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Background: Despite the significant survival benefits of anti-PD-1/PD-
L1 immunotherapy, non-small cell lung cancer (NSCLC) remains one of the
most common tumors and major causes of cancer-related deaths worldwide.
Thus, there is an urgent need to identify new therapeutic targets for this refractory
disease.

Methods: In this study, microarray datasets GSE27262, GSE75037, GSE102287,
and GSE21933 were integrated by Venn diagram. We performed functional
clustering and pathway enrichment analyses using R. Through the STRING
database and Cytoscape, we conducted protein-protein interaction (PPI)
network analysis and identified the key genes, which were verified by the
GEPIA2 and UALCAN portal. Validation of actin-binding protein anillin (ANLN)
was performed by quantitative real-time polymerase chain reaction and Western
blotting. Additionally, Kaplan-Meier methods were used to compute the survival
analyses.

Results: In total, 126 differentially expressed genes were identified, which were
enriched in mitotic nuclear division, mitotic cell cycle G2/M transition,
vasculogenesis, spindle, and peroxisome proliferator-activated receptor
signaling pathway. 12 central node genes were identified in the PPI network
complex. The survival analysis revealed that high transcriptional levels were
associated with inferior survival in NSCLC patients. The clinical implication of
ANLN was further explored; its protein expression showed a gradually increasing
trend from grade I to III.

Conclusion: These Key genes may be involved in the carcinogenesis and
progression of NSCLC, which may serve as useful targets for NSCLC diagnosis
and treatment.
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Introduction

Lung cancer is the most common cause of cancer-related death
worldwide, wherein NSCLC accounts for 85% of lung cancer cases
(Sung et al., 2021). An increased understanding of the biology and
pathogenic genomic changes in NSCLC has led to advances and
developments in its treatment. Particularly, the emergence of
molecularly targeted therapies and immunotherapy has
fundamentally changed the way NSCLC patients are treated (Jordan
et al., 2017). A large number of genes have been recognized as drug
targets and their molecular alterations, including epidermal growth
factor receptor mutations, proto-oncogene receptor tyrosine kinase
1 rearrangements, anaplastic lymphoma kinase rearrangements, and
BRAFV600Emutations, could predict the response to treatment (Stella
et al., 2013). Testing for these genes is becoming increasingly routine
and has yielded motivating results.

However, the incidence of rearrangement, fusion, or over-expression
of these genes in NSCLC patients are very low, leading to limited
availability of molecular targeted therapies for these genes. For example,
aberrantly activations of ALKwas found in approximately 4% ofNSCLC
tumors, and chromosomal rearrangement of ROS1 has been identified
in approximately 1% of NSCLC patients (Wong et al., 2009; Gainor and
Shaw, 2013). EGFR somatic activating mutations were found in
approximately 20% of advanced NSCLC patients, and represented a
paradigm for the use of tyrosine kinase inhibitors for subsets of cancer
treatment. However, acquired resistance inevitably occurs in these cases
(Yu et al., 2015). In addition, there is currently a very limited number of
drug targets for other subtypes of lung cancer, such as squamous cell and
large cell carcinoma, other than adenocarcinoma. Furthermore, targeted
drugs developed for lung adenocarcinoma are basically ineffective for
lung squamous cell carcinoma (Rekhtman et al., 2012). As for
immunotherapy, the improvement in survival of lung cancer patients
by blocking the immune checkpoint PD-1/PD-L1 is encouraging.
However, only about 20% of patients benefit, and resistance is likely
to develop after the initial response (Topalian et al., 2019). Thus,
identifying potential gene targets or pathway alterations in this
refractory disease is urgently needed.

Currently, the availability of information about the human
genome and proteome, especially those that assist in the
development of new anti-cancer agents, is largely dependent on
advances in bioinformatics. As an enabling technology,
bioinformatics bridges the gap between sequence information
and clinical practice, and it has evolved into multiple ways to
enable us not only to identify “driver” and “passenger” genes
toward neoplasia, but also to comprehend genetic alterations and
mechanisms in cancer (Mount and Pandey, 2005).

In this study, four microarrays, namely GSE27262, GSE75037,
GSE102287, and GSE21933, were integrated and analyzed.
Differentially expressed genes (DEGs) between NSCLC samples
and corresponding normal specimens were analyzed.
Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analyses of
the DEGs were developed. The PPI network was developed by
the Search Tool for the Retrieval of Interacting Genes (STRING)
database. We screened out the key genes with the supreme
connectivity in the network and evaluated their prognostic value,
which would be helpful for further development of prognostic
biomarkers and novel therapeutic targets for NSCLC patients.

Materials and methods

Microarray datasets information

The National Center for Biotechnology Information Gene
Expression Omnibus (GEO) is an open-access database for data
regarding next-generation sequencing, microarray, and other forms
of high-throughput gene data (Barrett et al., 2013), from which the
microarray datasets of lung cancer samples and adjacent non-
malignant samples (GSE27262, GSE75037, GSE102287, and
GSE21933) were downloaded. Gene expression profiles of
GSE27262 and GSE102287 were based on platform GPL570 [HG-
U133_Plus_2] Affymetrix Human Genome Array, with 25 lung
adenocarcinoma tissues versus 25 adjacent normal specimens and
32 NSCLC samples versus 34 normal samples, respectively.
GSE75037 was based on platform GPL6884 HumanWG-6
v3.0 expression beadchip, including 83 adenocarcinomas and
83 adjacent normal samples. GSE21933 was based on platform
GPL6254 Phalanx Human OneArray, including 21 NSCLC tissues
and 21 matched adjacent non-malignant tissues.

Data analysis

GEO2R, a network application based on R that utilizes the
Bioconductor (R packages) to analyze GEO data, was used to
identify DEGs between lung cancer and adjacent non-malignant
specimens. The selection criteria, |logFC| > 2.0, and adjusted p <
0.05 were used to define the DEGs. We analyzed each dataset and
intersected them using Venn diagrams.

GO and KEGG pathway enrichment analysis

The GO knowledgebase was composed of ontology and ontology
annotations. As of 2018, there were approximately 45,000 terms in
GO, including CC, BP, and MF terms (The Gene Ontology
Consortium, 2017). R software version 4.0.3 (clusterProfiler and
ggplot2 packages) was used for gene classification and GO, KEGG
pathway enrichment analyses. Statistical significance was set at
p < 0.05.

PPI network visualization

STRING v11, an online resource with currently the largest
number of proteins (24.6 million) and broad data sources

TABLE 1 The composition of four different gene expression omnibus datasets.

GEO series NSCLC Normal Total number

GSE75037 83 83 166

GSE21933 21 21 42

GSE27262 25 25 50

GSE102287 32 34 66

Abbreviations: NSCLC, non-small cell lung cancer; GEO, gene expression omnibus.
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(Szklarczyk et al., 2019), was employed to explore protein-protein
associations among the DEGs. In addition, Cytoscape software was
used for the visualization of the protein interaction network and the
analyzation of the interaction of the candidate DEGs that encode
proteins in NSCLC. The top 12 molecules with the strongest
connectivity in the network were identified as key genes by
CytoHubba, a plug-in of Cytoscape.

Genetic alteration analysis and enrichment
analysis of the key gene-related drugs

Through the data of lung adenocarcinoma and lung squamous
cell carcinoma of the TCGA project and the Sangerbox platform,
we obtained the mutation profile of 12 key genes in NSCLC.
Furthermore, we have enriched and analyzed these key gene-
related drugs by using Enrichr platforms (https://maayanlab.

cloud/Enrichr/). We used Diseases/Drugs and DSigDB module
for cluster analysis.

Survival analysis

To evaluate the effect of the 12 key genes on prognosis of NSCLC
patients, we used the Kaplan–Meier plotter (http://kmplot.com/
analysis/), an interactive database for validation of prognostic
biomarkers that contains mRNA, miRNA, protein data, and
clinical information from a variety of cancer patients. Patients with
NSCLC were grouped based on their mRNA levels and hazard ratios,
and the respective p values were calculated. In addition, we verified the
survival analysis using the TCGA database (https://portal.gdc.cancer.
gov). We downloaded and collated lung adenocarcinoma and
squamous cell carcinoma RNAseq data and clinical data from the
TCGA database; Survival package of R software was used to test the

FIGURE 1
Screening of DEGs in four gene expression datasets (|logFC| > 2 and p < 0.05). Heatmap of all overlapping DEGs. Upregulated DEGs, orange;
Downregulated DEGs, blue; logFC, log fold change; DEG, differentially expressed gene.
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FIGURE 2
The overlapping DEGs of the four gene expression datasets. (A) Volcano plots of each gene expression profiles in NSCLC and normal tissues. (B)
Venn diagrams of DEGs. The one on the left refers to 37 upregulated DEGs; The right one refers to 89 downregulated DEGs; NSCLC, non-small cell lung
cancer; DEG, differentially expressed gene.
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proportional risk hypothesis, and the results were visualized using
survminer package and ggplot2 package.

Expression analysis and clinicopathological
association

The expression validation of the key genes was performed based
on RNA sequencing data produced by The Cancer Genome Atlas
(TCGA) and Genotype-Tissue Expression (GTEx) project. Tissue-
wise expression analyses of key genes between 969 NSCLC samples
and 685 non-malignant samples from TCGA and the GTEx project
were profiled using GEPIA2 (http://gepia2.cancer-pku.cn/).

Clinicopathologic features of patients with NSCLC, including
pathologic stage, tumor grade, age, gender, living status, and body

weight, were obtained from the Clinical Proteomic Tumor Analysis
Consortium (CPTAC) Confirmatory/Discovery dataset. Proteomic
analyses of lung cancer and normal samples were performed using
UALCAN, an open network repository for investigation on gene
expression and its disease association (Chandrashekar et al., 2017).
Furthermore, we obtained its immunohistochemical results from the
HPA database (The Human Protein Atlas https://www.proteinatlas.
org/).

Cell culture

Lung cancer cell lines NCI-H1975, NCI-H1650, A549, and NCI-
H1299, and normal lung epithelial cell line BEAS-2B were bought
from the Shanghai Cell Bank and ICELL Company. Cells were

FIGURE 3
Gene ontology analysis of DEGs. (A) Biological process terms of DEGs. (B)Cellular component terms of DEGs. (C)Molecular function terms of DEGs.
DEG, differentially expressed gene.
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cultured in Roswell Park Memorial Institute-1640 (RPMI-1640;
Solarbio, Beijing, China) and Dulbecco’s modified Eagle’s
medium (DMEM; Solarbio, Beijing, China) supplemented with
10% fetal bovine serum (FBS; Gemini, California, United States)
and maintained at 37 °C thermostatic and humidified cell incubator
with 5% CO2.

RNA extraction and qRT-PCR

Total RNA was extracted from NSCLC cell lines and normal
lung epithelial cell lines with an RNA extraction kit (Axygen; Silicon
Valley, United Ststes) and reverse transcription was performed using
a cDNA Synthesis Kit (Vazyme Biotech, Nanjing, China).
Quantitative real-time polymerase chain reaction (qRT-PCR) was
carried out using Bio-Rad CFX96 Touch with ChamQ SYBR® Green
qRT-PCR Master Mix. All qRT-PCRs were performed three times
and measured using 2−ΔΔCTalgorithm. Primer sequences were as
follows: ANLN, Former: TCTTCGTGGCCGATTTGACA, Reverse:
TGGACTTACCACACCAACTGT; GAPDH, Former: CGAGCC

ACATCGCTCAGACA, Reverse: GTGGTGAAGACGCCA
GTGGA.

Western blotting

We extracted proteins for Western blotting using RIPA lysis
buffer (Solarbio, Beijing, China; R0010) and phenylmethylsulfonyl
fluoride protease inhibitors (Solarbio, Beijing, China; IP0280). The
BCA Protein Assay Kit (Vazyme Biotech, Nanjing, China; E112-02)
was used for protein concentration determination. TheWestern blot
system was established using the Bio-Rad Bis-Tris Gel system
according to the manufacturer’s instructions. Proteins isolated by
SDS-PAGE were electroblotted onto polyvinylidene fluoride
membranes and incubated with a primary antibody (dilution: 1:
1250) overnight in a shaker at 4°C. They were then incubated in a
shaker for 1 h with horseradish peroxidase labeled secondary
antibody (dilution: 1:20000) at 25°C. After rinsing, a multi-
functional chemiluminescent imaging system (Analytik-Jena,
United States) was used for development.

FIGURE 4
KEGG pathway analysis, protein-protein interaction network construction, and module analysis. (A) Significantly enriched KEGG pathway terms of
DEGs in NSCLC. (B) DEGs protein–protein interaction network complex. Red nodes refer to upregulated genes. Green nodes refer to downregulated
genes. Edges represent protein-protein associations. (C) Top 12 key genes with high connectivity in the network. The shade of the color indicates the
strength of the connection. NSCLC, non-small cell lung cancer; DEG, differentially expressed gene.
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FIGURE 5
mRNA expression of the key genes (A-L) in NSCLC and normal samples from TCGA and GTEx. *p < 0.01. The red box refers to the tumor group, blue
box refers to normal group. NSCLC, non-small cell lung cancer.
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Results

Screening of DEGs

Four microarray datasets (GSE27262, GSE75037, GSE102287, and
GSE21933) were selected in this study, and their statistics are shown in
Table 1. Clustering of all overlapping DEGs is shown in the heatmap
(Figure 1). In accordance with the selection criteria, |logFC| > 2.0 and
adjusted p < 0.05, a total of 445, 845, 891, and 794 DEGs were identified
from theGSE27262,GSE75037, GSE102287, andGSE21933microarrays,
respectively, as shown in the volcano plots (Figure 2A). After intersecting
the DEGs of the four databases, 126 DEGs including 37 upregulated
genes and 89 downregulated genes, were found to be significant in all four
microarray datasets (Figure 2B).

Functional annotation and pathway
enrichment analyses

GO and KEGG pathway analyses were conducted using R 4.0.3
(clusterProfiler, org.Hs.e.g.,.db, and ggplot2 packages). DEGs were

basically enriched in mitotic nuclear division, cell cycle, G2/M phase
transition, vasculogenesis, G2/M transition of mitotic cell cycle in
biological process (BP) terms, spindle, midbody, condensed
chromosome outer kinetochore in cellular components (CC)
terms, and growth factor binding, G protein-coupled peptide
receptor activity, and peptide receptor activity in molecular
functions (MF) terms (Figure 3). The KEGG pathway analysis
found that the DEGs were predominantly involved in the
peroxisome proliferator-activated receptors (PPAR) signaling
pathway, cell cycle, and ECM-receptor interaction pathway
(Figure 4A).

PPI network construction and key gene
identification

There were 126 nodes and 1,054 edges in the PPI network with
an enrichment p-value of <1.0e-16 (Figure 4B). Twelve central
node genes, including ANLN, cyclin-dependent kinase inhibitor 3
(CDKN3), kinesin family member 4A (KIF4A), centrosomal
protein 55 kDa (CEP55), G2/mitotic-specific cyclin-B1

FIGURE 6
Genetic alteration analysis and enrichment analysis of the key gene-related drugs. (A) Mutation profile of the 12 key genes in NSCLC. Enrichment
analysis of the key gene-related drugs by Enrichr platform and shown by bar chart (B), heat map (C) and scatterplot (D). NSCLC, non-small cell lung
cancer.
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(CCNB1), kinesin family member 11 (KIF11), G2/mitotic-specific
cyclin-B2 (CCNB2), maternal embryonic leucine zipper kinase
(MELK), hyaluronan-mediated motility receptor (HMMR),
abnormal spindle-like microcephaly associated protein (ASPM),
centromere protein F (CENPF), and checkpoint serine/threonine-
protein kinase (BUB1), were identified among the 126 nodes by
using CytoHubba of Cytoscape (Figure 4C). Furthermore, ANLN
was the top gene in the network with the highest connectivity and
maximum neighborhood component (Table S1).

Transcriptional level validation of the 12 key
genes

We profiled the tissue-wise expression of key genes in NSCLC
tissues and normal tissues using GEPIA2. The results revealed that
the mRNA expression levels of the 12 key genes in the NSCLC

samples were significantly higher than those in normal samples
(Figure 5).

Genetic alteration analysis and key gene-
related drugs enrichment analysis

We observed the mutation status of these key genes in different
NSCLC samples of TCGA. As shown in Figure 6A, ASPM had the
highest mutation frequency, followed by CENPF. CCNB2 and
CDKN3 had the lowest mutation frequency. Missense mutation and
frame-shift mutation were the most common types of mutations, while
in-frame internal deletion was rare. To explore drugs that associated
with the key genes, we used Enrichr platform to perform cluster analysis
and UMAP algorithm to draw scatter map for all corresponding terms
in DSigDB gene set database.We found that the terms of enrichment of
these key genes were correlated with antitumor drugs etoposide and

FIGURE 7
Kaplan–Meier overall survival analyses of the 12 key genes (A-L) in NSCLC patients. NSCLC, non-small cell lung cancer.
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methotrexate, as well as non-tumor drugs such as lucanthone,
troglitazone, testosterone, calcitriol and piroxicam (Figure 6).

Prognostic role of key genes

To evaluate the prognostic values of the 12 key genes, we used the
Kaplan–Meier plotter, an online database that contained
transcriptomic data of 3,452 NSCLC patients. Just as PD-L1
expression, tumor mutational burden can be used to predict
immune checkpoint inhibitor outcomes, the key molecules we
identified can predict survival outcomes in patients with NSCLC.
Overall survival (OS) and first-progression (FP) survival curves are
shown in Figure 7; Supplementary Figure S1. High transcriptional levels
of the 12 key genes (ANLN, CDKN3, KIF4A, CEP55, CCNB1, KIF11,
CCNB2, MELK, HMMR, ASPM, CENPF, and BUB1) were all
significantly related to poorer OS (all p < 0.001) and FP survival (all
p < 0.01) in NSCLC.We verified the overall survival analysis of NSCLC
patients through the TCGA database, and the conclusion reached was
consistent with those obtained by the Kaplan-Meier plotter analysis
(Figure 8).

In vitro verification of ANLN and the
relationship between its protein expression
and the clinicopathologic parameters of
NSCLC patients

To verify the transcription level and protein expression level of
ANLN, QRT-PCR and Western blotting assays were performed in
BEAS-2B and four NSCLC cell lines.We found that bothmRNA and
protein levels of ANLN in the four NSCLC cell lines were
significantly higher than those in BEAS-2B (Figures 9A, B).
Through the HPA database, we found that ANLN was strongly
positive in the immunohistochemical test of lung cancer tissues
(Figure 9C). In addition, we further investigated the relationship of
ANLN and various clinicopathological parameters of NSCLC and its
gene expression profile in different cancer types. There was a
gradually increasing trend based on the protein expression of
ANLN from grade I to grade III, while age, weight, and tumor
stage groups did not significantly differ given the protein expression
of ANLN (Figures 9D–I). Interestingly, we also found that ANLN
level of was higher in male patients than in female patients
(Figure 9E, p < 0.01). As shown in Supplementary Figure S1,

FIGURE 8
The overall survival analyses of the 12 key genes (A-L) performed by R software using the RNAseq data of NSCLC in the TCGA database. NSCLC, non-
small cell lung cancer.
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ANLN is elevated in various TCGA and GTEx tumors, including
hepatocellular carcinoma, pancreatic adenocarcinoma, and breast
carcinoma, compared with paired normal tissues.

Discussion

With rapidly increasing morbidity and mortality, the 5-year
survival of lung cancer patients varies from 4% to 17%, depending
on the region and stage (Hirsch et al., 2017). Substantial progress has
been made in NSCLC treatment in recent years, but long-term
effective responses are still rare for most patients (Herbst et al.,
2018). It remains critical to explore the underlying pathogenesis of
lung cancer and achieve more precise treatment. A number of
researchers have made impressive progress in this area, exploring
the microenvironment of tumors, looking for biomarkers and
individual targeted treatment strategies (Guo et al., 2022; Jiang
et al., 2022).

Rather than focusing on a single cohort study, we integrated four
cohorts of microarray databases and identified 126 overlapping DEGs
(37 upregulated and 89 downregulated) in this study. Through further
functional clustering and enrichment analyses, we found that these
genes were mainly enriched in the mitotic nuclear division, cell cycle
G2/M phase transition, and PPAR signaling pathway. Mitotic nuclear
division, a biological process that is complementary to but opposite to
apoptosis, plays a crucial part in carcinogenesis, tumor cell
maintenance, and tumor progression (Sinha et al., 2019). Given
that cancer is a cell cycle disease, the progression of the cell cycle
is inextricably linked to the proliferation and activation of cancer cells.
The progression of the cell cycle is coordinated by the continuous
activation of cyclin-dependent kinases through their corresponding
cyclin chaperone (Malumbres, 2014). Some tumor suppressor genes
and drug molecules can inhibit tumor cell proliferation and invasion
by arresting the cell in the G2/M phase transition (Song et al., 2009).
PPARs have three subtypes (PPAR-α, PPAR-β and PPAR-γ), which
exhibit diverse roles in vertebrates. PPAR-α mainly plays a role in

FIGURE 9
Validation of ANLN mRNA and protein expression and its association with different clinicopathological parameters in NSCLC patients. (A) qRT-PCR
analysis of ANLN in four NSCLC cell lines and normal lung epithelial cell line. (B) Western blotting of ANLN in four NSCLC cell lines and normal lung
epithelial cell line. (C) Immunohistochemical result of ANLN in lung cancer tissues in HPA database. (D–I)Diverse clinicopathological parameters: Sample
types, patients’ gender, age, weight, pathologic stage and tumor grade. *p < 0.05, **p < 0.01, ***p < 0.001. NSCLC, non-small cell lung cancer.
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removing circulating lipids or cell lipids, PPAR-β is involved in lipid
oxidation and cell proliferation, while PPAR-γ activation enhances
the proliferation of cancer cells and promotes brain metastasis
(Bougarne et al., 2018; Magadum and Engel, 2018; Zou et al.,
2019). To further explore the internal interactions of the
overlapping DEGs, a PPI network was developed. 12 genes with
the strongest connectivity in the network were identified. High
transcriptional levels of these genes were significantly correlated
with poor prognosis, which reveals their potential prognostic value.

ANLN, the top gene in our modules, is a unique scaffolding
protein that was first isolated from Drosophila melanogaster embryos
and was mainly associated with cytokinesis (Zhang and Maddox,
2010).ANLN has been reported to be overexpressed in many tumors.
It is involved in the progression of pancreatic, brain, breast, and lung
cancers (Hall et al., 2005; Olakowski et al., 2009; Magnusson et al.,
2016; Long et al., 2018), which is consistent with our experimental
results. Evidence has shown that ANLN promotes cell proliferation,
and the loss of ANLN prevents the cancer cells from dividing and
reduces their migration and invasion (Wang et al., 2019).
Furthermore, there is also evidence showing that ANLN expression
correlates with lung adenocarcinoma metastasis (Xu et al., 2019). In
breast cancer, ANLN was found to be a alternative marker for Ki-67
(cell proliferation index), which is consistent with our findings
(Figure 6F). Based on the evidence supporting the correlation of
ANLN with acknowledged features of cancer, ANLN should be
considered as a novel target for cancer therapy.

CDKN3 has been reported to be overexpressed in glioma and
cervical cancer, and its over-expression is associated with inferior
survival (Yu et al., 2007; Espinosa et al., 2013). Since there are more
mitotic cells in rapidly proliferating tumor cells,
CDKN3 transcription and protein levels fluctuate throughout the
cell cycle, reaching a peak during mitosis. High levels of mitotic
CDKN3 expression is the most likely mechanism for frequent
CDKN3 mRNA over-expression in human cancer (Fan et al.,
2015). The cell cycle-dependent elements of CCNB1 and
CCNB2 are essential for meiotic resumption. CCNB1 has been
observed to expedite tumor cell division, cell proliferation, and
tumor growth in colorectal and pancreatic cancers (Fang et al.,
2014; Zhang et al., 2018). CCNB2 is also correlated with cancer
progression and inferior prognosis in breast cancer, hepatocellular
carcinoma and NSCLC (Qian et al., 2015; Li et al., 2019; Jayanthi
et al., 2020). KIF4A, the kinesin family member 4A, plays a key role
in process of DNA replication and repair. It promotes cell
proliferation, correlates with the size of the tumor in oral
carcinoma, and serve as a potential prognostic indicator in
various solid tumors (Wu et al., 2008; Rouam et al., 2010). KIF11
(E.g.,5) and MELK have been identified as oncogenes in multiple
tumors and inhibiting agents targeting them have entered phase I/II
clinical trials with encouraging results (Ganguly et al., 2014; Garcia-
Saez and Skoufias, 2021). As of now, nine clinical trials targeting
KIF11 have been completed, and five clinical trials targeting MELK
are ongoing or completed, according to ClinicalTrials.gov (https://
clinicaltrials.gov/). These drugs are used alone or in combination
with other medicines to treat patients with refractory cancers.

CEP55 was identified as an ideal cancer vaccine candidate
(Inoda et al., 2011) and a marker for predicting cancer invasion
risk, metastasis, and therapeutic outcome (Tandon and Banerjee,
2020). HMMR, alternatively called RHAMM or CD168, is a

microtubule-associated protein that regulates mitosis and meiosis.
(Chen et al., 2018). Abnormal expression of HMMR disrupts the
microtubule process during cell division and leads to abnormalities
in themitotic spindle, altering the fate of progenitor cells and leading
to genomic instability (Pujana et al., 2007). HMMR has been
reported to be closely linked to cancer risk and progression in
various tumor types (Rein et al., 2003). Currently, there are limited
researches on ASPM’s role in tumors. Recently, it has been reported
as a new predictor of tumor aggresiveness and prognosis in bladder,
prostate, and endometrial cancers. (Pai et al., 2019; Saleh et al., 2020;
Zhou et al., 2020). The prenylated protein CENPF has been used
clinically as a proliferative marker for malignant tumor cell growth
(Varis et al., 2006). BUB1, a serine/threonine-protein kinase, plays a
crucial part in oncogenesis, chromosome arrangement, and spindle
assembly (Bolanos-Garcia and Blundell, 2011).

Finally, we profiled the tissue-specific expression of key genes in
NSCLC and normal specimens from TCGA database and found that
its mRNA levels were significantly elevated in tumor than in
adjacent non-tumor tissues. We further explored the clinical
implication of ANLN, and its protein expression showed a
gradually increasing trend from grade I to III, revealing its
association with tumor aggressiveness.

Conclusion

Through multiple microarray datasets and integrated
bioinformatics analysis, we identified key genes and pathways
that may be involved in NSCLC carcinogenesis, which are mainly
associated with mitosis, vasculogenesis, and G2/M transition of the
mitotic cell cycle. These findings provide new insights and
opportunities for further development of prognostic biomarkers
and therapeutic targets for NSCLC patients.
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