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Gene co-expression networks are a useful tool in the study of interactions that
have allowed the visualization and quantification of diverse phenomena, including
the loss of co-expression over long distances in cancerous samples. This
characteristic, which could be considered fundamental to cancer, has been
widely reported in various types of tumors. Since copy number variations
(CNVs) have previously been identified as causing multiple genetic diseases,
and gene expression is linked to them, they have often been mentioned as a
probable cause of loss of co-expression in cancerous networks. In order to carry
out a comparative study of the validity of this statement, we took 477 protein-
coding genes from chromosome 8, and the CNVs of 101 genes, also protein-
coding, belonging to the 8q24.3 region, a cytoband that is particularly active in the
appearance of breast cancer. We created CNVS-conditioned co-expression
networks of each of the 101 genes in the 8q24.3 region using conditional
mutual information. The study was carried out using the four molecular
subtypes of breast cancer (Luminal A, Luminal B, Her2, and Basal), as well as a
case corresponding to healthy samples. We observed that in all cancer cases, the
measurement of the Kolmogorov-Smirnov statistic shows that there are no
significant differences between one and other values of the CNVs for any case.
Furthermore, the co-expression interactions are stronger in all cancer subtypes
than in the control networks. However, the control network presents a
homogeneously distributed set of co-expression interactions, while for cancer
networks, the highest interactions are more confined to specific cytobands, in
particular 8q24.3 and 8p21.3. With this approach, we demonstrate that despite
copy number alterations in the 8q24 region being a common trait in breast cancer,
the loss of long-distance co-expression in breast cancer is not determined
by CNVs.
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Introduction

Regulation of gene expression involves several processes by which the information
contained in the genome is transformed into proteins. These processes within eukaryotic cell
include signaling, chromatin remodeling, covalent histone modification, and transcription
initiation, among others. Impairing of those processes are fundamental for the development
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of cancer, promoting tumor growth, cell proliferation, angiogenesis,
or evasion of the immune response (Bian et al., 2022).

According to the World Health Organization, in 2020 around
685,000 people died from breast cancer (World Health
Organization, 2020). It is the fifth cause of death from cancer.
However, it is the first place in new diagnoses, with 2.26million. This
apparent contradiction between cases of death and those detected
for breast cancer is largely explained by early detection (more than
90% of breast tumors are detected without metastases) and the
relative good knowledge of the disease. Although breast cancer
patients have a survival rate greater than 80% 5 years after
diagnosis, this depends on the subtype.

The most commonly used classification system for breast cancer
is the PAM50 gene expression signature, which divides breast cancer
into four main subtypes: Luminal A, Luminal B, HER2+ and Basal-
like subtypes Perou et al. (2000). The molecular classification of
breast cancer arises from advances in genomic sequencing, taking
into account the gene expression signature of 50 genes relevant for
the disease. This classification has allowed a better evaluation,
diagnosis and treatment of breast cancer.

The luminal A subtype is the most diagnosed breast cancer
(between 40% and 50% of all cases) and is also the one with the best
prognosis, with hormone receptor suppressors being a good therapy.
The luminal B subtype is less common (between 20% and 30% of
cases) but more aggressive, although with a good response to
chemotherapy. About 15% of breast cancers have an
overexpression of the Her2 gene and this makes them
particularly aggressive. The worst prognosis is for patients with
triple-negative cancer, which represent about 15% of diagnosed
cases Tsang and Tse (2020).

Copy number variations (CNVs), refer to genomic changes that
involve deletions or duplications of large DNA segments ranging in
size from 1 KB to several megabases. Typically, a person has two
copies of each gene inherited from their parents, but there are
naturally occurring variations to this number. These genetic variants
can include deletions, duplications, or insertions in the paternal or
maternal chromosomes, or both, and are present in healthy
individuals. In a more standardized definition, CNVs are
stretches of DNA larger than 1 kb that display copy number
differences in the normal or reference population (Scherer et al.,
2007).

In cancer, CNVs can have a significant impact on gene
expression and contribute to the development and progression of
the disease, for instance, in oncogene amplification (Gajria and
Chandarlapaty, 2011; Swain et al., 2023), tumor suppression gene
deletion (Ried et al., 2019; Gupta et al., 2021), genomic instability
(Duijf et al., 2019; Kalimutho et al., 2019; Neuse et al., 2020), or even
drug resistance (Lim and Ma, 2019; Pös et al., 2021).

The 8q24 genomic region is a specific location on the long (q)
arm of human chromosome 8. Amplifications and deletions of this
region are involved in the development of certain types of cancer,
such as prostate (Gu et al., 2020; Wilson and Kanhere, 2021), colon
(Killian et al., 2006; Anauate et al., 2019; Nait Slimane et al., 2020), or
bladder cancer (Kiltie, 2010). Research has identified several genetic
variations within the 8q24 region that are associated with an
increased risk of developing these cancers. In particular, the
8q24.3 region has previously been identified as one with
significant activity in various types of cancer (Mahmood et al.,

2014; Brusselaers et al., 2019; Ambele et al., 2020; Zheng et al., 2021),
including breast cancer (Dorantes-Gilardi et al., 2021).

To analyze next-generation sequence data, contemporary
biology often uses correlation networks to integrate the multiple
sources of data. One of the most commonly implemented tools are
the Gene co-expression networks (GCNs). GCNs are mathematical
constructions based on the patterns of statistical correlation between
genes across different phenotypes. These networks can help identify
functionally related genes and pathways and provide insights into
the underlying mechanisms of complex biological processes, such as
cancer.

Previous studies found that the gene co-expression networks of
cancerous samples differ significantly from those of healthy samples
(Rai et al., 2017; Dorantes-Gilardi et al., 2021; Dorantes-Gilardi et al.,
2020). In adjacent-to-tumor breast tissue, gene co-expression networks
show a higher connection between genes from different chromosome,
indicating coordination and cooperation between genes. However, this
co-expression is dramatically lost in cancer GCNs, both when all
subtypes are analyzed together (Espinal-Enríquez et al., 2017) and
for subtype-specific GCNs (Alcalá-Corona et al., 2017; García-Cortés
et al., 2020; González-Espinoza et al., 2021). The genes in cancerous
samples tend to co-express mainly with their nearest neighbors and lose
co-expression relations with medium and long distance genes. This
phenomenon has been observed in lung cancer (Andonegui-Elguera
et al., 2021), clear cell renal carcinoma (Zamora-Fuentes et al., 2020;
Zamora-Fuentes et al., 2022), as well as other thirteen types of cancer
(Garcia-Cortes et al., 2022).

The cause of the loss of co-expression in cancerous sample
networks is still unknown. However, a general alteration in the
transcriptional regulatory program could be underlying this effect.
Therefore, assessing the influence that CNVs may exert on gene co-
expression networks results appealing. In a previous work
(Hernández-Gómez et al., 2022), we demonstrated that in
Luminal B breast cancer molecular subtype, the copy number
alterations of chromosome 8 influences marginally the gene co-
expression landscape. Notwithstanding, the intrinsic heterogeneity
of breast cancer molecular subtype could be differentially affected by
CNVs, and concomitantly, the associated co-expression network.

Taking into account the previous studies that found differences
in gene co-expression networks between cancerous and healthy
samples, in this work, we proposed to analyze the influence of
CNVs of the 8q24.3 region in the gene co-expression networks for
each breast cancer molecular subtype. We analyzed the topological
influence, the association of CNVs with network hubs, and the role
of such hubs in a subtype-specific fashion.

Materials and methods

Cancer and healthy samples were obtained from The Cancer
Genome Atlas Consortium (TCGA) and preprocessed according to
(Espinal-Enríquez et al., 2017). All samples were classified according
to (Dorantes-Gilardi et al., 2021), resulting in 210 samples for
Luminal A, 189 samples for Luminal B, 101 samples for HER2+,
215 samples for Basal, and 113 samples for normal adjacent-to-
tumor tissues. The expression of 477 genes coding for proteins on
chromosome 8 and the CNVs of 101 genes in the 8q24.3 region were
analyzed for each sample.

Frontiers in Genetics frontiersin.org02

Hernández-Gómez et al. 10.3389/fgene.2023.1141011

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1141011


We used the copy number alteration observed in chromosome
8 for the five phenotypes. A total of 101 CNVs were obtained using
ascat data. For each of these CNV values, we constructed a CNV-
specific gene co-expression network. To infer the conditional mutual
information (CMI) for all phenotypes, we calculated as in
(Hernández-Gómez et al., 2022), taking into account the co-
expression between genes depending on the CNV values of
chromosome 8 to observe the effect of variations in copy number
on the co-expression of the entire genome. In this way, we obtained
one network per CNV value, each of which can be considered a layer
of a multi-CNVs co-expression network.

CMI calculations are thus the core of our analytic approach. In
brief, CMI reflects the degree to which a random variable (here, the
expression level gi of a given gene i) is statistically dependent on another
random variable (the expression level gj of gene j) given a third random
variable (the copy number landscape in the given genomic region k,
CNVk) potentially affecting the relationship between gi and gj.

CMI(gi, gj|CNVk) thus reflects the amount of information we
have about the expression of gene i given our knowledge of the
expression of gene j in the presence of copy number alterations in
the region k. For the present case, CMI(gi, gj|CNVk) answers the
following question: is the copy number landscape in the regions
changing the way two genes are locally co-expressed or not?

To provide a statistically meaningful response to this question, it is
necessary, nor only to provide systematic calculations of CMI(gi, gj|
CNVk) for all the considered genes i and j and all the regions k, but also to
perform rigorous hypothesis testing. To do this, we have resorted to the

quite general and non-parametric, Kolmogorov-Smirnov test; since no
assumptions need to be made in the nature of the probability
distributions for gene expression nor copy number variants.

Hence, after constructing the networks, we calculated the
Kolmogorov-Smirnov statistic to quantify differences between
CMI layers. Once the CMI networks were constructed, we
compared the number of intra-cytoband, inter-cytoband, and
inter-arm cis-gene pairs for all chromosomes in the five
phenotypes. We also evaluated the variations of these numbers
depending on the CMI cutoff values and observed whether the
intra-cytoband, inter-cytoband, and inter-arm numbers changed in
accordance with the cutoff values.

Finally, we analyzed the most relevant genes in terms of their
topological properties. We identified those genes that are both relevant
for the structure and relevant for the proper function of a given phenotype.

Conditional mutual information

Mutual information I(X; Y) is a measure of the mutual
dependence between two random variables. It quantifies the
amount of information that one random variable contains about
the other. In other words, it measures the amount of reduction in
uncertainty about one random variable given knowledge of the other
random variable. Conditional mutual information, I(X; Y|Z), is the
value of the mutual information between two random variables X
and Y given (i.e., conditional to) the value of a third random value Z.

FIGURE 1
CMI comparison between control network and the four breast cancer subtypes. The abrupt cut in the left tail is due to the fact that we take, for each
analysis, a pre-specified number of links, always stayingwith those that have the highest conditional mutual information values. In the distributions shown
here, the cut selects only the first 3,500 links.
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Conditional mutual information measures the amount of reduction
in uncertainty about one random variable given knowledge of the
other random variable, but only in the context of a specific value of
the third random variable.

I X;Y|Z( ) � ∑
z∈z

∑
y∈Y

∑
x∈X

p x, y, z( )log pz z( )p x, y, z( )
px,z x, z( )py,z y, z( )( ) (1)

Where p(x, y, z) is the joint probability of X, Y and Z, p(x, y) is the
joint probability of X and Y and so on. It is worth noticing that
conditional mutual information can only provide information
about the dependence between the random variables, and
cannot provide information about the causality between them.

Conditional mutual information calculations in this work were
made with the infotheo library of the R programming language
(Meyer and Meyer, 2009).

Kolmogorov-Smirnov test

The Kolmogorov-Smirnov (KS) test is a statistical test used to
determine whether a sample of data comes from a known
distribution. It is a non-parametric test, meaning that it makes
no assumptions about the form of the distribution of the data. The
test compares the empirical cumulative distribution function of the

FIGURE 2
The heat maps show the values of the D statistic between the different distributions of the CMI values for the four molecular subtypes analyzed.
5,050 comparisons were made in all cases. The lowest values of D were obtained for the Luminal A subtype while the highest occurred in the
Her2 subtype.
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sample data to the cumulative distribution function of the known
distribution, and quantifies the (maximal) difference between the
two. If the difference is large enough, the null hypothesis that the
sample data comes from the known distribution is rejected.

The KS test hence compares the cumulative distributions F1 and
F2 of two probability functions f1 and f1 by quantifying the K-S
statistic, defined as

Dn,m � supx|F1,n x( ) − F2,m x( )| (2)
The null hypothesis is rejected (at significance level α),

whenever:

Dn,m > c α( )
�����
n +m

n ·m
√

(3)

where c(α) �
��������
−ln(α2) · 12

√
In the present context the KS test is appropriate since the sample

sizes are sufficiently large and the CMI distributions can be safely
assumed to be continuous. All tests were done using the ks.test
library of the R programming language.

Results and discussion

Here we report the main results of analyzing the conditional
mutual information distributions associating the pairwise co-
expression of genes conditional on the copy number landscape of
the respective regions. These are data-based probabilistic tools to
assess to what extent gene co-expression is affected by the
underlying CNV structure in the same samples.

Copy number alterations in 8q24.3 do not
influence gene co-expression in breast
cancer

Each of the 101 genes of the 8q24.3 region for which the CNVs
were used as the conditional variable in Eq. 1 producing
101 different distributions of CMI values, whose typical profile
can be seen in Figure 1. Since the distributions suggest that the
differences between them are minimal for all subtypes, we

FIGURE 3
Top interactions of the five CMI networks at different cut-offs (100, 500, 1,000, and 1,500 edges). At first, intra-cytoband interactions dominate,
mainly in q24.3, p21.3, p11.21 and p11.23; afterwards, inter-cytoband interactions (particularly in p-arm) grow, and finally, inter-arm edges arise. Red arcs
at the external circle represents the centromere of Chr8. It can be clearly appreciated that for the normal tissue network, the distribution of interactions is
remarkably more homogeneous than any cancer network, where interactions are preferentially located to neighboring regions. Circos plots were
made with the R programming language package circlize (Cui et al., 2016).
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performed the K-S test in each case. For each subtype we take each of
the 101 distributions and compare them with the remaining 100;
sinceDn,m =Dm,n, we have 101 × 100/2 = 5,050 comparisons for each
subtype. This is, we tested the null hypothesis that the distributions
of CMI values are the same for each layer.

The values obtained are shown in Figure 2 where it can be seen
that the maximum values of the D statistic for any subtype are low,
the larger values are for the Her2 subtype and are approximately
equal to 0.05, and the minima correspond to Luminal A, with values
of around 0.008. Based on these values, we conclude that CNVs
within the 8q24.3 region do not significantly affect the expression of
genes located on chromosome 8.

It is worth noting that there is no significant variation between
conditional layers for any of the phenotypes analyzed here. With
this, we show that copy number alterations are not a significant
factor altering the gene co-expression landscape in breast cancer or
in healthy tissue in this region of chromosome 8.

Copy number variation is indeed one of several aspects that can
influence (either individually or on a cooperative fashion) gene
expression and co-expression patterns. Since we have been studying
local gene co-expression phenomena and intuitively, one expects
that the influence of CNVs on gene expression will also be
predominantly local, we decided to perform a comprehensive
analysis looking at all the pairwise co-expression relationships
within chromosome 8, conditional on the full CNV variant
landscape of the 8q24.3 region.

Intra-chromosomal co-expression analysis

Intra-chromosomal gene co-expression refers to the simultaneous
expression of genes that are located on the same chromosome. This
means that they are physically close in the DNA sequence.

Intra-chromosomal gene co-expression can occur for different
reasons. For example, genes that are physically close to one another

on a chromosome may be regulated by the same regulatory
elements, such as enhancers or promoters. This can lead to the
coordinated expression of these genes.

The following results aim to present a broader view of this
phenomenon in the context of breast cancer molecular subtypes.

The networks shown in Figure 3 were constructed using the first
distribution and are representative of the behavior of all conditional
layers. There, circos plots of gene co-expression interactions in
chromosome 8 for the top-100, 500, 1,000 and 1,500 highest
CMI values are depicted for all phenotypes.

We can notice that Figure 3 is better understood when compared to
Figure 4, which shows the cumulative growth of intra-cytoband and
inter-arm links. By observing the growth line corresponding to the
network of healthy samples as a reference, it can be seen how each
subtype differs from the healthy reference network in terms of the
growth of intra-cytoband and inter-arm interactions. Firstly, there is a
lineal growth of intra-cytoband and inter-arm interactions in the
healthy case, which is not the case of any breast cancer subtype.
Additionally, all subtypes behave similarly in both panels, but with
small differences. In Figure 4A, all breast cancer co-expression networks
have a fast growth of intra-cytoband links, which is inversely
proportional to the slow increase in the inter-arm edges.

In (García-Cortés et al., 2020) we demonstrated that the loss of
inter-chromosomal interactions in breast cancer is evident in all
phenotypes. Furthermore, the intensity of this loss is in agreement
with the malignancy of the subtype: the most remarkable difference
with respect to the healthy tissue network was observed in the Basal
subtype, followed by HER2, then Luminal B, and finally, the most
similar behavior to the control phenotype was observed in
Luminal A.

Despite the Basal subtype being the most aggressive and the one
with the worst prognosis, in the particular case of Chr8 intra-
chromosomal edges, the most different behavior compared with
the healthy case is observed in the Luminal B network (red lines in
Figure 4).

FIGURE 4
The distribution of the links in three categories is shown. (A) Intra cytoband. Co-expression with nearest neighbors is something that genes do in
both healthy and cancerous phenotypes, although this tendency ismarkedly greater in the latter case. (B) Inter arm. In this category the behavior between
the healthy phenotype and the cancerous ones is verymarked, indeed Luminal B and Basal cases overlap throughout almost the entire range. It should be
noted that the order of appearance of the links is determined by the magnitude of the CMI.
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In Figure 4 the total number of links ranges from 1 to (the top)
10,000, which gives a good sample of the behavior we want to
illustrate. Intra-cytoband links grow a lot in the first few hundred
larger CMI values in cancers but then they tend to saturate (see
change of curvature in the plots). Eventually, all possible links will be
formed and the curves will reach their maximum value. Finally, all
link saturation lines are well above/below (panels A and B in
Figure 4, respectively) the behavior of the healthy phenotype,
thus showing the deficit of links at long distances as previously
reported.

Another relevant aspect that we noticed in the cancer chr8 gene
co-expression networks is the location of highest co-expression

values. This can be appreciated in Figure 5. In the case of the
healthy network (labeled Control at the top) the vast majority of
interactions present similar co-expression values, that is the reason
for which several edges in the network present similar color. On the
other hand, in the case of all breast cancer subtypes, highly dense
regions of strong co-expression values are evident. Importantly, in
all cancer cases, the q24.3 region contains a hotspot of strong
interactions. Importantly, in all cancer cases, a hotspot of strong
interactions is present in the q24.3 region. On the one hand, luminal
networks present a large region from p23.3 to p11.23, while
HER2 and Basal subtypes present a much more localized p-arm
hotspot at p21.1-p21.3

FIGURE 5
Chromosome 8 co-expression interactions for the five phenotypes are shown, with the genes placed according to its gene start position. The size of
the genes is proportional to its degree. The color of co-expression interactions is related to the CMI values. Notice that for all cancer networks, the
strongest interactions occur in the extreme places, in particular, 8p21 and 8q24.3.
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Additionally, in the cancer networks, the degree of nodes is
clearly higher than in their healthy counterparts. That is represented
by the length of bars depicted below for each network of Figure 5.

Interestingly, the most connected genes in all cancer networks
are located at 8p21.3, except in the HER2 network, where the most
connected genes belong to the 8q24.3 region. Conversely, the healthy
network’s most connected genes belong to q13 and q22 regions.

We have previously reported the appearance of a highly
connected region located at 8q24.3 in breast cancer subtypes
Dorantes-Gilardi et al. (2021). There, we showed that 8q24.3 is
the only region in the entire genome in which all breast cancer
subtypes present the same set of highly co-expressed interactions
(top-100,00). That results is one of the motivations of this work,
being focused in Chromosome 8. Here, we demonstrate that
8q24.3 is still important in terms of co-expression in breast
cancer subtypes, but also 8p21 emerges as a relevant region.

In the case of HER2 network, it is worth noting that the HER2-
enriched subtype was indeed named so, because of the amplification
of a specific part of chromosome 17. In this work, we observe that
8q24.3 and 8p21.3 regions are also important but they do not depend
on the copy number alterations, such as the case of amplification of
17q12 region, which is also related with global genomic instability
(Ellsworth et al., 2008).

We want to stress that all of these results were obtained with
TCGA-derived data. Further research must include other datasets in
order to corroborate that these results are consistent independently
of the data source.

Conclusions and perspectives

The main conclusions of this work can be recapitulated in the
form of a summary of findings, as follows:

1. Copy number alterations in the 8q24.3 region do not significantly
affect gene co-expression in chromosome 8. Therefore, the loss of
long-distance co-expression must be triggered by a different
mechanism.

2. Basal and Luminal B breast cancer subtypes have the most
remarkable loss of long-distance co-expression in this region.

3. HER2+ subtype has a worse prognosis than Luminal B, however,
Luminal B behaves more differently from the healthy tissue.
Perhaps, Luminal B has another mechanism involved in the co-
expression program and the observed behavior in the
chromosome 8 co-expression network is a manifestation of that.

For our dataset, CNVs does not influence gene co-expression
networks in breast cancer in this region. However, copy number
alterations are known to affect gene expression at different levels.
The loss of long distance co-expression is strongly maintained in all
cancer phenotypes, but in a different intensity.

The analysis performed here has been implemented for breast
cancer molecular subtypes. Another classification approaches such
as the TNM system, which is based on the tumor progression,
should be incorporated to broaden the implications of copy number
alterations in terms of their role on tumor progression. Further
research in this line must be addressed to evaluate other aspects of
CNVs in breast cancer.

Finally, this kind of analyses using different omic-approaches will
definitively enhance our perspective and understanding of complex
diseases such as breast cancer. We can envision to perform similar
analysis at a whole genome scale in the future, though this endeavor will
imply a high computational burden due to combinatorial effects.
However, it is necessary to determine whether or not the copy
number alterations observed in cancer are associated with the
appearance of the phenomenon of loss of long-distance co-expression.
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