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Neoantigens recognized by cytotoxic T cells are effective targets for tumor-
specific immune responses for personalized cancer immunotherapy. Quite a few
neoantigen identification pipelines and computational strategies have been
developed to improve the accuracy of the peptide selection process. However,
these methods mainly consider the neoantigen end and ignore the interaction
between peptide-TCR and the preference of each residue in TCRs, resulting in the
filtered peptides often fail to truly elicit an immune response. Here, we propose a
novel encoding approach for peptide-TCR representation. Subsequently, a deep
learning framework, namely iTCep, was developed to predict the interactions
between peptides and TCRs using fusion features derived from a feature-level
fusion strategy. The iTCep achieved high predictive performance with AUC up to
0.96 on the testing dataset and above 0.86 on independent datasets, presenting
better prediction performance compared with other predictors. Our results
provided strong evidence that model iTCep can be a reliable and robust
method for predicting TCR binding specificities of given antigen peptides. One
can access the iTCep through a user-friendly web server at http://biostatistics.
online/iTCep/, which supports prediction modes of peptide-TCR pairs and
peptide-only. A stand-alone software program for T cell epitope prediction is
also available for convenient installing at https://github.com/kbvstmd/iTCep/.
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1 Introduction

Effective targeted immunotherapy requires accurate prediction of which tumor-specific
epitopes are most likely to trigger an immune response from T cells. Neoantigens, also called
tumor-specific antigens (TSA), are mutated peptides derived from the expression of mutated
genes in tumor cells and presented on the tumor cell surface by major histocompatibility
complex (MHC) and subsequently trigger a neoantigen-specific T cell response to destroy
tumors. As a key role to initiate an immune response, T cell activation occurs only when the
T cell receptors (TCR) recognize peptide-MHC (pMHC) complexes (Szeto et al., 2020;
Schaap-Johansen et al., 2021). The TCR complementary determing region 3 (CDR3) that
derived from quasi-random mutations of V(D)J recombination is considered to be the main
driver for recognizing the highly polymorphic MHC and large repertoire of peptides
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(Chiffelle et al., 2020). The random rearrangement of TCR gene
fragments could generate more than 1015 T cell clonetypes, with
each expressing a particular TCR and thus contributes to specific
epitopes recognition. Tetramer analysis and tetramer-associated
T cell receptor sequencing can be used to verify the binding of
pMHC and TCR pairs (Altman et al., 1996; Zhang et al., 2018).
However, these experimental methods are time-consuming and
generally technic-challenging to perform. Consequently, there
remains an urgent need for methods that can accurately
characterize antigens and TCR interactions, which will contribute
to clinical, therapeutic, and pharmaceutical applications in the
design of tumor immunotherapies.

The development of high-throughput TCR sequencing
techniques has accelerated the availability of epitope-specific TCR
sequences. With the emergence of public databases containing large-
scale experimentally validated epitopes such as McPAS-TCR,
VDJdb, and IEDB (Nili et al., 2017; Swapnil et al., 2018; Bagaev
Dmitry et al., 2020), an increasing number of computational
approaches for TCR-epitope binding have become available. In
the past several years, some tools, such as NetTCR (Montemurro
et al., 2021), TCRex (Gielis et al., 2019), ERGO (Springer et al.,
2020), imRex (Moris et al., 2021), have witnessed the possibility and
feasibility of generating a model to identify the specificity of TCRs
binding to an epitope. Theoretically, 9-mer-restricted models like
NetTCR cannot be applied to an out-of-length epitope, and epitope-
specific models like TCRex cannot be applied to an unknown
epitope. To tackle these issues, novel methods should be designed
to expand the application scope of T cell epitope identification
models while improving their accuracy and generalization.

Recent advances in deep learning for genomics (Liu et al., 2020),
proteomics (Meyer, 2021), protein structure prediction (Pakhrin
et al., 2021), immunotherapy (Tran et al., 2020), etc. have
highlighted its effective application in the field of biomedicine
(Sapoval et al., 2022; Tran et al., 2022). Compared with
traditional machine learning, deep learning has unique
advantages mainly to automatically learn complex multi-level
data representation and superior performance. Previous work in
our group has addressed the candidate neoantigen prediction
problem from an immunogenicity prediction angle. We
presented a model named DeepCNN-Ineo, which considered
information about binding affinity of peptide-MHC and the
immunogenicity of neoantigen peptide-side to increase the
reliability of prediction (Lu et al., 2022). Unfortunately, only
simply knowing the immunogenicity of the candidate peptide
alone is not sufficient to accurately infer TCR-specific epitopes.

In this work, we proposed iTCep, a deep learning framework to
predict TCR-epitope recognition that was inspired by intermediate
fusion in multimodal fusion strategy (Boulahia et al., 2021). Firstly, a
novel feature representation method was presented to convert
sequences into interaction maps, which calculates the positional
probabilities on the amino acid level. Next, two different interaction
maps together as a fusion feature, which concatenates the resulting
feature vectors from different layers of neural networks for
subsequent classification. In addition, McPAS-TCR and
dbPepNeo2.0 data were collected to independently evaluate the
generalization of the proposed model. We focused on the
interaction between peptides presented by MHC class I molecules
and the CDR3 variable regions of TCR β-chain, which are directly

linked with anchor residues of antigens and thus being a key role in
the prediction of T cell recognition specificity (Lu et al., 2021).

2 Materials and methods

2.1 Data collection

To construct an optimum positive dataset for model training and
testing, we collected experimentally verified immunogenic epitopes and
their recognizing TCRs from three publicly available T cell epitope
databases, i.e. McPAS-TCR (database release 5 August 2021), VDJdb
(database release 30 March 2022), and IEDB (Nili et al., 2017; Swapnil
et al., 2018; Bagaev Dmitry et al., 2020). Epitopes recognized by CD8+
T cells from the McPAS-TCR were selected, covering three key issues
(Human, Cancer, Neoantigen). Moreover, to further evaluate the
performance of peptide-TCR binding predictors, we collected
experimentally validated peptides and CDR3 sequences from
dbPepNeo2.0 (Lu et al., 2022), a database for human tumor
neoantigen peptides previously developed by our group.

To create negative dataset, we collected the TCR beta chain
sequences originating from healthy individuals in TCRdb, the public
comprehensive database for T cell receptor sequences (Si-Yi et al.,
2021). In this research, we used samples from project PRJNA390125
(sample IDs: SRR5676643, SRR5676656, SRR5676661) to obtain
TCR repertoire of healthy controls. In general, negatives are defined
as pairs of peptides and TCRs that do not interact. We created
negative data by using random pairings of immunogenic peptides
from the positive dataset and sequences from healthy individuals,
assuming that they did not generate a tumour-specific immune
response as they are less likely to have interactions.

2.2 Data processing

From the aforementioned datasets, we gathered a total of
16,746 pairs of TCR CDR3 and their recognized epitopes, which
were then processed in accordance with the detailed procedures
outlined below. 1) For the VDJdb dataset, TCR-epitope combinations
with a confidence score higher than zero were retained. 2) Samples with
missing epitopes or CDR3 sequences were eliminated, as were those with
improper sequence formats, such as spaces and unknown amino acids.
3)We discarded duplicated peptide-TCRCDR3 sequences resulted from
ignoring the information such as the CDR1, CDR2 regions, V/D/J genes,
and HLA molecules. 4) Given that mass spectrometry analysis of MHC
class I-presented peptides has revealed that highly conserved, short AAs
are themost abundant peptides, we adopted peptides with 8–11AAs and
TCR CDR3 with 8–21 AAs, respectively.

After processing, the curated positive dataset was whittled down to
10,759 pairs of TCR-epitope bindings, covering a total of 329 unique
epitopes (Supplementary Figure S1). Consequently, the positive dataset
and the randomly sampled negative dataset were combined as the final
dataset for training and testing (Figure 1A). In addition, the McPAS-
TCR dataset was further partitioned into a peptide-shared subset
(McPAS-shared) containing epitopes that already present in the
training data, and a peptide-unique subset (McPAS-unique)
containing epitopes that ever unknown in the training data. Two
independent testing datasets were used for model performance
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evaluation: McPAS-unique containing 243 TCR-epitope pairs covering
18 unique epitopes, and another dataset dbPepNeo2.0, containing
332 TCR-epitope pairs spanning 44 unique epitopes. Details about all
the distribution of datasets used in this study are shown in Table 1. The
overall dataset for model construction can be downloaded from the web
http://biostatistics.online/iTCep/#/download.

2.3 Feature encoding for deep learning
framework

2.3.1 One-hot encoding
One-hot encoding is the process of converting a category

variable into a format that can be easily utilized by machine

learning algorithms. Therefore, it is a simple and straightforward
solution that transforms the amino acid sequences into binary
features in most cases. In this work, TCRβ CDR3 and peptide
sequence pairs of varying lengths were zero-padded, resulting in
matrixes with 21 rows × 20 columns and 11 rows × 20 columns
respectively.

2.3.2 Phychem encoding
In order to describe the biological properties of amino acids in

detail, we adopted phychem encoding method using
physicochemical properties, such as polarity, hydrophobicity,
charge, etc. They were gathered from Protscale (Walker, 2005)
(Supplementary Table S1) to encode the CDR3 and peptide
sequences. This feature is based on the biological principles that

FIGURE 1
Workflow of the proposed predictor iTCep. (A) The deep learning-based framework iTCep is graphically illustrated with several key modules: data
collection, feature encoding and selection, model construction and training, model prediction. (B) Function of iTCep’s prediction. The iTCep can predict
the interaction of peptides and TCRs according to the output classification values of the model selected by the user.

TABLE 1 Sources and distribution of sample numbers in the overall dataset.

Source McPAS-TCR (shared) VDJdb IEDB TCRdb (health) dbPepNeo 2.0 McPAS-TCR (unique)

Positive 6,899 3,678 182 — 332 243

Negative — — — 10,759 — —
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the different chemical properties derived from the different amino
acids can affect their interactions with other molecules. These
generated numerical feature matrixes with 21 dimensions were
finally standardized because of the significant discrepancies in
values. Consequently, all data were assigned to a normal
distribution with a mean of 0 and a variance of 1.

2.3.3 AAC and AAPP encoding
Considering the molecular interaction between TCR and

peptide sequences, we utilized two encoding strategies to
represent the distribution of amino acids. The natural structure
and functioning of a protein in a given environment are notably
influenced by the amino acid composition (AAC). It is a typical
attribute used to estimate the probability of amino acids occurring in
the flanking region of PTM sites (Kao et al., 2020). The amino acid
composition is measured as the proportion of amino acids in a
sequence standardized by the total number of residues (Gromiha,
2010). This implies that it represents the occurrence frequency of
each amino acid in the TCR or peptide sequence. It can be defined as:

AAC i( ) � counti
Ns

where i represents the 20 amino acid residues; counti is the number
of each sort of residue in a peptide or CDR3 sequence, and Ns is the
total number of residues in peptide.

In order to further investigate the amino acid composition from
the perspective of interactions between epitopes and their
recognizing TCR CDR3 sequences, we devised an approach
called Amino Acid Position Preference (AAPP). It calculates the
probability of the amino acid position in epitope-specific TCR
repertoire. This feature is based on the biological principle that
different positions in a sequence can have different effects on TCR-
epitope interactions. It can be defined as:

AAPP pi( ) � count x, i( )
Nt

, x � 2, 3, . . . , 21

where i represents the 20 amino acid residues; pi represents a unique
peptide in positive dataset; x is the position of amino acid in
CDR3 sequence, ranging from the second to the 21st because of
the same start cysteine; count(x, i) is the number of each residue in
CDR3 sequence at position x; Nt is the total number of TCRs that
specifically recognize the unique epitopes.

2.4 Deep learning model construction

We constructed a dual-input deep learning architecture using
fusion features for peptide-CDR3 interaction prediction. Firstly, due
to the inconsistency in the feature dimension, feature maps
computed by AAPP were transposed, where the row correspond
to the positions and the col to amino acids. For methods other than
AAPP, matrixes obtained from peptide and TCR respectively were
concatenated for capturing relationship from feature representation
of sequences. Subsequently, we divided the encoding methods stated
above into two groups: one for single amino acid encoding, i.e., one-
hot and physicochemical property, and another for amino acid
distribution, i.e., AAC and AAPP. Methods from both groups were
integrated to create four fusion features for subsequent model

training: onehot-AAC, onehot-AAPP, phychem-AAC and
phychem-AAPP. Next, convolutional neural networks (CNN)
were applied to construct the final predictor in our experiments,
which can effectively extract deep features owing to their high self-
learning abilities (Dong et al., 2022).

2.5 Model training and performance
evaluation

The Adagrad optimizer with a learning rate of 0.01 was used to
reduce the losses through calculating the gradients of all parameters.
Mean Squared Error (MSE) loss was used as the objective function to
measure the prediction of peptide-CDR3 pairs. Models were trained
for 60 epochs with a batch size of 20, which proved adequate by
observing the training loss curves.

The results of models were verified with 5-fold cross-validation
(CV) on same CV sessions, which were repeated four times by
setting different random seeds to draw a stable conclusion. With this
strategy, the receiver operating characteristic (ROC) curve and the
area under the ROC curve (AUC) value were obtained to evaluate
classifiers intuitively. Furthermore, we applied the precision,
accuracy, recall, f1-score and matthews correlation coefficient
(MCC), the metrics commonly used in classification tasks, to
evaluate the performance of predictors. The final model was
determined by model in last epochs in the last CV repeat.

We implemented and trained our models using TensorFlow
2.4.0 (Abadi et al., 2016) backend, Keras 2.6.0 (https://github.com/
keras-team/keras) and the Python (3.7.6) packages Biopython 1.76
(Cock et al., 2009), NumPy 1.19.5 (Walt et al., 2011), pandas 0.25.3
(McKinney, 2010), Scikit-learn 0.24.2 (Pedregosa et al., 2011) and
SciPy 1.4.1 (Virtanen et al., 2020).

2.6 Prediction on unknown epitopes

Since the encoding method AAPP is based on amino acid
position distribution of seen epitopes and their corresponding
TCRs, the model will not be able to make a precise judgement
based on the knowledge learned from training while unknown
peptides are encountered. Considering this issue, we developed a
novel strategy to encode the peptide-TCR pairs that are not
appeared in training dataset. The peptide with the highest
similarity to the target was found by applying the minimum edit
distance (MED) algorithm, also known as Levenshtein distance,
which refers to the smallest number of operands required to
transform one sequence to another (Levenshtein, 1965;
Shuwandy et al., 2020). Only three editing operations including
insertion, deletion and substitution on single-character can be
performed. The MED of sequence A and B can be described as:

levA,B i, j( ) �
max i, j( ) if min i, j( ) � 0,

min
levA,B i − 1, j( ) + 1
levA,B i, j − 1( ) + 1

levA,B i − 1, j − 1( ) + 1 Ai≠Bi( )

⎧⎪⎨
⎪⎩ otherwise

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

where levA,B(i, j) indicates the distance between the first i characters
of A and the first j characters of B.
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3 Results

3.1 Overview of the model architecture for
predicting peptide-TCR binding

The architecture with two modules was adopted to capture
underlying differences across sequence distribution caused by
VDJ recombination mechanisms of TCRs and antigen generation
and processing (Figure 2). More specifically, two feature maps are
fed independently into the input layers of modules, which accepts
640 and 400 variables, respectively. Following that, for Module1, a
2D convolutional layer with 16 filters with kernel size of 3 × 2 and
another with 32 filters with kernel size of 6 × 4 are adopted,
succeeded by a max pooling layer with pooling kernel size of
2 and stride of 1, which is used to reduce the feature dimension
and avoid overfitting. For Module2, a 2D convolutional layer with
16 filters with kernel size of 1 × 2 and a max pooling layer with
pooling kernel size of 2 and stride of 1 are positioned after the input
layer. Batch normalization layers are added after the first
convolutional layer of Module 1 and every max pooling layer.
Each module ends with a fully connected layer that is used to
create connections between different features and combine them
into a single layer, followed by two fully connected hidden layers
with 256 and 128 variables, both using L2 regularization with
penalty of 0.01.

In addition, except for the output neuron, all neurons used
rectified linear unit (ReLU) as the activation function while training

using backpropagation. The output layer has two variables and the
Softmax activation function can be utilized to obtain the output
value of the classification. A dropout layer with the probability of
0.3 for connections between the last hidden layer and output layer is
added to temporarily remove units of neural network.

3.2 AAPP encoding results in improved
accuracy on the prediction of peptide-TCR
interactions

To compare different feature fusion strategies and choose one
that could be conducive to build a model with high prediction
accuracy, the peptide-CDR3 pair sequences were padded to the
maximum length of 32 and were converted into feature matrixes
with variant dimensions using onehot-AAC, onehot-AAPP,
phychem-AAC and phychem-AAPP, respectively. Subsequently,
we trained the deep learning model built using previously
mentioned architecture and performed parameter tuning with
tuner to capture the optimal hyper-parameters. Each interaction
feature map, as a separate input to be concatenated in model
construction, can be observed as an image. The feature
dimension of the input layer is determined by the input features.
An example of epitope (NLVPMVATV) and TCR
(CASSQWSNEKLFF) is given in Figures 3A–D. The AAPP
feature map shed light on the relationship between the epitope-
specific TCRs as a whole, in contrast to one-hot feature maps, which

FIGURE 2
The architecture of iTCep. The peptide-TCR interaction feature maps generated by two encoding methods were provided to the model in separate
layers and then being concatenated to a fully connected layer. Convolutional neural networks with two single-feature inputs are represented in Modules
1 and 2, respectively. BN, Batch Normalization Layer.
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arrange the sequence of the epitope and properties on the axes of a
two-dimensional matrix. Such two types of features complement
one another and then support the representation of peptide-TCR
interactions.

The 5-fold cross-validation with four times independently
repeat was applied to infer whether fusion feature could benefit
model performance improvement and to investigate the random
influence of data division. The results showed that each model
achieved high accuracy, with a minimum value of 85.56%
(Figure 3E), indicating that the proposed models showed reliable
predictions. Therein, it is noteworthy that AAPP encoding based
fusion features had a greater positive impact on the prediction of
peptide-TCR interactions than that based on AAC. Models built on
onehot-AAPP encoding methods achieved the highest accuracy,
with an average value of 88.76% (Supplementary Table S2), which
may attribute to the fact that the sparse matrix generated by one-hot
is more suitable for training convolutional neural networks.
Similarly, the phychem-AAPP based models also achieved good
predictions with a slightly poorer performance on validation data
during 5-fold CVs, demonstrating that the novel encoding method

could accomplish improvement on the representation of peptide-
TCR interactions.

Furthermore, we reserved models in the last epoch of last cross-
validation repeat during the 5-fold cross-validation process and
compared their performance on the testing dataset. We noticed that
the model of onehot-AAPP, namely iTCep, outperformed other
predictors in terms of most metrics including accuracy, recall, F1-
score and MCC (Table 2). The average area under the receiver
operating characteristic (AUROC) over the iTCep is up to 0.95,
suggesting that the deep learning networks with multiple layers were
capable of recognizing the variations in sequence between peptide-
TCR pairs (Figure 3F).

3.3 iTCep performs better than conventional
machine learning classifiers

To emphasize superior performance of the proposed
architecture, we compared several classifiers utilized classical
machine learning algorithms including support vector machines

FIGURE 3
Model training for predicting interaction between peptide and TCR. (A–D) The interaction feature map created by (A) one-hot encoding, (B)
physicochemical properties encoding, (C) AAC encoding and (D) AAPP encoding for epitope (NLVPMVATV) and TCR (CASSQWSNEKLFF) interaction
representation. (E) 5-fold CV results of model training based on different fusion features. (F) Validation receiver operating characteristic (ROC) for the
iTCep with shuffled samples using 5-fold CV on training dataset. The average level of AUC is depicted by the dark blue ROC curve.
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(SVM), decision tree (DCT), random forest (RF) and AdaBoost.
Features that standardized to a normal distribution described in
feature encoding for deep learning section were used to train these
classifiers. Additionally, the testing dataset and the McPAS-unique
dataset (Table 1) were both recruited for model performance
validation.

The detailed performance results of these conventional models
are shown in Supplementary Table S3. Therein, features most
applicable to each algorithm were explored and models with the
best performance on testing data and independent testing data were
chosen for comparative analysis, as depicted in Table 3.
Interestingly, we found that the optimal features applied by
different classifiers varied considerably on both testing sets, while
iTCep kept consistently with the highest performance. Random
forest classifiers had the highest prediction accuracy on the testing
set, but showed lower AUCs than iTCep. For independent testing I,
it can be clearly observed from the tables that models based on deep
learning outperformed other classification methods with improved
AUC. This implied that deep learning based on fusion features
performed more effective and robust than other classification
approaches in terms of performance improvement for the
prediction of peptide-TCR CDR3β interactions.

Finally, in order to explore the predictive power of the iTCep for
TCR cross-reactivity, we applied the model to the testing dataset, in
which peptide-TCR pairs appeared in training dataset were filtered out.
Specifically, the top 20 peptides (Supplementary Figure S2) with the
most abundant TCRs out of the overall epitopes were counted and the
top ten were further filtered to calculate the prediction accuracy of the
iTCep. From the prediction accuracy distribution on testing dataset
depicted in Figure 4A, it can be perceptible that training samples with a

larger number of TCRs resulted in higher prediction performance.
However, this conclusion does not seem to hold true for the rest of
epitopes with small-scale of cognate T cell receptors, since no
correlation was found between the number of training samples and
the accuracy of an epitope (Figure 4B). Consequently, we speculated
that the overall performance of iTCep was mostly influenced by
abundant epitopes, which explains the misleading results of a
general model in certain situations.

3.4 iTCep obtains equivalent performance
with state-of-art peptide-TCR binding
approaches

In recent years, several new tools have been published to predict the
binding of peptides to TCRs. Themodels ERGO-AE and ERGO-LSTM,
which were trained on autoencoder (AE) and long short-term memory
(LSTM), respectively, applied Natural Language Processing (NLP) to
create TCR-peptide binding predictors (Springer et al., 2020). In both
models, a multilayer perceptron (MLP) with one hidden layer was
employed to obtain the binding probability value. Moris et al. (2021)
presented a novel interaction map recognition (imRex) method that
based on the pairwise combination of physicochemical properties. This
approach can be applied to predict previously unseen epitopes in
training data. The DLpTCR model was proposed by Xu et al.
(2021), using ensemble deep learning consisted of three base
classifiers for single/paired chain(s) of TCR and peptide interaction
prediction. TetTCR-seq and VDJdb datasets were used to train this
model, and data from both VDJdb and IEDB were used to perform
validation. These methods performed well in predicting the interaction

TABLE 2 Comparative performance results of models constructed based on different fusion features on the testing dataset.

Metrics Phychem-AAC Onehot-AAC Phychem-AAPP Onehot-AAPP

Precision 0.889 0.852 0.912 0.877

Accuracy 0.885 0.875 0.888 0.893

Recall 0.881 0.908 0.858 0.914

F1-score 0.885 0.878 0.884 0.895

MCC 0.770 0.751 0.777 0.786

The bold values represent the best performance metrics of the models.

TABLE 3 Comparison of the performance on different classifiers for predicting peptide-TCRβ interaction based on testing dataset and independent testing
dataset I.

Classifier Feature Testing dataset Feature Independent testing data I

ACC (%) AUC ACC (%) AUC

iTCep Onehot, AAPP 89.29 0.955 Onehot, AAPP 85.80 0.909

SVM Onehot, AAC 89.20 0.892 Phychem, AAPP 84.16 0.842

DCT Onehot, AAPP 87.36 0.874 Onehot, AAPP 73.87 0.739

RF Phychem, AAC 90.45 0.905 Onehot, AAPP 85.19 0.852

Adaboost Phychem, AAPP 88.06 0.881 Phychem, AAPP 83.33 0.833

Abbreviations: ACC: accuracy; AUC: area under the receiver operating characteristic curve. The bold values represent the best performance metrics of the models.
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between peptide and TCR β chain. Therefore, we compared the
performance of iTCep with these predictors to shed light on the
superiority of our proposed model.

McPAS-unique dataset was adopted to valid the predictive
performance on the interactions of TCR-epitope covering unseen
peptides or novel TCRs. According to the results of ROC curves
(Figure 5A), it can be easily observed that the iTCep achieved an
AUC of 0.91 on McPAS-unique data, while the DLpTCR achieved
the lowest AUC of 0.51. These results indicated that the iTCep
model attained the same level of performance on unique epitopes of
McPAS-TCR as it did on shared epitopes during cross-validation.
Moreover, when applying the predictors on high-confidence
neoantigens in dbPepNeo2.0 dataset, the iTCep still
demonstrated a better performance (AUC = 0.86) in contrast to
other previous mentioned models (Figure 5B). To validate the
predictive performance of the predictors on real data
distribution, a larger scale of independent dataset was created,

with a 10:1 ratio of negative and positive pairs. According to the
evaluation metrics of iTCep, it demonstrates superior overall
performance on imbalanced data compared to other models
(Figure 5C). In conclusion, iTCep could obtain equivalent
performance with state-of-art peptide-TCR binding approaches
according to the performance comparisons on independent
datasets, outperforming other current tools of similar purposes.

3.5 The iTCep server for T cell epitope
prediction

A web application named iTCep was developed from the
pretrained classifiers to predict the interactions between
peptides and TCR beta chain sequences. The iTCep
webserver provides two predicting functionalities, one to
predict the interactions between the given multiple peptide-

FIGURE 4
iTCep for peptide-TCR prediction. (A) Prediction performance of the iTCep classifier for TCR cross-reactivity on the peptide-TCR pair dataset.
Peptides and their numbers in test samples are represented by the horizontal coordinates, while the proportion of correctly (green) or erroneously
(orange) predicted peptide-TCR pairs is represented by the vertical coordinates. The ACC values of the iTCep used to predict the interaction between
peptide and TCR are displayed in green bars. (B) Scatterplot of accuracy on testing data and training sample size for each epitope.

FIGURE 5
Comparison of model prediction performance between iTCep and the published methods on independent testing datasets. (A) ROC curves and
AUC values for predictors on the McPAS-unique dataset. (B) ROC curves and AUC values for predictors on the dbPepNeo2.0 dataset. (C) Comprehensive
performance comparison of the four predictors on the unbalanced dataset.
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TCR pairs and the other to obtain the TCRs that could
recognize the input peptides in accord with ranked
predictive values (Figure 1B). The latter function was added
in order to bring some informative significance to the
prediction of TCRs for users who have only peptides and no
TCR CDR3 sequences.

With the ability to input sequences or upload files, users can
submit their own peptide-TCRβ pairs for prediction. The
predicted results are presented in five columns, including
peptide, TCR CDR3, probability, interaction, and binding
level. Users can choose to receive the result file via email or
access it directly on the web page. Binding affinity between
peptide-TCR pairs is classified into three levels based on
customized thresholds. Peptide-TCR pairs with a probability
greater than 0.5 are considered to be truly combinations. Among
them, probability scores less than 0.8 indicate low level, scores
greater than 0.95 indicate high level, and scores between 0.8 and
0.95 indicate medium level of binding. These definitions are
important for accurately assessing the strength of the predicted
interactions between peptides and TCRs.

In summary, the iTCep webserver enables researchers to identify
peptides with high immunogenicity, allowing further screening of
neoantigens to maximize the benefit of immunotherapy to patients.
This web tool was built using the Vue.js web framework while the
back-end was implemented by Flask 2.0.2 (24), it is accessible at
http://biostatistics.online/iTCep/.

4 Discussion

Peptide binding to MHC molecules has been the main focus
of many epitope predictions. However, not all peptides
presented by MHC molecules are immunogenic. TCR must
interact with the pMHC complex to trigger an immune
response. However, the prediction pipeline based on multiple
omics data will generate tens of thousands of candidate epitopes,
and it is difficult to filter all possibilities through experimental
verification. Machine learning especially deep learning
algorithms have been developed to explore the interaction
between TCR and pMHC to further narrow down the range
of positive neoantigens in MHC presenting peptides.

In this study, a novel feature AAPP was introduced and
applied to represent peptide-TCR interactions. Then we
compared prevailing encoding metrics and utilized fusion
features that served as inputs of deep learning models, which
were trained with multi-layer convolutional neural networks
using cross-validation. Given the additional information
provided by the physicochemical properties, it would be
expected to contribute more to the accuracy of the
predictions. However, the results seem to disprove this
hypothesis, as the overall performance in the CV test remains
poor. Instead, the fact that the fusion of one-hot and AAPP may
help avoid overfitting and thus improve the generalization
performance. In general, the individual performance of an
epitope is assumed to have a positive correlation with the
diversity of its TCR repertoire, whereas no discernible
patterns were found in the final accuracy and the number of
training examples. Furthermore, our approach was validated on

several independent datasets to confirm the improved
performance from different research perspectives. We found
that iTCep achieved surprising results with prediction accuracy
of 85.80% and AUC of 0.909 on the McPAS-TCR dataset,
indicating that the iTCep could capture differences among
features of shared and unique epitopes. Comparatively, other
predictors reached lower prediction performance than our
proposed model, in particular imTCR and DLpTCR, which
are also based on CNN architectures. Similar conclusions can
be drawn when the dbPepNeo2.0 dataset was applied. We also
assessed these current models in an unbalanced task in addition
to their performances on balanced datasets. The comparison of
iTCep’s AUCs and ACCs with state-of-art models proved its
high sensitivity and better generalization capabilities in
identifying true epitopes.

Since our model was primarily trained on tumor antigens, we
hypothesized that our model may not perform as well on
predicting binding affinities for epitopes outside this range.
As a matter of fact, iTCep performed poorly in predicting
TCR-epitope pairs derived from COVID-19 data in
DLpTCR’s reference set. To investigate the scalability of
iTCep, we applied transfer learning to iTCep using COVID-
19 data and compared our model’s performance with that of
DLpTCR (Supplementary Figure S3). The results showed that
our model’s AUC was slightly higher than that of DLpTCR,
reaching 0.95. This experiment suggests that our model has the
potential to be applied to other antigen peptides derived from
other sources and demonstrates its generalizability.

Although iTCep has shown significant improvements in
performance metrics, several challenges remain in the area of
immunogenicity prediction. Due to the high cross-reactivity of
TCR interactions, a single TCR might have the ability to bind to
thousands of peptides (Schaap-Johansen et al., 2021). The
complexity of the antigen-specific mechanism and the lack of a
true negative dataset for TCR-epitope interactions still remain
major impediments to the development of methods for predicting
unseen-epitopes (Montemurro et al., 2021; Moris et al., 2021).
Hence, there is an urgent need to develop cost-effective and
accurate computational methods for predicting neoantigen
specific recognition by TCR. The model we presented could be
regarded as a filter that help researchers to generate a more
customized list of potential TCRs or immunogenic peptides for
TCR-T engineering and vaccination treatments. The expansion of
peptide-TCR binding prediction to consider additional
information including V(D)J gene families, TCR CDR3 of α-
chain, and epitopes presented by MHC II molecules is an
intriguing area for future research. Additionally, molecular
biology studies have highlighted the importance of structural
and physicochemical homology in TCR cross-reactivity
(Milighetti et al., 2021), which will be incorporated into current
neoantigen identification pipelines to make a further improvement
in our future work.
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