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1 Introduction

Opium poppy (Papaver somniferum) is a flowering plant in the Papaveraceae family that
has been valued for its ornamental and significant medicinal properties for thousands of
years (Norn et al., 2005; Singh et al., 2019; Lal, 2022). It produces several pharmacologically
active benzylisoquinoline alkaloids (BIAs), such as morphine, codeine, thebaine, and
noscapine, which make opium poppy the only natural source of commercial opiates
worldwide and potentially play roles in plant defense against biotic and abiotic
challenges (Singh et al., 2019). Developmental regulation of BIA biosynthesis facilitates
organ- and tissue-specific accumulation of major alkaloids. Primary alkaloids mainly
accumulate in the stems and capsules of mature plants (Facchini and De Luca, 1995;
Hagel and Facchini, 2013; Beaudoin and Facchini, 2014). However, the regulatory
mechanisms behind tissue-specific production and enrichment of natural products in
opium poppy are largely unknown (Yucebilgili Kurtoglu and Unver, 2021). Only a few
studies have investigated the implications of transcription factors (TFs) in BIA biosynthesis
in opium poppy (Mishra et al., 2013; Kakeshpour et al., 2015; Agarwal et al., 2016; Yucebilgili
Kurtoglu and Unver, 2021). Previously, we reported that a majority of genes that encode
enzymes for metabolic pathways of BIAs are not only clustered in the opium poppy genome
but also co-expressed in stem, capsule and root tissues (Guo et al., 2018; Yang et al., 2021).
The mechanism by which co-expression of BIA genes occurs selectively in some tissues but
not in others is intriguing and unknown. Therefore, we aimed to sequence and study the
epigenome and transcriptome of distinct opium poppy tissues to uncover the tissue-specific
regulatory mechanisms of general plant development, particularly BIA production.

Accessible chromatins regions (ACRs) located at promoters, enhancers, and other gene
regulatory regions allow TFs to bind, which is crucial for transcriptional regulation during a
wide range of developmental and metabolic processes (Thurman et al., 2012; Yocca and
Edger, 2022). At present, transposase accessible chromatin sequencing (ATAC-seq) is an
emerging technology for detecting the highly opened ACRs and subsequently, identifying
TF-binding sites within these regions. ATAC-seq has been widely employed in recent years
for large-scale identification of open chromatin in mammals, fungi and plants as a quicker
and more efficient approach (Lu et al., 2017; Maher et al., 2018; Sijacic et al., 2018; Klemm
et al., 2019; Pawlak et al., 2019; Chen et al., 2021), However, no study has yet examined P.
somniferum. Here, we conducted a comprehensive tissue-specific assay for ATAC-seq and
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transcriptome sequencing (RNA-seq) analysis of six different tissues
in the opium poppy to dissect the epigenetic and transcriptional
regulatory mechanisms for tissue-specific BIA metabolism. In this
study, we discovered that HB6 is a key transcription factor that
regulates the expression of the BIA gene cluster. This first tissue-
specific chromatin accessibility landscape of P. somniferum provides
an important resource for functional epigenetic analysis and future
research aimed at characterizing or using gene regulatory elements
for breeding poppy varieties with high BIA content.

2 Materials and methods

2.1 Plant materials and growth conditions

Opium poppy cultivar HN1 seeds were sowed in a soil mix
containing potting mix, vermiculite, and sand at a 2:1:1 ratio. The
seeds were incubated in plant growth chambers under a 16-h light
and 8-h dark cycle at 22°C and 60% humidity. Six different tissues,
including the leaves, stems (2–4 cm below the capsule), capsules,
petals, tap roots, and fine roots of opium poppy plants were
harvested 1-day post-anthesis, frozen immediately in liquid
nitrogen and stored in a freezer at −80°C. Each sample has three
biological replicates. Half of the above materials were used for RNA-
seq and the other half for ATAC-seq.

2.2 Nuclei isolation and ATAC sequencing

To understand the regulatory dynamic epigenomic mechanisms
that underpin the distinctive tissues, we performed ATAC-seq for
six different tissues of P. somniferum. A quantity of 1–3 g from the
six different fleshy tissues was ground into powder in liquid nitrogen
and then the nuclei were isolated as described previously (Bajic et al.,
2018). The isolated nuclei were used to build the library with
Novoprotein Chromatin Profile Kit (Novoprotein, #N248)
following the company’s recommended protocols: The isolated
nuclei were immediately resuspended in the Tn5 transposase
reaction mix. The transposition reaction was incubated at 37 C
for 30 min. Equimolar Adapter 1 and Adapter 2 were added after
transposition and then PCR was performed to amplify the library.
After PCR, the libraries were purified with the AMPure beads and
library quality was assessed using Qubit. The library preparations
were sequenced after cluster generation on an Illumina Hiseq
platform and 150 bp paired-end reads were generated. All
ATAC-seq processing was performed by Novogene Technology
Inc. (Tianjin, China).

2.3 RNA extraction and sequencing

To understand the tissue-specific transcriptional process in
opium poppy, we performed RNA-seq for six different tissues of
P. somniferum. The plant materials used for RNA-seq analysis were
the same as those used for ATAC-seq. Total RNA was extracted
from six different tissues using Trizol reagent (Ambion, #15596018)
according to the manufacturer’s instructions. RNA integrity was
determined using regular agarose gel electrophoresis, Nanodrop

(ThermoFisher Scientific, United States), and Agilent
2100 Bioanalyzer (Agilent Technologies, United States). RNA
sample of high quality (OD260/280 within the range [1.8, 2.2],
OD260/230 ≥ 2.0, RIN ≥8) was used to construct the sequencing
library. Library construction and sequencing were performed by
Novogene Technology Inc. (Tianjin, China) with Hiseq platform
(Illumina Inc, United States) using the paired-end sequencing
strategy (150 bp for each end). All the tissues were subjected to
three biological replicates.

2.4 RNA sequencing data analysis

The purpose of this analysis was to quantify genome-wide gene
expression levels and identify transcriptional diversity in P.
somniferum. Pair-end RNA-seq reads were first assessed for
quality by FastQC v0.10.1 (Andrews, 2010). Trimmomatic was
used to remove sequence adapters and reads of low quality
(Phred Q < 20) (Bolger et al., 2014). High-quality and clean
RNA-seq reads were mapped to the reference genome of P.
somniferum HN1 (Yang et al., 2021) using bowtie2/2.3.5
(Langmead and Salzberg, 2012). Mapped reads were filtered
using Samtools to retain only those that had a mapping quality
score of 10 or higher (Samtools “view” command with option “-q
10” to set mapping quality cutoff) (Li et al., 2009). Filtered reads
were used to construct transcriptome by Cufflinks/2.2.1 (Trapnell
et al., 2012). Dimension reduction (PCA analysis) was performed
using FactoMineR (Lê et al., 2008).

2.5 ATAC sequencing data analysis

The purpose of this analysis was to identify and map genome-
wide cis-regulatory elements involved in transcriptional regulation
in P. somniferum. The cleaned reads were mapped to the P.
somniferum genome using BWA (Li and Durbin, 2009) software
with “mem” parameters (Yang et al., 2021). Mapped reads in sam
format were converted to bam format and sorted using Samtools
v1.9 and Sambamba ‘markdup’ command was then used to remove
PCR duplicates (Li et al., 2009; Tarasov et al., 2015). Reads with
higher mapping quality scores (MAPQ ≥10) were employed to
perform downstream analysis.

ATAC-seq peak calling was conducted using Genrich with
default recommended parameters (v0.6, “-j -r -v”, available at
https://github.com/jsh58/Genrich). Intervene was used to
intersect different samples to obtain tissue-specific peaks and
overlapped peaks (Khan and Mathelier, 2017). The number of
reads of each genome region was counted using the
‘multiBamSummary’ script in deepTools v2.0 and PCA were
performed with FactoMineR (Lê et al., 2008; Ramírez et al., 2016).

For each ATAC-seq data set, the peaks were assigned to genes
using the R/Bioconductor package ChIPseeker (Yu et al., 2015). This
program assigns each peak to the closest TSS, whether promoter,
downstream, distal intergenic, intron, exon, 5′UTR, or 3′UTR, and
reports the distance from the peak center to the TSS based on the
genome annotations (Yang et al., 2021). The TF motif enrichment
analysis on ATAC-seq data was performed using the
‘findMotifsGenome.pl’ function of HOMER package (Heinz et al.,
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FIGURE 1
Landscape of accessible chromatin regions across six tissues (capsule, leaf, petal, stem, tap root, and fine root) of P. somniferum. (A) Graphical
representation of PCA of opium poppy ATAC-seq data between all the biological replicates across the six tissues based on ACR. (B) Genome-wide
distribution of ACRs along 11 opium poppy chromosomes. From outside to inside, the circles represent the chromosome, gene density, ACRs abundance
in the capsule, ACRs abundance in the petal, ACRs abundance in the stem, ACRs abundance in the leaf, ACRs abundance in the tap root, and ACRs
abundance in the fine root. (C) Venn diagram displaying the number of common and unique ACRs among the six distinctive tissues. (D) Distribution of
ACRs relative to genes in each tissue. (E)Number of promoter-localized ACRs per gene in each tissue. (F)Genomic annotation and distribution of ACRs in
the six tissues. (G) Distribution of promoter-localized ACRs in the six tissues.
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2010). TF binding sites were performed using the ‘annotatePeaks.pl’
function of HOMER package (Heinz et al., 2010).

2.6 Visualization

In order to better visualize the results of the data analysis, we
performed a variety of visualization tools. The filtered, sorted and
scaled bam files were converted to the bigwig format for
visualization using the BAMscale with default parameters
(Pongor et al., 2020). Genome browser images were created using
the Integrative Genomics Viewer (IGV) v2.8.10 (Thorvaldsdóttir
et al., 2013) and bigwig files were processed as described above.

Motif binding regions were visualized using ggmsa (v0.0.6,
available at https://cran.r-project.org/web/packages/ggmsa/index.
html). A Venn diagram for ATAC-seq and RNA-seq samples
was generated using R package Venn (v1.9, available at https://
cran.r-project.org/web/packages/venn/). The distribution of ATAC-
seq peaks was visualized with Circos v0.69-8 (Krzywinski et al.,
2009). A Heatmap was generated using pheatmap package and bar
and pie plots were all created using ggplot2 package (Wickham,
2016; Kolde, 2019).

2.7 Code access

The methods related program source code has been submitted to
GitHub (https://github.com/) under URL https://github.com/StuYuXu/
Chromatin-accessibility-landscape-of-Papaver-somniferum.

3 Results

3.1 Identification of accessible chromatin
regions in Papaver somniferum by ATAC-seq

We performed chromatin accessibility profiling using ATAC-
seq for six different tissues of P. somniferum HN1 variety, including
the leaves, petals, stems, capsules, tap roots, and fine roots. The
tissues were all harvested on the first day of anthesis. The ATAC-seq
libraries of three biological replicates for each tissue were sequenced
using Illumina paired-end sequencing, yielding a total of 890 million
clean reads that were mapped to the reference genome of P.
somniferum variety HN1 (Yang et al., 2021) (Supplementary
Table S1). Based on accessible chromatin region profiles, the
principal component analysis (PCA) of the ATAC-seq data
showed that the three biological replicates within each tissue
were highly correlated and roughly separated into tissue-specific
clusters (Figure 1A), with the exception that the clusters of tap root
and fine root intermingled with each other (Figure 1A).

To better understand the tissue-specific transcriptional
regulation in opium poppy, we also performed RNA-seq from
the same six tissues of which epigenomes were assessed. Based
on gene expression profiles, the PCA showed a clean separation of
various tissue types (Supplementary Figure 1A), except for tap roots
and fine roots, reflecting a correlation of the two tissues in both
chromatin accessibility and gene transcription. With a threshold of
transcripts per million (TPM) larger than 1, the number of expressed

genes per tissue ranged from 24,537 (petals) to 31,768 (capsules),
representing approximately 44%–57% of the total genes of P.
somniferum, respectively (Supplementary Figure 1B). Comparison
of the expressed genes among the tissues shows that approximately
36% of the genes (19,682) were expressed in all the six tissues
(Supplementary Figure 1B), with each tissue having various
numbers (0.5%–1.2%) of uniquely expressed genes. The capsules
contained the most tissue-specifically expressed genes (663), out of
the six tissues studied (Supplementary Figure 1B). The fact that the
capsule has the most expressed and unique genes of any tissue
underlines the transcriptional and physiological hyperactivity in this
tissue.

Then, in order to better understand the regulatory dynamic
mechanisms underpin the distinctive tissues, we identified a series of
ATAC-seq peaks representing ACRs using Genrich software
(https://github.com/jsh58/Genrich) for each tissue. As a result,
133,374, 18,914, 31,974, 11,525, 35,877, and 43,565 ACRs were
identified in the capsules, petals, stems, leaves, tap roots, and,
fine roots, respectively (Figures 1B,C; Supplementary Table S2).
The comparison of ACRs in the different tissues showed that
4,096 ACRs were shared by all the tissues, with the capsule
having the most tissue-specific ACRs (Figure 1C). Examining the
location of ACRs relative to genes showed that in all the tissues,
except the capsule (46.1%) and stem (40.3%), approximately 20%–
30%ACRs were located within 3 kb regions of the transcription start
site (TSS) (Figure 1D), while 42.1%–74.6% of ACRs were located in
distant intergenic regions. In comparison to other tissues, the
capsule (28.4%) and stem (23.0%) contained more ACRs within
1 kb promoter regions and fewer ACRs in distal intergenic regions
(Figure 1F). As for the genes with a detected promoter region of the
ACRs across the six tissues (region from −3,000 to 3,000 bp relative
to the TSSs of genes, pACRs), 80%, 12%–18%, and 3%–5% had a
single ACR, two ACRs, and three ACRs, respectively, except for the
capsule, which had 50%, 28%, and 14%, respectively (Figure 1E). The
peak of the promoter-localized ACR was located around TSS for all
the six tissues, with 61.47%, 56.95%, 58.87%, 55.8%, 52%, and 51.
74% within the 1 kb of TSS in the capsule, stem, tap root, fine root,
leaf, and petal, respectively, demonstrating a more open chromatin
state around TSS than the rest of promoter regions (Figure 1G).
Taken together, the ATAC-seq detected a large amount of ACRs
with a distinct distribution associated with six tissues, reflecting a
common and distinct state of open chromatins among these tissues.

3.2 Tissue-specific chromatin accessibility
and transcription of BIA gene cluster

Papaver somniferum production of pharmaceutically valuable
BIAs, such as morphine, codeine, thebaine, and noscapine is a
distinguishing characteristic (Beaudoin and Facchini, 2014). The
genes encoding the BIA biosynthetic pathway are well characterized
and partly of these are organized in an outstanding gene cluster on
the P. somniferum genome (Figure 2A) (Guo et al., 2018; Yang et al.,
2021). The fact that these BIA genes are transcriptionally co-
regulated in a tissue-specific (capsule, root, and stem) manner
(Supplementary Figure S2) raises the question of how this is
achieved epigenetically and what regulatory elements are
involved. Using enrichment analysis of DNA cis-regulatory
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elements in ATAC-seq data, we detected 43 capsule-, stem-, and
root-specific pACRs 3 kb upstream of most BIA biosynthesis genes
that encode the (S)-reticuline pathway (NCS, 6OMT, CNMT,
CYP80B1, and 4OMT) and sequentially convert L-dopamine and
4-HPA into the (S)-reticuline, morphinan branch (STORR,
SALSYN, SALR, SALAT, THS, and COR), and noscapine branch
(PSMT1, CYP719A21, TNMT, CYP82Y1, and CYP82X2) pathways,
which is in accordance with their capsule-specific, root-specific and
stem-specific gene expression (Figure 2B; Supplementary Table S3).
In contrast, we did not observe any ACRs of these genes in the non-
BIA producing tissues, such as the leaf and petal, where they are
lowly expressed (Figure 2B). These findings provide evidence that
the chromatin becomes accessible to certain unknown
transcriptional regulators (e.g., TFs) in specific tissues allowing
them to activate the transcription of many of these BIA genes.

Subsequently, we identified potential TFBS from the
43 pACRs associated with BIA genes through motif
enrichment analysis (Figure 2B; Supplementary Figure S3;
Supplementary Table S3). The HB-HD-ZIP family and the
WRKY family recognition motifs were significantly enriched
among these pACRs, which is consistent with previous studies
on the function of WRKY family proteins in the regulation of BIA
biosynthesis in California poppy (Eschscholzia californica)
(Yamada et al., 2021). Nevertheless, combining the results of
motif enrichment and RNA-seq analysis, HB6, a HB-HD-ZIP
transcription factor, emerged as a key regulator in BIA
biosynthesis in P. somniferum. Specifically, Pso06G40150.0,
which encodes a P. somniferum homolog of Arabidopsis HB6,
might regulate 19 BIA biosynthetic genes including eight in the
(S)-reticuline pathway, five in the morphinan branch pathway,

FIGURE 2
Coordinate regulation of BIAs metabolic pathway genes. (A) Schematic representation of (S)-reticuline pathway and noscapine and morphinan
branch pathways. (B) Visualization of ACRs from −3,000 to 3,000 bp relative to the TSS of these isoquinoline metabolic pathway genes. The brown
transparent boxes show ACRs. (C) The predicted cis-regulatory element within the region from −3,000 to 3,000 bp relative to the TSS of (S)-reticuline,
noscapine, and morphinan metabolic pathway genes. (D) The expression patterns of HB6 as well as its predicted regulated genes.
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four in the noscapine branch pathway, one (P6H) in the
sanguinarine branch pathway, and one (7OMT) in the
laudanine branch pathway (Figure 2C; Supplementary Figure
S4). However, HB6 was only highly co-expressed with 17 genes
with significant p values calculated by 18 samples (average
correlation coefficient >0.818) (Figure 2D; Supplementary
Table S4). For instance, Pso04G00400.0 (STORR) is a pivotal
gene in the morphine branch pathway, which contained HB6
binding motif within its promoter region. This motif was
significantly opened in the capsule, stem, fine root, and tap
root, but nearly closed in the petal and leaf, which was
consistent with its lower expression level in the petal and leaf
(Winzer et al., 2015) (Figures 2B,C; Supplementary Figure S5).
The remaining 16 genes yielded similar findings (Figures 2B,C).
In summary, these results suggested that Pso06G40150.0might be
a key transcription factor in regulating the expression of the BIA
gene cluster.

Taken together, our findings suggest that several major genes
involved in the BIAs metabolic pathway may be regulated
coordinately by the same transcription factor.

4 Conclusion

Papaver somniferum, one of the most important medicinal
plants in the world, has been widely used in clinical medicine for
thousands of years due to its unique ability to produce a variety of
active alkaloids, including noscapine, morphine, and codeine, all of
which have potential pharmacological activity in relieving pain,
cough, muscle relaxation, anticancer, etc. (Yamada et al., 2021).
However, the regulatory mechanisms governing its development
and tissue-specific product synthesis remain unclear. These research
status limit full utilization and breeding improvement of P.
somniferum.

In this study, we constructed the first cis-regulatory elements
landscapes from six distinctive tissues (i.e., capsule, stem, fine root,
tap root, leaf, and petal) and provided paired transcriptomic data in
P. somniferum. Our approach, which combines chromatin
accessibility profiling with transcriptome profiling, is practicable
and precise for identifying cis-regulatory elements and building
regulatory networks. Our data atlas provides a valuable resource
for the study of epigenetic mechanisms underlying plant
development and secondary metabolism.

Future research should focus on following two aspects of research.
First, RNA-seq and ATAC-seq data analyses predicted that HB6 serves
as a key TF to co-regulate 17 BIA biosynthetic genes. However, it is not
yet clear how HB6 regulates these 17 genes. Therefore, future studies
will have to elucidate the molecular mechanism underlying HB6 action.
Second, our study found that two independent biosynthetic genes were
co-localized to form a big gene cluster as well as co-expressed and co-
regulated. However, the evolution of this process is still unclear,
especially how this gene cluster is formed and these regulatory

elements evolved. We believe that, in the future, our valuable
resource will help us solve these puzzles.
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