inhibited growth, and triggered apoptosis in
cervical cancer cells (Xu et al., 2020). We did not find other gene-
associated studies in cervical cancer. TRAIP enhances osteosarcoma
invasion and proliferation through the modulation of IGFBP3/AKT
by promoting the degradation of KANK1, which is a tumor
suppressor (Li et al., 2021). Zhu et al. found that the
overexpression of SRM induced chemotherapy resistance in
bladder cancer cells (Zhu et al., 2022). CBX4 promotes
proliferation through affecting BMI-1 expression in lung cancer
cells (Hu et al., 2020). In hepatocellular carcinoma, GCH1 silencing
promotes cell growth by activating superoxide anion-mediated
ASK1/p38 signaling (Zhong et al., 2021). VEZF1 and
TOM1 have been investigated in few studies. Then, we
investigate the protein levels of the eight genes in the HPA
database. Overall, protein expression levels for most genes were
consistent with their transcriptional levels. It appears that the genes
we identified are worthy of further investigation.

We performed a functional enrichment analysis of 175 DURGs
between normal and cancerous tissues. According to GO analysis,
DURGs were mainly involved in ubiquitin-dependent proteolytic
metabolic processes, protein polyubiquitination, and regulation of

FIGURE 7
Analysis of substrates for ubiquitination-related genes. (A) Top 20 predicted and known substrate proteins. (B) KEGG enrichment analysis. (C) GO
pathway enrichment analysis. The red triangle represents the substrate proteins; the orange diamond represents the E3s; and the green rectangle
represents the DUB.
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TABLE 2 Results of CMap analysis.

ID Name Description Score

BRD-K67868012 PI-103 MTOR inhibitor −99.26

BRD-K12184916 Dactolisib MTOR inhibitor −99.12

BRD-K67566344 KU-0063794 MTOR inhibitor −99.05

BRD-K69932463 AZD-8055 MTOR inhibitor −98.94

BRD-K30677119 PP-30 RAF inhibitor −98.89

BRD-K63068307 ZSTK-474 PI3K inhibitor −98.76

BRD-K77008974 WYE-354 MTOR inhibitor −98.26

BRD-K64606589 Apicidin HDAC inhibitor −98.1

BRD-K52911425 GDC-0941 PI3K inhibitor −98.1

BRD-K97365803 PI-828 PI3K inhibitor −98.08

BRD-K13049116 BMS-754807 IGF-1 inhibitor −97.92

BRD-K04887706 AKT-inhibitor-1-2 AKT inhibitor −97.88

BRD-A62025033 Temsirolimus MTOR inhibitor −97.82

BRD-K79090631 CGP-60474 CDK inhibitor −97.71

BRD-K68065987 MK-2206 AKT inhibitor −97.71

BRD-A11678676 Wortmannin PI3K inhibitor −97.6

BRD-K99545815 PF-562271 Focal adhesion kinase inhibitor −97.5

BRD-K92428153 Mycophenolate-mofetil Dehydrogenase inhibitor −97.45

BRD-K99818283 PIK-90 PI3K inhibitor −97.43

BRD-K27305650 LY-294002 MTOR inhibitor −97.43

BRD-K94294671 OSI-027 MTOR inhibitor −97.29

BRD-K08589866 Linsitinib IGF-1 inhibitor −97.19

BRD-K00337317 NU-7441 DNA-dependent protein kinase inhibitor −97.04

BRD-K12502280 TG-101348 FLT3 inhibitor −96.9

BRD-U51951544 ZG-10 JNK inhibitor −96.71

BRD-K34581968 BMS-536924 IGF-1 inhibitor −96.6

BRD-K40175214 Torin-1 MTOR inhibitor −96.58

BRD-K09499853 KU-0060648 DNA-dependent protein kinase inhibitor −96.51

BRD-K06750613 GSK-1059615 PI3K inhibitor −96.46

BRD-K64800655 PHA-793887 CDK inhibitor −96.41

BRD-A45498368 WYE-125132 MTOR inhibitor −96.41

BRD-K06792661 Narciclasine Coflilin signaling pathway activator −96.37

BRD-K77908580 Entinostat HDAC inhibitor −96.31

BRD-K23192422 Lestaurtinib FLT3 inhibitor −96.13

BRD-U82589721 HG-5-113-01 Protein kinase inhibitor −96.02

BRD-K56334280 Amonafide Topoisomerase inhibitor −95.95

BRD-M16762496 PIK-75 DNA protein kinase inhibitor −95.87

BRD-K04210847 Tamoxifen Estrogen receptor antagonist −95.74

(Continued on following page)
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protein ubiquitination. KEGG analysis revealed that DURGs were
functionally involved in ubiquitin-mediated proteolysis, Fc γ
r-mediated phagocytosis, and proteasome and NF-kappa B
signaling pathways. In addition, among the eight genes, RBBP4,
CBX4, TRAIP, and USP14 specifically bind to substrate proteins.
According to the functional analysis of substrate proteins, substrate
proteins are involved in transcription factor regulation, histone

modification, protein modification, and other related pathways,
regulation of the classical p53 pathway, and regulation of the
mitotic cell cycle and ubiquitination-related signaling pathways.
The common pathways involved in ubiquitination genes and their
substrates are mainly involved in protein modification or degradation,
such as the ubiquitinated proteasome system. Among them,
ubiquitination modifications mainly involve protein degradation,

TABLE 2 (Continued) Results of CMap analysis.

ID Name Description Score

BRD-K91370081 Anisomycin DNA synthesis inhibitor −95.67

BRD-K07762753 Aminopurvalanol-a Tyrosine kinase inhibitor −95.65

BRD-K51575138 TPCA-1 IKK inhibitor −95.36

BRD-K53414658 Tivozanib VEGFR inhibitor −95.21

BRD-K68174511 Torin-2 MTOR inhibitor −94.82

BRD-K69840642 ISOX HDAC inhibitor −94.79

BRD-K80348542 Cephaeline Protein synthesis inhibitor −94.79

BRD-K89626439 Sirolimus MTOR inhibitor −94.77

BRD-K05653692 DL-PDMP Glucosyltransferase inhibitor −94.17

BRD-K09549677 Mibefradil T-type calcium channel blocker −94.08

BRD-K49294207 BIBU-1361 EGFR inhibitor −94.08

BRD-K29733039 Deforolimus MTOR inhibitor −93.96

BRD-K78431006 Crizotinib ALK inhibitor −93.91

BRD-K58772419 AZD-6482 PI3K inhibitor −93.86

BRD-K06543683 Bisindolylmaleimide-ix CDK inhibitor −93.76

BRD-K76674262 Homoharringtonine Protein synthesis inhibitor −93.62

BRD-K41895714 AS-605240 PI3K inhibitor −93.58

BRD-K68488863 ENMD-2076 FLT3 inhibitor −93.26

BRD-M64432851 Sunitinib FLT3 inhibitor −93.24

BRD-A25687296 Emetine Protein synthesis inhibitor −93.23

BRD-K36740062 GSK-1070916 Aurora kinase inhibitor −93.18

BRD-A81772229 Simvastatin HMGCR inhibitor −92.24

BRD-K14821540 FCCP Mitochondrial oxidative phosphorylation uncoupler −92.11

BRD-K75295174 Alisertib Aurora kinase inhibitor −92.1

BRD-U44700465 HG-5-88-01 Protein kinase inhibitor −91.34

BRD-A26002865 Verrucarin-a Protein synthesis inhibitor −91.3

BRD-K56343971 Vemurafenib RAF inhibitor −91.27

BRD-K57080016 Selumetinib MEK inhibitor −91.23

BRD-A19248578 Latrunculin-b Actin polymerization inhibitor −90.8

BRD-K13927029 Retinol Retinoid receptor ligand −90.73

BRD-K21672174 RO-28-1675 Glucokinase activator −90.43

BRD-K68336408 Tyrphostin-AG-1478 EGFR inhibitor −90.06

BRD-K44432556 VU-0418946-1 HIF modulator −90
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such as Fc γ r-mediated phagocytosis, while substrates are mainly
involved in protein modifications, such as histone modifications. We
suggest that these genes influence prognosis through these pathways.

As with any study, ours has some limitations as well. Our study
was retrospective and lacked prospective clinical trial validation.
Further experimental studies are needed to confirm the mechanism
of DURGs. Therefore, we will collect clinical specimens in the near
future and conduct basic experiments to further verify our results.

In conclusion, the prognostic gene signature based on the
ubiquitination of cervical cancer was first constructed and
validated. In addition, it can accurately predict patients’ OS.
Through this gene signature, we can distinguish high- and low-
risk groups, so as to formulate individualized treatment plans and
follow-up strategies. In addition, the risk score calculated by the gene
signature was also an independent prognostic factor. Additionally,
we identified the TFs and substrate protein associated with the
prognostic signature genes to gain a deeper understanding of their
underlying molecular biological mechanisms. In addition, we also
conducted drug predictions through DURGs and obtained 71 small
molecule compounds, which may inhibit the occurrence and
development of cervical cancer. Furthermore, these eight genes
may serve as new biomarkers or targets for cervical cancer research.
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