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Objectives: Osteosarcoma is the most common primary malignant tumor in
children and adolescents, and the 5-year survival of osteosarcoma patients
gained no substantial improvement over the past decades. Effective biomarkers
in diagnosing osteosarcoma are warranted to be developed. This study aims to
explore novel biomarkers correlated with immune cell infiltration in the
development and diagnosis of osteosarcoma.

Methods: Three datasets (GSE19276, GSE36001, GSE126209) comprising
osteosarcoma samples were extracted from Gene Expression Omnibus (GEO)
database andmerged to obtain the gene expression. Then, differentially expressed
genes (DEGs) were identified by limma and potential biological functions and
downstream pathways enrichment analysis of DEGs was performed. Themachine
learning algorithms LASSO regression model and SVM-RFE (support vector
machine-recursive feature elimination) analysis were employed to identify
candidate hub genes for diagnosing patients with osteosarcoma. Receiver
operating characteristic (ROC) curves were developed to evaluate the
discriminatory abilities of these candidates in both training and test sets.
Furthermore, the characteristics of immune cell infiltration in osteosarcoma,
and the correlations between these potential genes and immune cell
abundance were illustrated using CIBERSORT. qRT-PCR and western blots
were conducted to validate the expression of diagnostic candidates.

Results: GEO datasets were divided into the training (merged GSE19276,
GSE36001) and test (GSE126209) groups. A total of 71 DEGs were screened
out in the training set, including 10 upregulated genes and 61 downregulated
genes. These DEGs were primarily enriched in immune-related biological
functions and signaling pathways. After machine learning by SVM-RFE and
LASSO regression model, four biomarkers were chosen for the diagnostic
nomogram for osteosarcoma, including ASNS, CD70, SRGN, and TRIB3. These
diagnostic biomarkers all possessed high diagnostic values (AUC ranging from
0.900 to 0.955). Furthermore, these genes were significantly correlated with the
infiltration of several immune cells, such as monocytes, macrophages M0, and
neutrophils.
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Conclusion: Four immune-related candidate hub genes (ASNS, CD70, SRGN,
TRIB3) with high diagnostic value were confirmed for osteosarcoma patients.
These diagnostic genes were significantly connected with the immune cell
abundance, suggesting their critical roles in the osteosarcoma tumor immune
microenvironment. Our study provides highlights on novel diagnostic candidate
genes with high accuracy for diagnosing osteosarcoma patients.
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1 Introduction

Osteosarcoma is one of the most common bone malignancies
that mainly affect children and adolescents (Ritter and Bielack, 2010;
Gill and Gorlick, 2021). Despite advances in the development of
treatment approaches, improving the clinical outcomes of patients
with osteosarcoma is still largely challenging (Chen Y. et al., 2021;
Meltzer and Helman, 2021). Notably, the genomic complexity and
instability of osteosarcoma have become the major hinder to
successful treatment (Kansara et al., 2014; Gianferante et al.,
2017). It is necessary to optimize the early detection, treatment
progress, and prognosis prediction of osteosarcoma based on
molecular genetics. Hence, developing novel and reliable
biomarkers to complement and improve current osteosarcoma
screening strategies is urgently warranted. Notably, the tumor
immune microenvironment has gained increasing attention, and
complex tumor immune microenvironment components can
contribute to the tumor heterogeneity and multifaceted
mechanisms of osteosarcoma progression and metastasis (Zhou
et al., 2020; Yu et al., 2021; Marchais et al., 2022). For instance, a
previous single-cell RNA study has reported that the infiltration of
proinflammatory FABP4macrophages is detected in lung metastatic
osteosarcoma lesions, and TIGIT (T cell immune receptor with
immunoglobulin and ITIIM domain) blockade treatment
significantly facilitates the cytotoxicity effects of the primary
CD3+ T cells with a high proportion of TIGIT + cells against
osteosarcoma (Zhou et al., 2020). Hence, identifying immune-
related gene signatures can facilitate the diagnosis of patients
with osteosarcoma and the elucidation of the general
mechanisms of osteosarcoma initiation and progression.

Nowadays, comprehensive bioinformatics analysis and
microarray technology have been widely applied to explore novel
specific disease-related genes and their biological functions, thus
helping the early diagnosis of diseases and illustrating the underlying
mechanisms of disease occurrence and development (Perez-Iratxeta
et al., 2007; Werner, 2008; Gong et al., 2018). Machine learning is an
emerging field of artificial intelligence, which can identify future
trends and predict the results of existing data (Deo, 2015; Greener
et al., 2022). Machine learning has broad applications in biological
medicine, and can effectively explore prospective biomarkers and
therapeutic targets, and potential mechanisms for various human
diseases (Bigorra et al., 2019; Chen Z. et al., 2021; Liu et al., 2021).
For instance, five immune-associated diagnostic genes (ITGAL,
CXCL16, MORF4L2, SPRY2, and BEX2) have been identified to
diagnose aortic valve calcification patients with metabolic syndrome
by employing bioinformatics analysis and machine learning
algorithms (Zhou et al., 2022). Recently, several studies have

explored novel diagnostic and prognostic biomarkers in
osteosarcoma by comprehensive bioinformatics analysis. For
instance, Li et al. (2022) have constructed a model based on six
machine learning (ML) algorithms for the prediction of lymph node
metastasis, and T and M stage, surgery, and chemotherapy have
been regarded as independent risk factors. A recent study has
constructed a prognosis model based on ferroptosis-related genes
for osteosarcoma patients by univariate COX regression and LASSO
regression (Huang et al., 2023). However, there has limited research
focusing on the identification and validation of diagnostic
biomarkers associated with immune signatures for patients with
osteosarcoma by combining machine learning and bioinformatics
methods, as well as further illustrating the prognostic value of these
diagnostic candidates.

In the present study, we obtained three osteosarcoma datasets
from the GEO database, which were further merged and divided into
two sets. After identifying DEGs in the training set, machine
learning algorithms were employed to further select key
diagnostic candidates. We also investigated the immune
landscape in osteosarcoma and explored the relationship between
these potential diagnostic biomarkers and immune cell infiltration.
Besides, we also validated the expression pattern of these biomarkers
in vitro.

2 Materials and methods

2.1 Data acquisition and process

Three raw datasets (GSE19276, GSE36001, GSE126209)
comprising osteosarcoma samples were extracted from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/). The GSE19276
(comprising 44 osteosarcoma samples and 5 normal samples)
and GSE36001 (comprising 19 osteosarcoma samples and
6 normal samples) datasets are merged to be the training group
while the GSE126209 (comprising 12 osteosarcoma samples and
11 normal samples) dataset was confirmed as the test group. The
Principal Component Analysis (PCA) plots before and after
merging the two datasets were generated using “stats” package of
R software to examine the comprehensive data representation.

2.2 Differentially expressed gene screening

To identify differentially expressed genes (DEGs) between
osteosarcoma and normal samples, the two datasets
(GSE19276 and GSE36001) were merged as the training set, and
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DEGs were filtered with |logFC|≥1.0 and FDR<0.05 by utilizing the
“limma” package in R software. After extracting the DEGs and their
expression in the training set, the “pheatmap” and “ggplot2”
packages were utilized to visually draw the “heat map” and
“volcano plot” of these DEGs.

2.3 Functional enrichment analyses of DEGs

The Gene Ontology (GO; http://www.geneontology.org)
comprehensively and computably provided the functions of
genes and gene products (The Gene Ontology Consortium,
2019). Kyoto Encyclopedia of Genes and Genomes (KEGG;
https://www.kegg.jp) were utilized to integrate various
biological pathways on gene and gene products (Kanehisa
et al., 2022). Disease Ontology (DO; http://disease-ontology.
org) was employed to integrate human diseases and the
human genome corresponding to genes (Schriml et al., 2012).
We utilized GO, KEGG and DO enrichment analysis by the
“clusterProfiler” package to reveal the biological functions,
downstream signaling pathways, and human diseases of
these DEGs.

2.4 Gene set enrichment analysis (GSEA)

Focused on interpreting the shared functions, properties, and
regulation of the biological items represented within the datasets,
GSEA was performed to identify the biological functions-related
items that differed most significantly between the osteosarcoma and
the control subgroups. GESA enrichment has become the most
curial analytical methods analysis (Subramanian et al., 2005). The
GSEA was performed by employing the “clusterProfiler” package of
R software.

2.5 Machine learning analysis

To further select diagnostic candidates among these DEGs,
we adopted two commonplace algorithms LASSO and SVM-RFE.
The LASSO algorithm could stabilize the vanilla linear regression
and circumvent overfitting and outliers, thereby predicating the
accuracy for selecting variables (McEligot et al., 2020). The SVM-
RFE algorithm was committed to accurate feature selection, and
hence, it is commonplacely utilized to filter out the features and
potential disease biomarkers for microarray data (Sanz et al.,
2018). In our research, the two algorithms were combined to
identify the important DEGs via the “glmnet” package for LASSO
and “e1071” package for SVM-RFE. On the basis of LASSO and
SVM-RFE algorithms, we use a Venn diagram to visualize the
overlapping genes and the final diagnostic candidates.

2.6 Diagnostic value of feature biomarkers in
osteosarcoma

The receiver operating characteristic (ROC) curve with
horizontal coordinate sensitivity and vertical coordinate

1-specificity range from 0–1.0 was employed to evaluate the
diagnostic value of each diagnostic biomarker. The calculation
area below the ROC curve (AUC) value along with 95% CI was
calculated by “pROC” package of R software (Mandrekar, 2010).
Additionally, the candidates are considered to have great diagnostic
value and considerable accuracy in further research with AUC
value > 0.9 in the training group. Next, “rms” and “rmda”
packages were used to generate the nomogram comprising all
candidates. By using the nomogram’s predictions, the
comprehensive ROC curve was constructed to assess the overall
model accuracy.

2.7 Validation of the diagnostic value and
differential expression of feature biomarkers

In order to further validate the diagnostic value and differential
expression of feature biomarkers, the GSE126209 dataset as test
group was employed for verify the diagnostic value. Simultaneously,
we compared the expression of candidate genes between
osteosarcoma and normal samples in the test dataset, and plotted
a diagram to visualize the outcome.

2.8 Prognostic value analysis

In this section, we conducted univariate Cox analysis and
Kaplan-Meier survival analysis to explore the prognostic value of
screened genes in the prognosis of osteosarcoma patients.
Osteosarcoma patients with survival information were extracted
from TARGET-OS database samples were obtained from the
TARGET database (https://ocg.cancer.gov/programs/target). R
packages “survival” and “survminer” were used to conduct this
investigation process.

2.9 Immune cell infiltration analysis

Increasing evidence has demonstrated that the degree of
immune cell infiltration was significantly correlated with cancer
progression and the prognosis of cancer patients (Mao et al., 2021).
By employing CIBERSORT algorithm, the infiltration of 22 immune
cell types in osteosarcoma was illustrated. The “ggplot2” and
“pheatmap” packages were utilized to visualize the relationship
among these different immune cells. The correlation heatmap
was implemented by “corrplot” package while the violin plot was
corresponded by “vioplot” package, which showed the difference in
immune cell infiltration between the osteosarcoma subgroup and
the normal subgroup. Simultaneously, the “ggplot2” and “ggpubr”
packages are utilized to analyze the correlation between the
functional biomarkers and immune cell infiltration via Spearman
correlation analysis.

2.10 qRT-PCR

The total RNA of hfob, HOS, U2-OS and 143B was extracted
using SteadyPure Rapid RNA Extraction Kit (Accurate Biology,
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China). The step of reverse transcription of the total RNA into
complementary DNA (cDNA) synthesis was conducted by Evo
M-MLV Reverse Transcription Kit (Accurate Biology, China).
SYBR Green qPCR Hub Mix (Accurate Biology, China) was
utilized for quantitative real-time polymerase chain reaction
(qRT-PCR). The GAPDH gene is used as an internal reference
gene. Conditions for PCR were: one cycle at 95°C for 30 s, 40 cycles
of denaturation for 5 s at 95°C followed by amplification for 30 s at
60°C. The primer sequences of ASNS, CD70, SRGN and TRIB3 can
be found in of the Supplementary Material.

2.11 Western blotting

Western blot was used to detect the expression levels of ASNS,
CD70 and TRIB3 proteins in hfob, HOS and U2OS cell lines. The
protein was extracted using RIPA lysate and the concentration of the
protein was measured using BCA method. We added protein
solution in a 4:1 ratio to 5 × Sample the buffer solution and
denatured it in 100°C for 15 min. We performed 10% SDS-PAGE
electrophoresis, and transferred the PVDF membrane for an hour.
Then the membrane was placed in a TBST incubator, and with
skimmed milk at room temperature, and sealed for 2 h. We added
diluted first antibodies, ASNS (R22614, Chengdu Zen
Biotechnology), TRIB3 (R383249, Chengdu Zen Biotechnology)
and CD70 (AF5265, Affinity), and then incubated them
overnight on a shaking bed at 4°C. We used TBST to elute
3 times for 5 min each time. The secondary antibody was diluted
with TBST in a ratio of 1:5,000, incubated at room temperature for
2 h and then colored using ECL method. Finally, we used Image Lab
software to analyze the grayscale values of the bands, and the relative
expression level of the target protein = the grayscale value of the
target protein/Tubulin grayscale value.

2.12 Statistical analysis

All analyses above were conducted on R (4.2.1) and Perl
software. All experiments were carried out in replicates of three
times. Differential comparisons between two subgroups were
analyzed by Student’s t-test. p-value < 0.05 was considered
statistically significant.

3 Results

3.1 Identification of DEGs in osteosarcoma

The workflow of this investigation was shown in Figure 1. A total
of 71 DEGs were confirmed in the GEO osteosarcoma merged
dataset by employing the limma method, of which 10 genes were
upregulated and 61 genes were downregulated. The heatmap and
volcano plot of these detailed DEGs between osteosarcoma samples
and normal samples are shown in Figures 2A, B. The principal
component analysis (PCA) plot (Supplementary Figure S1)
indicated that batch effects between samples had been removed
after correction.

3.2 Functional enrichment analyses of DEGs

In furtherance of identifying the potential function and
biological processes among these DESs, GO, KEGG and DO were
utilized to analysis. The results of GO analysis revealed that the
major enrichment of these DEGs on biological process (BP) were
defense response to bacterium, humoral immune response, and
leukocyte migration, suggesting the influence of DEGs on the
immune system. As for the cellular component (CC) ontology,

FIGURE 1
(A) Flowchart of this present study. (B) Pipeline flow chart of the study.
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DEGs were mainly enriched in intracellular membranous structures,
counting secretory granule lumen, and cytoplasmic vesicle lumens.
Molecular function (MF) analysis showed that antioxidant activity,
serine-type endopeptidase, and organic acid were identified
(Figure 3A). Simultaneously, the KEGG analysis showed that
bacterial infections, immune processes, and malaria were the
most enriched items (Figure 3B). With regard to DO research, it
was demonstrated that these DEGs were most correlated with
cardiovascular disease, including arteriosclerosis, arteriosclerotic,
cardiovascular disease and hematopoietic system disease, etc.
(Figure 3C).

3.3 GSEA enrichment analysis

In GESA enrichment analysis, including KEGG and Gene
Ontology Biological Process (GOBP), our results of GOBP
showed that DEGs were most enriched in defense response to
bacterium, humoral immune response, myeloid leukocyte
mediated immunity, specific granule and tertiary granule in
normal samples. In osteosarcoma samples, mitochondrial
translation, mitochondrial translational termination, translational
termination, mitochondrial protein containing complex and
organellar ribosome were mostly enriched GOBP items,
indicating the potential biological functions of these genes in
mediating mitochondrial functions during osteosarcoma initiation
and progression (Figures 4A, C). With regards to KEGG analysis,
asthma, hematopoietic cell lineage, leishmania infection, NK cell
mediated cytotoxicity and systemic lupus erythematosus were
enriched downstream pathways of DEGs in normal samples,
while huntingtins disease, proteasome, protein export,
spliceosome and ubiquitin mediated proteolysis were potential
signaling pathways modulated by DEGs in osteosarcoma samples
(Figures 4B, D).

3.4 Identification of candidate diagnostic
genes via machine learning

Furthermore, we combined LASSO liner regression and
SVM-RFE algorithms to select critical candidate genes with
promising diagnostic values from the above-obtained DEGs.
There was a total of eight candidate biomarkers being
captured by the LASSO algorithm, and 25 outputs were
identified based on the SVM-RFE algorithm (Figures 5A, B).
Then, a total of four genes (ASNS, SRGN, CD70, TRIB3) were
yielded by intersecting the two baskets of genes from LASSO and
SVM-RFE algorithm, and the results were visualized by Venn
image (Figure 5C).

3.5 Diagnostic value analysis

To further examine the potential of these four candidate
genes in diagnosing osteosarcoma, we employed a ROC curve to
evaluate the diagnostic specificity and sensitivity of each gene
with the AUC and 95% CI. Conforming to the ROC curves in
Figure 6A, the results were as follows: ASNS (AUC 0.928, 95% CI
0.837–0.987), SRGN (AUC 0.954, 95% CI 0.867–1.000), CD70
(AUC 0.900, 95% CI 0.814–0.964), TRIB3 (AUC 0.955, 95% CI
0.900–0.991), indicating that all 4 genes had high AUC value
than 0.90 and possessed excellent diagnostic value for
osteosarcoma patients (Figure 6A). Furthermore, we
constructed a nomogram comprising all the four candidates.
By using the nomogram’s predictions, the comprehensive ROC
curve was constructed to assess the overall model accuracy. In
Figure 6C, the comprehensive ROC curve showed the results:
AUC 0.997, 95% CI 0.987–1.000. The results demonstrated the
excellent performance of the model in diagnosing osteosarcoma
patients.

FIGURE 2
DEGs between osteosarcoma samples and normal samples in the training dataset (A) The heatmap of DEGs. (B) The volcano plots of DEGs,
(GSE19276, 36001).

Frontiers in Genetics frontiersin.org05

Ji et al. 10.3389/fgene.2023.1136783

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1136783


3.6 Validation of the diagnostic value

To further verify the diagnostic value of these genes in
osteosarcoma, we also established the ROC curve in the testing
dataset in Figure 6B. The AUC and 96% CI of each gene were as
follows: ASNS (AUC 0.848, CI 0.651–1.000), SRGN (AUC 0.788, CI
0.545–1.000), CD70 (AUC 0.727, CI 0.470–0.955), and TRIB3 (AUC

0.722, CI 0.455–0.932). These findings further confirmed these
candidate genes all possessed high diagnostic value for
osteosarcoma patients. In furtherance of obtaining more credible
results, we also compared the differential expression ofASNS, SRGN,
CD70, and TRIB3 between the normal samples and osteosarcoma
samples in the testing dataset in Figures 7A–D. The results showed
that the expression of ASNS (p = 0.0036), CD70 (p = 0.019) and

FIGURE 3
Functional enrichment analysis of DEGs. (A) GO analysis of DEGs, including BP, CC, and MF. (B) KEGG analysis of DEGs. (C) DO analysis of DEGs,
(GSE19276, 36001).
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TRIB3 (p = 0.069) expression was upregulated while SRGN (p =
0.079) expression was slightly downregulated in osteosarcoma
samples compared with normal samples, which was consistent
with the findings in the training dataset.

3.7 Prognostic value analysis

To further investigate the relationship between the expression
of these candidates and survival outcomes in osteosarcoma, we
employed the Cox proportional hazards model and Kaplan-
Meier curves. Our results (Supplementary Figure S2) found
that osteosarcoma patients with high TRIB3 (p = 0.017) and
SRGN (p = 0.010) expression levels had longer overall survival
times than those with low expression. In addition, the overall
survival time of osteosarcoma patients with high ASNS
expression was shorter than those with low expression of
ASNS, but without reaching statistical significance (p = 0.076).
While the OS of osteosarcoma patients with high expression of
CD70 was higher than that of patients with low expression of
CD70 without reaching statistical significance (p = 0.108). The
univariate Cox analysis results (Supplementary Figure S3)
indicated that SRGN was a protective factor for osteosarcoma

patients with hazard ratio (95% CIs) of 0.733 (0.546–0.985) (p =
0.039). The HRs (95% CIs) of ASNS, CD70 and TRIB3 were 1.128
(0.784–1.623) (p = 0.516), 0.893 (0.583–1.370) (p = 0.605), 0.840
(0.542–1.301) (p = 0.435). These findings confirmed that several
candidates, such as SRGN and TRIB3 may function as promising
prognostic biomarkers for osteosarcoma patients.

3.8 Immune infiltration analysis

Previous results showed that DEGs were enriched in several
immune-related biological functions and signaling pathways, and
the immune microenvironment has been confirmed to play
important roles in osteosarcoma tumorigenesis and
progression. Hence, we further investigated the immune cell
infiltration in osteosarcoma. The CIBERSORT algorithm was
employed to identify the proportions of immune cells in
osteosarcoma and normal samples (Figure 8A). Then, we
further investigated the interaction among the 22 immune
cells in the osteosarcoma immune microenvironment. As the
results demonstrated, several immune cells were detected to have
a positive correlation with the high coefficient value above 0.7:
T cells CD4 memory activated with B cells memory (R = 0.84) and

FIGURE 4
Gene set enrichment analysis (GSEA) of GOBP (A,B) and KEGG (C,D) between control and treatment groups, (GSE19276, 36001).
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T cells CD4 naïve (R = 0.75), neutrophils with mast cells resting
(R = 0.76) and Monocytes (R = 0.72), T cells CD4 naive with
B cells memory (R = 0.75), and Mast cells resting with Monocytes
(R = 0.73). Simultaneously, negative correlations were also
detected between several immune cell types with high
coefficient values: macrophages M0 with mast cells resting
(R = −0.81) and neutrophils (R = −0.81) and monocytes
(R = −0.61), T cells regulatory (Tregs) with T cells gamma
delta (R = −0.57) and T cells CD4 memory activated
(R = −0.54), and NK cells activated with NK cells resting
(R = −0.52) (Figure 8B). In addition, with the results yielded
by the CIBERSORT algorithm, the proportions of monocytes (p =
0.004), macrophages M0 (p < 0.001), mast cells resting (p =
0.004), and neutrophils (p = 0.012) in osteosarcoma samples were
extremely higher than normal samples with all p values < 0.05
(Figure 8C). Overall, a variety of immune cells were differentially
infiltrated in patients with osteosarcoma, which may serve as the
potential therapeutic target in osteosarcoma treatment.

3.9 Correlation between DEGs and immune-
infiltrating cells

Next, we further illustrated the potential role of these
4 diagnostic biomarkers in mediating the infiltration of immune
cells in osteosarcoma. ASNS expression was positively correlated
with dendritic cells activated (R = 0.65, p = 0.0034), T cells
CD4 naive (R = 0.52, p = 0.027), macrophages M0 (R = 0.5, p =
0.037) and was negatively correlated with monocytes (R = −0.64, p =
0.0045), Mast cells resting (R = −0.59, p = 0.0093), Dendritic cells
resting (R = −0.52, p = 0.026).While, CD70 expression was positively
with Macrophages M0 (R = 0.79, p = 0.00013), Dendritic cells
activated (R = 0.59, p = 0.011), Mast cells activated (R = 0.56, p =
0.016) and was negatively with Monocytes (R = −0.64, p = 0.0043),
Mast cells resting (R = −0.63, p = 0.0053), Neutrophils (R = −0.54,
p = 0.021). Simultaneously, SRGN expression was positively
correlated with Neutrophils (R = 0.72, p = 0.00077), Mast cells
resting (R = 0.7, p = 0.0014), T cells delta (R = 0.57, p = 0.013), and

FIGURE 5
Identification of novel diagnostic biomarkers for patients with osteosarcoma by machine learning. (A) Tuning feature selection in the LASSO. (B) A
plot of diagnostic markers selected by the SVM-RFE algorithm. (C) The Venn diagram of four diagnostic markers shared by the LASSO and SVM-RFE
algorithms, (GSE19276, 36001).
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was negatively correlated with Macrophages M0 (R = −0.84, p <
2.2e−16), T cells regulatory (Tregs) (R = −0.59, p = 0.011), T cells
naïve (R = −0.48, p = 0.046). Currently, TRIB3 was positively
correlated with Dendritic cells activated (R = 0.74, p = 0.00041),
Macrophages M0 (R = 0.6, p = 0.011), Eosinophils (R = 0.5, p =
0.036) and was negatively correlated with T cells CD8 (R = −0.8, p =
7.6e−05), Monocytes (R = −0.76, p = 0.00027), T cells CD8
(R = −0.65, p = 0.0033) (Figures 9A, B). These results suggested
that these diagnostic biomarkers might be significantly correlated
with the immune signature, and targeting these biomarkers might be
utilized to promote the anti-tumor immune microenvironment in
osteosarcoma.

3.10 Identification of the expression of
diagnostic biomarkers

The qRT-PCR results showed that compared to the control
group (hfob), the expression level of CD70 was significantly
increased in HOS, U2OS and 143B. The expression level of

ASNS was significantly increased in HOS and U2OS, while the
trend was not significant in 143B. The significant upregulation of
TRIB3 was only detected in HOS cell line. The expression level of
SRGN was significantly decreased in all three cell lines compared to
the control group (Figures 10A–D).

Furthermore, the western blots results showed that ASNS and
CD70 protein levels in both U2OS and HOS cell lines significantly
increased compared to the control group, while TRIB3 protein only
increased in HOS cell line with statistical significance (Figures
10E–H). These experimental results were basically in line with
our bioinformatics analysis results.

4 Discussion

Osteosarcoma is the most frequent malignant bone tumor
frequently affecting children and adolescents with poor prognosis
(Gill and Gorlick, 2021; Meltzer and Helman, 2021). Despite the
booming development of therapeutic strategies in osteosarcoma, the
5-year survival of patients with osteosarcoma has hit a plateau over

FIGURE 6
Investigation of the diagnostic efficacy of four biomarkers for osteosarcoma. (A)ROCcurves of ASNS, SRGN,CD70, and TRIB3 in the training set, (GSE19276,
36001) (B) ROC curves of ASNS, SRGN, CD70, and TRIB3 in the validation set, (GSE19276, 36001, 126209). (C) Comprehensive ROC curve of the model.
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the past decades, and it is urgent to develop effective biomarkers and
therapeutic targets (Belayneh et al., 2021; Celik et al., 2022). There
have been several studies investigating novel biomarkers for
osteosarcoma patients, including lipid metabolism-, ferroptosis-,
immune-related genes and so on (Huang W. et al., 2022; Wang
et al., 2022; Yang et al., 2022). Nevertheless, machine learning
methods have not been applied in screening diagnostic
biomarkers for patients with osteosarcoma. In the present study,
we combined integrated bioinformatics analysis and machine
learning to explore novel diagnostic biomarkers for patients with
osteosarcoma as well as their prognostic value and potential
functions and roles in mediating osteosarcoma immune
microenvironment. Besides, we also validated the expression of
diagnostic candidates in osteosarcoma in vitro.

Three osteosarcoma microarray datasets were extracted from
the GEO online database. A total of DEGs were identified in
osteosarcoma. DEGs were mainly enriched in small molecule
catabolic process, amino acid metabolic process, and other
biological processes. GSEA enrichment results showed that were

highly active in. which may be closely related to the initiation and
development of osteosarcoma. To improve the diagnostic value and
clinical availability of novel diagnostic candidates, the LASSO
regression algorithm was employed to minimize regression
coefficients to reduce overfitting, and the machine learning SVM-
RFE algorithm was employed to achieve the minimal classification
error. As a result, a total of five pivotal candidate genes (ASNS,
SRGN, CD70, and TRIB3) were identified for diagnosing patients
with osteosarcoma. According to our results, ASNS, CD70, and
TRIB3 were upregulated in osteosarcoma patients, while SRGN was
downregulated in osteosarcoma patients.

Asparagine synthase (ASNS) catalyzes the synthesis of
asparagine and glutamate from aspartic acid and glutamine in an
ATP-dependent amidotransferase reaction (Richards and Kilberg,
2006). ASNS has recently received considerable attention in several
cancers. ASNS is highly methylated in B-cell precursor acute
lymphoblastic leukemia (BCP-ALL) patients with favorable
karyotypes but is mostly unmethylated in BCP-ALL patients with
poor prognostic karyotypes (Watanabe et al., 2020). In NSCLC, it

FIGURE 7
Box plots of differential expression of ASNS (A) SRGN (B), CD70 (C), and TRIB3 (D) in the validation set, (GSE19276, 36001, 126209).

Frontiers in Genetics frontiersin.org10

Ji et al. 10.3389/fgene.2023.1136783

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1136783


has been found that ATF4 targets ASNS to achieve apoptotic
suppression, protein biosynthesis, and mTORC1 activation.
Moreover, the inhibition of AKT can suppress ASNS expression
and depletion of extracellular asparagine, subsequently inhibiting
tumor growth. Inhibiting ASNS through AKT suppression can

sensitize cancer cells to L-asparaginase, providing evidence for
ASNS as a novel therapeutic target in NSCLC (Gwinn et al.,
2018). Serglycin (SRGN), a major proteoglycan expressed in
hematopoietic cells, endothelial cells, and macrophages, has been
found to participate in the initiation and progression of human

FIGURE 8
Investigation of immune cell infiltration in osteosarcoma by the CIBERSORT algorithm. (A) Bar plot of the relative proportions of immune cells. (B)
The heatmap of correlations between 22 immune cell types; red indicated a positive correlation and blue indicated a negative correlation between two
immune cells. (C) Violin plot of the differential infiltration of immune cells between osteosarcoma and normal samples.
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malignancies (Zhang et al., 2017;Ma et al., 2020; Tanaka et al., 2022).
For instance, the upregulation of SRGN in chemoresistant breast
cancer cells, serum and tissue samples from breast cancer patients
with poor response to chemotherapy. Mechanistically, SRGN can
facilitate chemoresistance by cross-talking with the transcriptional
coactivator YAP to maintain the stemness of breast cancer cells in

vivo and in vitro (Zhang Z. et al., 2020). However, the expression
pattern and biological functions of SRGN in multiple cancer types,
especially osteosarcoma remain largely unknown.

CD70 is the natural ligand for the tumor necrosis factor (TNF)
superfamily member CD27, which has been identified to induce the
B cell and T cell activation. In cancer biology, CD70 can facilitate

FIGURE 9
Correlation analysis between diagnostic biomarkers and the infiltration of immune cells in osteosarcoma. (A) Lollipop plot of the association of ASNS, SRGN,
CD70, and TRIB3 with immune cells. (B–E) Correlation plots of the association of ASNS (B), SRGN (C), CD70 (D), and TRIB3 (E) with immune cells.
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immune evasion and tumor progression in the tumor immune
microenvironment (Jacobs et al., 2015). The vital functions of the
CD70-CD27 pathway in oncology have been investigated over the
last decade, and targeting the CD70-CD27 pathway by different
approaches has also been illustrated in different malignancies. In
osteosarcoma studies, CD70 has been found to be expressed in a
subset of osteosarcoma patients, and CD70 may represent a novel
candidate for antibody-based targeted immunotherapy in these
patients with CD70 (+) osteosarcoma (Pahl et al., 2015). In
addition, PLCE1 may induce immune escape in osteosarcoma
through the CD70-CD27 signaling pathway (Huang L. et al.,
2022). Tribbles homolog 3 (TRIB3) is a mammalian gene that is
upregulated in response to several types of cell death-inducing
cellular stress (Ord and Ord, 2017). The functions of TRIB3 on
cancer progression have attracted multiple studies. It has been found
that TRIB3 is positively related to breast cancer stemness and
development. Mechanistically, TRIB3 can facilitate breast cancer
stem cells through regulating AKT to interfere with the FOXO1-
AKT interaction and inhibit FOXO1 phosphorylation,
ubiquitination, and degradation by E3 ligases SKP2 and NEDD4L
(Yu et al., 2019). In NSCLC, TRIB3 has been found to interact with
EGFR and recruits PKCα to induce a Thr654 phosphorylation and
WWP1-induced Lys689 ubiquitination in the EGFR
juxtamembrane region, subsequently promoting EGFR recycling,
stability, downstream activity, and NSCLC stemness (Yu et al.,
2020). Overall, these four diagnostic biomarkers have been found
to be critically involved in cancer initiation and progression, but
their roles in osteosarcoma are still largely inconclusive. Identifying
the clinical significance and functional roles of these candidates in
osteosarcoma may help understand pathological process of
osteosarcoma and provide novel therapeutic targets.

Furthermore, our study investigated the potential biological
functions and signaling pathways mediated by these diagnostic

biomarkers in osteosarcoma. Our findings indicate that these
diagnostic biomarkers are mainly involved in immune response,
leukocyte function, serine/glycine metabolism and IL-17 signaling
pathways in osteosarcoma progression. Several studies have
investigated the roles of IL-17 signaling pathways in
osteosarcoma. IL-17 can facilitate the susceptibility of
osteosarcoma cells to NK cell lysis, and IL-17A/IL-17RA
interaction can promote osteosarcoma cells metastasis, indicating
that targeting IL-17 may be a novel promising strategy to treat
osteosarcoma patients (Honorati et al., 2003; Wang et al., 2013). The
CD27 and CD70 costimulatory pathway has been found to inhibit
the transcription of the key effector molecules IL-17 and the
chemokine receptor CCR6, subsequently attenuates associated
autoimmunity, Cancer cells can reprogramme their metabolism
to support cell growth and proliferation. Serine and glycine are
biosynthetically linked, and together provide the essential precursors
for the synthesis of proteins, nucleic acids, and lipids that are crucial
to cancer cell growth. It has been found that serine and glycine are
critical metabolites for cancer cells, and metabolic enzymes of serine
and glycine biosynthesis are significantly upregulated during cancer
progression (Amelio et al., 2014). In osteosarcoma, the mTORC1/
serine/glycine metabolic axis has been reported to promote cellular
proliferation and the antioxidant ability to environmental stress,
thereby resulting in osteosarcoma progression (Wang et al., 2017).
To date, few studies have focused on these biological functions of
these diagnostic genes, the involvement of these candidates in these
biological functions during osteosarcoma initiation and progression
require in-depth investigation in future studies.

Multiple lines of evidence have suggested the critical roles of
diverse immune cells in the tumor immune microenvironment in
osteosarcoma. In the present investigation, we found that
osteosarcoma patients had a higher level of M0 macrophages,
whereas a lower level of monocytes, mast cell resting, and

FIGURE 10
The qRT-PCR for the levels of key genes in control and osteosarcoma cell lines. (A)ASNS. (B)CD70. (C) SRGN. (D) TRIB3. Thewestern blot band chart
(E) and the protein level of (F) ASNS, (G) CD70 and (H) TRIB3.
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neutrophils. Previous studies have indicated that the abundance of
monocytes was lower in osteosarcoma, and was significantly
correlated with the poor prognosis of osteosarcoma patients
(Chen et al., 2020; Chen and Zhao, 2020). M0 macrophages have
been found to be highly infiltrated in osteosarcoma samples, which is
also consistent with our findings (Zhang C. et al., 2020). We further
investigated the relationship between these hub genes and the
abundance of these infiltrating immune cells. Our findings
showed that ASNS, CD70, and TRIB3 were positively correlated
with the abundance of macrophages M0 and dendritic activated
cells, while was negatively correlated with the abundance of mast
cells resting and monocytes. There was also a positive correlation
between ASNS and CD4+ T cells, and a negative correlation between
ASNS and dendritic resting cells. Our results found that SRGN was
positively associated with the infiltration of T cells gamma delta, T
regulatory cells, and CD4+ T cells. In addition, TRIB3 was a negative
modulator of CD8+ T cells in osteosarcoma. Previous research has
confirmed that TRIB3 can inhibit CD8+ T cell infiltration and
stimulate the immune evasion through inhibiting the STAT1-
CXCL10 axis in colorectal cancer, which is consistent with our
results (Shang et al., 2022). These findings indicate that these
candidate genes may function as modulators of T cell infiltration
in osteosarcoma, thereby regulating osteosarcoma progression and
clinical outcomes. Therefore, targeting these biomarkers may be an
effective method to modulate the immune cell infiltration in
osteosarcoma.

There are still several limitations in the present research. First,
although we included three osteosarcoma datasets, the samples
remained few, especially the limited sample size in the validation
cohort. The results should be further identified in a more large-scale
cohort in the future, which is time-consuming but meaningful. We
have also validated the expression pattern of these candidates
in vitro. Second, although we illustrated the correlations of these
candidate hub genes with the abundance of immune cells in
osteosarcoma was presented, the exact functions and mechanisms
of these genes in mediating osteosarcoma are still worth
investigating.

5 Conclusion

Our research systematically discovered and verified four
immune-associated candidate hub genes (ASNS, SRGN, CD70,
TRIB3) with high predictive value for diagnosing osteosarcoma
by bioinformatics analysis and machine learning algorithms.
Besides, we also illustrated the dysregulated immune cell
proportion in osteosarcoma, and the potential regulatory
functions of these diagnostic hub genes in the tumor immune
microenvironment in osteosarcoma, thus providing novel
immune-related diagnostic candidate genes for patients with
osteosarcoma.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.

Ethics statement

Ethical approval was not required for the studies on animals in
accordance with the local legislation and institutional requirements
because only commercially available established cell lines were used.

Author contributions

YJ and ZL: writing–original draft, data curation, and formal
analysis. GL and XT: writing–original draft. YW, JW, and ZL: formal
analysis. TL: writing–review and editing, supervision, and funding
acquisition. MX: writing–review and editing, supervision, and
funding acquisition. All authors contributed to the article and
approved the submitted version.

Funding

This study was supported by grants from the National Natural
Science Foundation of China (Grant Nos 81871783 and 82072441).

Acknowledgments

We acknowledge GEO database for providing its platforms and
contributors for uploading its meaningful datasets.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2023.1136783/
full#supplementary-material

SUPPLEMENTARY FIGURE S1
PCA plot before (A) and after (B) the batch effect between GSE19276 and
GSE36001 was removed.

SUPPLEMENTARY FIGURE S2
Kaplan–Meier estimated overall survival in osteosarcoma patients stratified
by ASNS (A), CD70 (B), SRGN (C) and TRIB3 (D).

SUPPLEMENTARY FIGURE S3
Forest plot of studies evaluating the hazard ratios of ASNS, CD70, SRGN and
TRIB3 for overall survival of patients with osteosarcoma.

Frontiers in Genetics frontiersin.org14

Ji et al. 10.3389/fgene.2023.1136783

https://www.frontiersin.org/articles/10.3389/fgene.2023.1136783/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2023.1136783/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1136783


References

Amelio, I., Cutruzzolá, F., Antonov, A., Agostini, M., and Melino, G. (2014). Serine
and glycine metabolism in cancer. Trends Biochem. Sci. 39, 191–198. doi:10.1016/j.tibs.
2014.02.004

Belayneh, R., Fourman, M. S., Bhogal, S., and Weiss, K. R. (2021). Update on
osteosarcoma. Curr. Oncol. Rep. 23, 71. doi:10.1007/s11912-021-01053-7

Bigorra, L., Larriba, I., and Gutierrez-Gallego, R. (2019). Machine learning algorithms
for accurate differential diagnosis of lymphocytosis based on cell population data. Br.
J. Haematol. 184, 1035–1037. doi:10.1111/bjh.15230

Celik, B., Cicek, K., Leal, A. F., and Tomatsu, S. (2022). Regulation of molecular
targets in osteosarcoma treatment. Int. J. Mol. Sci. 23, 12583. doi:10.3390/
ijms232012583

Chen, T., and Zhao, L. (2020). Patrolling monocytes inhibit osteosarcoma
metastasis to the lung. Aging (Albany NY) 12, 23004–23016. doi:10.18632/
aging.104041

Chen, Y., Liu, R., Wang, W., Wang, C., Zhang, N., Shao, X., et al. (2021a). Advances in
targeted therapy for osteosarcoma based on molecular classification. Pharmacol. Res.
169, 105684. doi:10.1016/j.phrs.2021.105684

Chen, Y., Zhao, B., andWang, X. (2020). Tumor infiltrating immune cells (TIICs) as a
biomarker for prognosis benefits in patients with osteosarcoma. BMC Cancer 20, 1022.
doi:10.1186/s12885-020-07536-3

Chen, Z., Wang, M., De Wilde, R. L., Feng, R., Su, M., Torres-de la Roche, L. A., et al.
(2021b). A machine learning model to predict the triple negative breast cancer immune
subtype. Front. Immunol. 12, 749459. doi:10.3389/fimmu.2021.749459

Deo, R. C. (2015). Machine learning in medicine. Circulation 132, 1920–1930. doi:10.
1161/CIRCULATIONAHA.115.001593

Gianferante, D. M., Mirabello, L., and Savage, S. A. (2017). Germline and somatic
genetics of osteosarcoma - connecting aetiology, biology and therapy. Nat. Rev.
Endocrinol. 13, 480–491. doi:10.1038/nrendo.2017.16

Gill, J., and Gorlick, R. (2021). Advancing therapy for osteosarcoma. Nat. Rev. Clin.
Oncol. 18, 609–624. doi:10.1038/s41571-021-00519-8

Gong, L., Zhang, D., Dong, Y., Lei, Y., Qian, Y., Tan, X., et al. (2018). Integrated
bioinformatics analysis for identificating the therapeutic targets of aspirin in small cell
lung cancer. J. Biomed. Inf. 88, 20–28. doi:10.1016/j.jbi.2018.11.001

Greener, J. G., Kandathil, S. M., Moffat, L., and Jones, D. T. (2022). A guide to
machine learning for biologists. Nat. Rev. Mol. Cell Biol. 23, 40–55. doi:10.1038/s41580-
021-00407-0

Gwinn, D. M., Lee, A. G., Briones-Martin-Del-Campo, M., Conn, C. S., Simpson, D.
R., Scott, A. I., et al. (2018). Oncogenic KRAS regulates amino acid homeostasis and
asparagine biosynthesis via ATF4 and alters sensitivity to L-asparaginase. Cancer Cell
33, 91–107. doi:10.1016/j.ccell.2017.12.003

Honorati, M. C., Neri, S., Cattini, L., and Facchini, A. (2003). IL-17 enhances the
susceptibility of U-2 OS osteosarcoma cells to NK cell lysis. Clin. Exp. Immunol. 133,
344–349. doi:10.1046/j.1365-2249.2003.02234.x

Huang, H., Ye, Z., Li, Z., Wang, B., Li, K., Zhou, K., et al. (2023). Employing
machine learning using ferroptosis-related genes to construct a prognosis model
for patients with osteosarcoma. Front. Genet. 14, 1099272. doi:10.3389/fgene.2023.
1099272

Huang, L., Liao, C., Wu, H., and Huang, P. (2022b). PLCE1 is a poor prognostic
marker and may promote immune escape from osteosarcoma by the CD70-CD27
signaling pathway. Bosn. J. Basic Med. Sci. 22, 992–1004. doi:10.17305/bjbms.2022.
7416

Huang, W., Xiao, Y., Wang, H., Chen, G., and Li, K. (2022a). Identification of risk
model based on glycolysis-related genes in the metastasis of osteosarcoma. Front.
Endocrinol. (Lausanne) 13, 1047433. doi:10.3389/fendo.2022.1047433

Jacobs, J., Deschoolmeester, V., Zwaenepoel, K., Rolfo, C., Silence, K., Rottey, S., et al.
(2015). CD70: an emerging target in cancer immunotherapy. Pharmacol. Ther. 155,
1–10. doi:10.1016/j.pharmthera.2015.07.007

Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., and Ishiguro-Watanabe, M.
(2022). KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids
Res. 51, D587–D592. doi:10.1093/nar/gkac963

Kansara, M., Teng, M. W., Smyth, M. J., and Thomas, D. M. (2014). Translational
biology of osteosarcoma. Nat. Rev. Cancer 14, 722–735. doi:10.1038/nrc3838

Li, W., Liu, Y., Liu, W., Tang, Z. R., Dong, S., Li, W., et al. (2022). Machine learning-
based prediction of lymph node metastasis among osteosarcoma patients. Front. Oncol.
12, 797103. doi:10.3389/fonc.2022.797103

Liu, L. P., Lu, L., Zhao, Q. Q., Kou, Q. J., Jiang, Z. Z., Gui, R., et al. (2021).
Identification and validation of the pyroptosis-related molecular subtypes of lung
adenocarcinoma by bioinformatics and machine learning. Front. Cell Dev. Biol. 9,
756340. doi:10.3389/fcell.2021.756340

Ma, Q., Gu, W., Li, T., Zhang, K., Cui, Y., Qu, K., et al. (2020). SRGN, a new identified
shear-stress-responsive gene in endothelial cells.Mol. Cell Biochem. 474, 15–26. doi:10.
1007/s11010-020-03830-7

Mandrekar, J. N. (2010). Receiver operating characteristic curve in diagnostic test
assessment. J. Thorac. Oncol. 5, 1315–1316. doi:10.1097/JTO.0b013e3181ec173d

Mao, X., Xu, J., Wang, W., Liang, C., Hua, J., Liu, J., et al. (2021). Crosstalk
between cancer-associated fibroblasts and immune cells in the tumor
microenvironment: new findings and future perspectives. Mol. Cancer 20, 131.
doi:10.1186/s12943-021-01428-1

Marchais, A., Marques da Costa, M. E., Job, B., Abbas, R., Drubay, D., Piperno-
Neumann, S., et al. (2022). Immune infiltrate and tumor microenvironment
transcriptional programs stratify pediatric osteosarcoma into prognostic groups at
diagnosis. Cancer Res. 82, 974–985. doi:10.1158/0008-5472.CAN-20-4189

McEligot, A. J., Poynor, V., Sharma, R., and Panangadan, A. (2020). Logistic LASSO
regression for dietary intakes and breast cancer. Nutrients 12, 2652. doi:10.3390/
nu12092652

Meltzer, P. S., and Helman, L. J. (2021). New horizons in the treatment of
osteosarcoma. N. Engl. J. Med. 385, 2066–2076. doi:10.1056/NEJMra2103423

Ord, T., and Ord, T. (2017). Mammalian pseudokinase TRIB3 in normal physiology
and disease: charting the progress in old and new avenues. Curr. Protein Pept. Sci. 18,
819–842. doi:10.2174/1389203718666170406124547

Pahl, J. H., Santos, S. J., Kuijjer, M. L., Boerman, G. H., Sand, L. G., Szuhai, K., et al.
(2015). Expression of the immune regulation antigen CD70 in osteosarcoma. Cancer
Cell Int. 15, 31. doi:10.1186/s12935-015-0181-5

Perez-Iratxeta, C., Andrade-Navarro, M. A., andWren, J. D. (2007). Evolving research
trends in bioinformatics. Brief. Bioinform 8, 88–95. doi:10.1093/bib/bbl035

Richards, N. G., and Kilberg, M. S. (2006). Asparagine synthetase chemotherapy.
Annu. Rev. Biochem. 75, 629–654. doi:10.1146/annurev.biochem.75.103004.142520

Ritter, J., and Bielack, S. S. (2010). Osteosarcoma. Ann. Oncol. 21 (7), vii320–325.
doi:10.1093/annonc/mdq276

Sanz, H., Valim, C., Vegas, E., Oller, J. M., and Reverter, F. (2018). SVM-RFE:
selection and visualization of the most relevant features through non-linear kernels.
BMC Bioinforma. 19, 432. doi:10.1186/s12859-018-2451-4

Schriml, L. M., Arze, C., Nadendla, S., Chang, Y. W., Mazaitis, M., Felix, V., et al.
(2012). Disease ontology: a backbone for disease semantic integration.Nucleic Acids Res.
40, D940–D946. doi:10.1093/nar/gkr972

Shang, S., Yang, Y.W., Chen, F., Yu, L., Shen, S. H., Li, K., et al. (2022). TRIB3 reduces
CD8(+) T cell infiltration and induces immune evasion by repressing the STAT1-
CXCL10 axis in colorectal cancer. Sci. Transl. Med. 14, eabf0992. doi:10.1126/
scitranslmed.abf0992

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M.
A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for
interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102,
15545–15550. doi:10.1073/pnas.0506580102

Tanaka, I., Dayde, D., Tai, M. C., Mori, H., Solis, L. M., Tripathi, S. C., et al. (2022).
SRGN-triggered aggressive and immunosuppressive phenotype in a subset of TTF-1-
negative lung adenocarcinomas. J. Natl. Cancer Inst. 114, 290–301. doi:10.1093/jnci/
djab183

The Gene Ontology Consortium (2019). The gene ontology resource: 20 years and
still GOing strong. Nucleic Acids Res. 47, D330–d338. doi:10.1093/nar/gky1055

Wang, D. W., Wu, L., Cao, Y., Yang, L., Liu, W., Xq, E., et al. (2017). A novel
mechanism of mTORC1-mediated serine/glycine metabolism in osteosarcoma
development. Cell Signal 29, 107–114. doi:10.1016/j.cellsig.2016.06.008

Wang, M., Wang, L., Ren, T., Xu, L., andWen, Z. (2013). IL-17A/IL-17RA interaction
promoted metastasis of osteosarcoma cells. Cancer Biol. Ther. 14, 155–163. doi:10.4161/
cbt.22955

Wang, X., Xia, G., Xiao, S., Wu, S., Zhang, L., Huang, J., et al. (2022). A
ferroptosis-related gene signature associated with immune landscape and
therapeutic response in osteosarcoma. Front. Oncol. 12, 1024915. doi:10.3389/
fonc.2022.1024915

Watanabe, A., Miyake, K., Nordlund, J., Syvanen, A. C., van der Weyden, L., Honda,
H., et al. (2020). Association of aberrant ASNS imprinting with asparaginase sensitivity
and chromosomal abnormality in childhood BCP-ALL. Blood 136, 2319–2333. doi:10.
1182/blood.2019004090

Werner, T. (2008). Bioinformatics applications for pathway analysis of microarray
data. Curr. Opin. Biotechnol. 19, 50–54. doi:10.1016/j.copbio.2007.11.005

Yang, W., Wu, H., Tong, L., Wang, Y., Guo, Q., Xu, L., et al. (2022). A
cuproptosis-related genes signature associated with prognosis and immune cell
infiltration in osteosarcoma. Front. Oncol. 12, 1015094. doi:10.3389/fonc.2022.
1015094

Yu, J. J., Zhou, D. D., Yang, X. X., Cui, B., Tan, F. W., Wang, J., et al. (2020). TRIB3-
EGFR interaction promotes lung cancer progression and defines a therapeutic target.
Nat. Commun. 11, 3660. doi:10.1038/s41467-020-17385-0

Yu, J. M., Sun, W., Wang, Z. H., Liang, X., Hua, F., Li, K., et al. (2019).
TRIB3 supports breast cancer stemness by suppressing FOXO1 degradation

Frontiers in Genetics frontiersin.org15

Ji et al. 10.3389/fgene.2023.1136783

https://doi.org/10.1016/j.tibs.2014.02.004
https://doi.org/10.1016/j.tibs.2014.02.004
https://doi.org/10.1007/s11912-021-01053-7
https://doi.org/10.1111/bjh.15230
https://doi.org/10.3390/ijms232012583
https://doi.org/10.3390/ijms232012583
https://doi.org/10.18632/aging.104041
https://doi.org/10.18632/aging.104041
https://doi.org/10.1016/j.phrs.2021.105684
https://doi.org/10.1186/s12885-020-07536-3
https://doi.org/10.3389/fimmu.2021.749459
https://doi.org/10.1161/CIRCULATIONAHA.115.001593
https://doi.org/10.1161/CIRCULATIONAHA.115.001593
https://doi.org/10.1038/nrendo.2017.16
https://doi.org/10.1038/s41571-021-00519-8
https://doi.org/10.1016/j.jbi.2018.11.001
https://doi.org/10.1038/s41580-021-00407-0
https://doi.org/10.1038/s41580-021-00407-0
https://doi.org/10.1016/j.ccell.2017.12.003
https://doi.org/10.1046/j.1365-2249.2003.02234.x
https://doi.org/10.3389/fgene.2023.1099272
https://doi.org/10.3389/fgene.2023.1099272
https://doi.org/10.17305/bjbms.2022.7416
https://doi.org/10.17305/bjbms.2022.7416
https://doi.org/10.3389/fendo.2022.1047433
https://doi.org/10.1016/j.pharmthera.2015.07.007
https://doi.org/10.1093/nar/gkac963
https://doi.org/10.1038/nrc3838
https://doi.org/10.3389/fonc.2022.797103
https://doi.org/10.3389/fcell.2021.756340
https://doi.org/10.1007/s11010-020-03830-7
https://doi.org/10.1007/s11010-020-03830-7
https://doi.org/10.1097/JTO.0b013e3181ec173d
https://doi.org/10.1186/s12943-021-01428-1
https://doi.org/10.1158/0008-5472.CAN-20-4189
https://doi.org/10.3390/nu12092652
https://doi.org/10.3390/nu12092652
https://doi.org/10.1056/NEJMra2103423
https://doi.org/10.2174/1389203718666170406124547
https://doi.org/10.1186/s12935-015-0181-5
https://doi.org/10.1093/bib/bbl035
https://doi.org/10.1146/annurev.biochem.75.103004.142520
https://doi.org/10.1093/annonc/mdq276
https://doi.org/10.1186/s12859-018-2451-4
https://doi.org/10.1093/nar/gkr972
https://doi.org/10.1126/scitranslmed.abf0992
https://doi.org/10.1126/scitranslmed.abf0992
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1093/jnci/djab183
https://doi.org/10.1093/jnci/djab183
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1016/j.cellsig.2016.06.008
https://doi.org/10.4161/cbt.22955
https://doi.org/10.4161/cbt.22955
https://doi.org/10.3389/fonc.2022.1024915
https://doi.org/10.3389/fonc.2022.1024915
https://doi.org/10.1182/blood.2019004090
https://doi.org/10.1182/blood.2019004090
https://doi.org/10.1016/j.copbio.2007.11.005
https://doi.org/10.3389/fonc.2022.1015094
https://doi.org/10.3389/fonc.2022.1015094
https://doi.org/10.1038/s41467-020-17385-0
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1136783


and enhancing SOX2 transcription. Nat. Commun. 10, 5720. doi:10.1038/s41467-
019-13700-6

Yu,W., Lei, Q., Yang, L., Qin, G., Liu, S., Wang, D., et al. (2021). Contradictory roles of
lipid metabolism in immune response within the tumor microenvironment. J. Hematol.
Oncol. 14, 187. doi:10.1186/s13045-021-01200-4

Zhang, C., Zheng, J. H., Lin, Z. H., Lv, H. Y., Ye, Z. M., Chen, Y. P., et al. (2020b).
Profiles of immune cell infiltration and immune-related genes in the tumor
microenvironment of osteosarcoma. Aging (Albany NY) 12, 3486–3501. doi:10.
18632/aging.102824

Zhang, Z., Deng, Y., Zheng, G., Jia, X., Xiong, Y., Luo, K., et al. (2017). SRGN-TGFβ2
regulatory loop confers invasion and metastasis in triple-negative breast cancer.
Oncogenesis 6, e360. doi:10.1038/oncsis.2017.53

Zhang, Z., Qiu, N., Yin, J., Zhang, J., Liu, H., Guo, W., et al. (2020a). SRGN
crosstalks with YAP to maintain chemoresistance and stemness in breast cancer
cells by modulating HDAC2 expression. Theranostics 10, 4290–4307. doi:10.7150/
thno.41008

Zhou, Y., Shi, W., Zhao, D., Xiao, S., Wang, K., and Wang, J. (2022). Identification of
immune-associated genes in diagnosing aortic valve calcification with metabolic
syndrome by integrated bioinformatics analysis and machine learning. Front.
Immunol. 13, 937886. doi:10.3389/fimmu.2022.937886

Zhou, Y., Yang, D., Yang, Q., Lv, X., Huang, W., Zhou, Z., et al. (2020). Single-cell
RNA landscape of intratumoral heterogeneity and immunosuppressive
microenvironment in advanced osteosarcoma. Nat. Commun. 11, 6322. doi:10.1038/
s41467-020-20059-6

Frontiers in Genetics frontiersin.org16

Ji et al. 10.3389/fgene.2023.1136783

https://doi.org/10.1038/s41467-019-13700-6
https://doi.org/10.1038/s41467-019-13700-6
https://doi.org/10.1186/s13045-021-01200-4
https://doi.org/10.18632/aging.102824
https://doi.org/10.18632/aging.102824
https://doi.org/10.1038/oncsis.2017.53
https://doi.org/10.7150/thno.41008
https://doi.org/10.7150/thno.41008
https://doi.org/10.3389/fimmu.2022.937886
https://doi.org/10.1038/s41467-020-20059-6
https://doi.org/10.1038/s41467-020-20059-6
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1136783

	Identification and validation of novel biomarkers associated with immune infiltration for the diagnosis of osteosarcoma bas ...
	1 Introduction
	2 Materials and methods
	2.1 Data acquisition and process
	2.2 Differentially expressed gene screening
	2.3 Functional enrichment analyses of DEGs
	2.4 Gene set enrichment analysis (GSEA)
	2.5 Machine learning analysis
	2.6 Diagnostic value of feature biomarkers in osteosarcoma
	2.7 Validation of the diagnostic value and differential expression of feature biomarkers
	2.8 Prognostic value analysis
	2.9 Immune cell infiltration analysis
	2.10 qRT-PCR
	2.11 Western blotting
	2.12 Statistical analysis

	3 Results
	3.1 Identification of DEGs in osteosarcoma
	3.2 Functional enrichment analyses of DEGs
	3.3 GSEA enrichment analysis
	3.4 Identification of candidate diagnostic genes via machine learning
	3.5 Diagnostic value analysis
	3.6 Validation of the diagnostic value
	3.7 Prognostic value analysis
	3.8 Immune infiltration analysis
	3.9 Correlation between DEGs and immune-infiltrating cells
	3.10 Identification of the expression of diagnostic biomarkers

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


