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Background: Long non-coding RNAs (lncRNAs) play crucial roles in numerous
biological processes. Investigation of the lncRNA-protein interaction contributes to
discovering the undetected molecular functions of lncRNAs. In recent years,
increasingly computational approaches have substituted the traditional time-
consuming experiments utilized to crack the possible unknown associations.
However, significant explorations of the heterogeneity in association prediction
between lncRNA and protein are inadequate. It remains challenging to integrate the
heterogeneity of lncRNA-protein interactions with graph neural network algorithms.

Methods: In this paper, we constructed a deep architecture based on GNN called
BiHo-GNN, which is the first to integrate the properties of homogeneous with
heterogeneous networks through bipartite graph embedding. Different from
previous research, BiHo-GNN can capture the mechanism of molecular
association by the data encoder of heterogeneous networks. Meanwhile, we
design the process of mutual optimization between homogeneous and
heterogeneous networks, which can promote the robustness of BiHo-GNN.

Results: We collected four datasets for predicting lncRNA-protein interaction and
compared the performance of current prediction models on benchmarking dataset.
In comparison with the performance of other models, BiHo-GNN outperforms
existing bipartite graph-based methods.

Conclusion:Our BiHo-GNN integrates the bipartite graph with homogeneous graph
networks. Based on this model structure, the lncRNA-protein interactions and
potential associations can be predicted and discovered accurately.
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1 Introduction

Long non-coding RNAs (LncRNAs) are RNAs with a length of no less than 200 nucleotides
that do not encode proteins (Schaukowitch and Kim, 2014). Recently investigators have
documented that lncRNAs play a critical role in various pathological and biological processes.
Their misimpression can stimulate a series of lesions in humans, such as colon cancer (Pibouin
et al., 2002), tumor initiation (Yang et al., 2014), nasopharyngeal carcinoma cell invasion (Wang
et al., 2020a), and breast cancer (Wang et al., 2020b). For example, ncRNA miR-106b-5p assists
metastasis by suppressing the key gene which links to breast cancer and activating Rho/
ROCK1 pathway (Wang et al., 2020b). LncRNA ZNRD1-AS1 promotes the metastasis of
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nasopharyngeal carcinoma cells by regulating the miR-335–ROCK1
axis (Wang et al., 2020a). LncRNA LINC00337 promotes tumor
angiogenesis, which can lead to colorectal cancer (Xu et al., 2021).
Previous studies have shown that only a small fraction of the human
genome is protein-coding genes (1.5%). In other words, the function of
most human gene sequences that do not encode proteins is anonymous
(Chen and Yan, 2013). Accordingly, the lncRNA-protein interactions
are essential in analyzing the molecular function of lncRNAs.

Traditional methods can experimentally verify lncRNA-protein
interactions. Previous experiments such as PAR-CLIP (Hafner et al.,
2010) are time-consuming and cost-effective to predict, then
computational approaches have been widely applied to lncRNA-
protein interactions, which are based on machine learning and
deep learning.

Graph neural network (GNN) is an extension method of a
traditional neural network, which transforms the relationship
between nodes into structured data and then completes forward
propagation in graph domain (Scarselli et al., 2008). With the
model iterations in GNN, existing research focuses on convolutions
in graph data mining. Graph convolutional network is a variant of
convolutional neural networks, which can operate directly on graph-
structured data (Kipf and Welling, 2016). GraphSAGE (Hamilton
et al., 2017) unifies the information of nodes through its neighbor node
feature aggregation.

Link prediction using deep learning methods is commonly
prescribed for disease-genes (Chen et al., 2018), miRNA-lncRNA
(Huang et al., 2018) and many other fields. Previous study
demonstrated that GNN had become the key instrument in link
prediction (Zhang and Chen, 2018).

The following approaches achieve relevant results in predicting the
interactions on lncRNA-protein. RPISeq method is a classifier for
predicting LncRNA-protein interactions with two variants: Support
Vector Machine (SVM) and Random Forest (Muppirala et al., 2011).
NPImethod integratedmany advanced deep learning correlationmodels
such as SEAL framework (Zhang and Chen, 2018) to this task (Shen
et al., 2021). LPI-deepGBDT utilized gradient boosting decision trees for
lncRNA–protein interaction identification (Zhou et al., 2021). LPIGAC
implemented autoencoders on two graphs and trained these embedding
collaboratively (Jin et al., 2021), however, their work wasmainly based on
the homogeneous graph, which led to the lack of the capability of
heterogeneous features in the framework, including dependencies
between heterogeneous nodes. The model results will be limited by
some misjudgments, such as connecting homogenous nodes (protein-
protein) and time-costing large-scale matrix calculations.

In recent years various methods based on graph embedding have
been proposed. Li et al. (2015) proposed a heterogeneous network
based on the protein-protein interaction. LPLNP was designed based
on linear neighborhood propagation, which transfers the graph
similarity into the network embedding (Zhang et al., 2018).
LncPNet was proposed based on embedding the heterogenous
network to learn the low-dimensional potential node
representations (Zhao et al., 2022).

Major of the biomedical interaction graph is not homogeneous. For
instance, lncRNA-protein, disease-genes, hence bipartite graph
embedding is fundamental to predict the potential edge in the
bipartite graph. Before bipartite embedding was proposed, many
studies contributed to the work of homogeneous graph embedding
(Cui et al., 2018; Cai et al., 2018). Although these methods work well,
they are not suitable for embedding the construction of bipartite graphs.

To remedy the problem, increasing explorations on heterogeneous
graphs have been proposed. The reconstruction-based method with
graph convolutional matrix completion works pretty well on standard
collaborative filtering benchmarks (Berg et al., 2017).

The structure of the bipartite graph network has been iterated
many times. Metapath2vec applied scalable node representation in
heterogeneous networks (Dong et al., 2017). BiNE proposed a random
walk generator to generate representation vectors and also combined
explicit relations and implicit relations (Gao et al., 2020). BiRank
proposed a method to integrate bipartite graph structure and node
representation (He et al., 2016). BiGl integrated the embedding of two
node types into local-global representation, which also proposed the
bipartite embedding applied to deep learning (Cao et al., 2021).

Gilmer captured node representations by using the features of
neighboring nodes to train the neural network (Gilmer et al., 2017).
DMGI (Park et al., 2020) utilized the infomax objective to
heterogeneous graphs. It splits the heterogeneous graph into
homogeneous graphs and applies the infomax objective to this task.

In this study, we integrate homogeneous networks and
heterogeneous networks to construct mutual optimization model
through bipartite graph embedding. The heterogeneous features
combine the association information to obtain the bipartite graph
features of each node. The representations are input into the
homogeneous network established based on GraphSAGE and
matched with interaction to update the bipartite features. Finally,
the bipartite embedding is input into the logistic regression classifier to
calculate the link categories. In summary, the main advantages of
BiHo-GNN are as follows:

1. BiHo-GNN can capture the feature of the lncRNA-protein
interactions and distinguish the disparate nodes, which can
lower the negative effect of lncRNA-protein homogenization on
link prediction.

2. BiHo-GNN combines the advantages of heterogeneous and
homogeneous networks, which uses the heterogeneous network
to generate bipartite graph features. The bipartite embedding is a
feature composed of two types of node prototype representations.

3. Our homogeneous network based on GraphSAGE can iterate
bipartite embedding from heterogeneous network to form a
feedback process.

2 Materials and methods

2.1 Datasets

There are four datasets collected in this study. These datasets are
NPInter2.0 (Yuan et al., 2014), NPInter3.0_H (Hao et al., 2016),
NPInter3.0_M (Hao et al., 2016), RPI2241 (Muppirala et al., 2011).

NPInter 2.0 database includes 10,412 experimentally
demonstrated functional lncRNA-protein interactions, containing
4,636 RNAs and 449 proteins, which were extracted from the
UniProt database (UniProt Consortium, 2014) and the NONCODE
database (Bu et al., 2012). NPInter 3.0 is an upgraded dataset of
ncRNA-sequence interactions. We only use two pieces of data for
processing. NPInter3.0_H is from the homo sapiens specie part,
composed of 7,317 lncRNA–protein interaction pairs, 1874 RNAs,
and 118 proteins. NPInter3.0_M is the musculus species subset of
NPInter 3.0, involving 1847 experimentally verified lncRNA–protein
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interactions. These interactions contain 1939 RNAs and 60 proteins.
RPI2241 and the above datasets differ in data acquisition. RPI2241 is
acquired based on 3D atom coordinates and algorithm inference
(Lewis et al., 2010), containing 2,241 interactions, 838 RNAs, and
2040 proteins. These four datasets have an exact number of each type
of node. At the same time, the bipartite embedding model in data
preprocessing may lead to filtering out a few low-frequency nodes. The
specific number of each item is shown in Table 1. Since these four
datasets only marked positive samples, we randomly selected negative
samples with the same number of positive samples in the data sets that
have not been verified to be associated.

2.2 Background

Let G = (L, P, E) be the bipartite graph, where L and P are the set of
RNAs and proteins, with E is the edges between RNA and protein sets.
It is obvious that RNA and protein nodes are heterogeneous.
Representation vectors are instrumental in their forward
propagation in graph neural networks. For this bipartite graph with
vertex sets L = {l1, . . ., lr}, P = {p1, . . ., ps}, where r and s denote the
number of lncRNAs and proteins. Edges E ⊆ L × P, bi-adjacency
matrix A ∈ {0,1}r×s, where Ai,j = 1 when the RNA node li ∈ L and the
protein node pj ∈ P interact, and Ai,j = 0 when no interaction occurs.

Bipartite graph embedding maps graph data into a feature matrix
based on a sample Bi-GNN by mutual iteration between molecule
nodes.

2.3 Bipartite graph embedding

The bipartite graph embedding, which was proposed by Cao (Cao
et al., 2021). Inspired by this work, we design the feature of lncRNA
and protein nodes. In this part, we use Bi-GNN as the bipartite graph
encoder to generate the molecular node representations and take these
representations into the following network frame. For clarification of
the notations, we use li and pj to stand for the representation of RNAs
and proteins node, respectively.

The key problem in the prediction of lncRNA-protein interaction
is the utilization of neighbor nodes attribution and utilize the
homogeneity of two molecular nodes efficiently. Bipartite graph
encoder can learn each node feature from two-hop neighbors
interaction. Taking lk−1i for example as illustration shown in
Figure 1, each node forward propagation in k-th layer aggregates
the embedding of two-hop neighbor nodes. The propagation of lki , p

k
j

is represented lk−1i via a Bi-GNN encoder:

pk
j � ReLU Linear Âlk−1i Wk−1: li ∈ L( })( ) (1)

Protein nodes pk
j are represented by upper RNA nodes lk−1i , lki can

be obtained by the Bi-GNN encoder based on pk−1
j .

l̂
k

i � ReLU Linear Âpk−1
j Wk−1: pj ∈ P( })( ) (2)

where Â � D−1/2(A + In)D1/2, A is the adjacency matrix of the
bipartite graph, D is the diagonal degree matrix of A + In, and W
denotes the weights of the GNN encoder. The final RNA node
embedding lkn is the cascading matrix of l̂

k

n and lk−1n as follows:

lkn � Linear l̂
k

n lk−1n[ ]( ) (3)

2.4 Network structure

Depending on the generated bipartite node embedding, in this
section, we proposed a homogeneous network to learn RNA and
protein embedding, which can capture the homogenous properties of
bipartite embedding.

In homogenous network, both RNA and protein share the same
node type and node representation. We integrate two types of nodes
embedding as the new inputH ∈ R(r+s)×d of the homogenous network
via a simple composition operation:

H � L P[ ]T (4)
For each node type, we construct a bipartite node feature matrix

under the interaction order, and the new node attribution X can be
decoded with Hl and Hp.

X � Hl ⊙ Hp (5)
where Hl and Hp are the node feature order of RNA and protein.

In this paper, we applied GraphSAGE (Hamilton et al., 2017) to
aggregate information from the neighborhood representation, which
can extract the bipartite embedding for previously neglected nodes,

TABLE 1 Introduction of four datasets used in this paper.

Datasets Species Interactions RNAs Proteins

NPInter2.0 — 10,412 4,636 449

NPInter3.0_H Homo sapiens 7,317 1874 118

NPInter3.0_M Mus musculus 1847 1939 60

RPI2241 — 2,241 842 2,043

FIGURE 1
The forward propagation process of node from lk−1i to lki .
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and we add three rectified linear layers as the final feature to the
softmax function.

Z � X · Θ 0( ) + AGG Xq: xq ∈ N x( )( ) · Θ 1( ) (6)

where Θ denotes the weights matrix and N (x) denotes the q-hop
neighbors of x.

2.5 Model training

From Eq. 4, we can obtain the lncRNA-protein prototype
representation H, Bi-GNN encoder training loss function Lb is
defined as:

Lb � − 1
|E| + |E′| ∑

|E|

i�1
∑
|E′|

i�1
yi log ϕ hi( )( )[ ] + yi′ log 1 − ϕ hi′( )( )[ ]( ) (7)

where yi is the label of interaction and yi′ is the set of negative lncRNA-
protein pairs. ϕ is a temporary classifier involved by a fully connected
layer and a sigmoid function.

Through the optimization of node featureH in reconstruction loss
Lr, bipartite Graph embedding can be optimized in homogeneous
networks.

Lr � −∑
|E|

i�1
yilogxi (8)

The final loss function L is composed of above two sections:

L � αLb + 1 − α( )Lr (9)
where α is a hyperparameter that balances tensor gradient descent

between Lb and Lr. The procedure of BiHo-GNN is illustrated in
Figure 2.

3 Results and discussions

3.1 Performance measures

In this paper, we use recall, precision, F1-Score, AUC and AUPR
to evaluate the performance of BiHo-GNN. Measurements are defined
as follows:

Recall � TP

TP + FN
(10)

Precision � TP

TP + FP
(11)

F1 − Score � 2 × Precision × Recall

Precision + Recall
(12)

where TP, TN, FP, and FN denote the number of true positives, true
negatives, false positives, and false negatives in the binary classification,
respectively. Area under receiver operating characteristic curve (AUC)
is utilized tomeasure the performance of the classifier with TP ratio and
FP ratio. Area Under the Precision-Recall curve (AUPR) is used to
evaluate the model with precision and recall.

FIGURE 2
The structure of BiHo-GNN.

TABLE 2 Performance comparison of lncRNA-protein interaction prediction.

Method AUC AUPR Recall Precision F1-score

BiHo-GNN 0.950 0.899 0.919 0.886 0.902

LncPNet 0.938 0.957 0.881 0.948 0.913

LPIGAC 0.936 0.822 0.669 0.832 0.742

LPISKF 0.909 0.685 0.623 0.643 0.633

RWR 0.826 0.581 0.566 0.535 0.550

LPBNI 0.852 0.624 0.634 0.533 0.579

Bold values are the best performance of each task.
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3.2 Comparison with existing methods

We compare the proposed BiHo-GNN framework with five
methods, including LPIGAC (Jin et al., 2021), LncPNet (Zhao
et al., 2022), RWR (Random Walk with Restart) (Wiggins et al.,
2016) and LPBNI (Ge et al., 2016) on NPInter2.0 (5:5). Table 2
demonstrates the performances of BiHo-GNN and the above
methods.

From the table, BiHo-GNN achieves AUC of 95.0%, AUPR of
89.9%, Recall of 0.919%, Precision of 88.6%, and F1-score of 0.902.
BiHo-GNN outperforms the other five methods under the same
experimental conditions, In particular, the AUC and Recall values
of BiHo-GNN are increased by 1.2% and 3.8% when compared
with the highest evaluation indicators among the methods. ROC
curves and PR curves for BiHo-GNN are illustrated on
Figures 3, 4.

In Table 2, compared with methods, BiHo-GNN achieves robust
performance.

3.3 Comparison with multiple classifiers

The classifier of the model plays a crucial role in the evaluation of
the model. We conduct experiments on different classifiers in four
data sets, we compare the SVM (Wang and Hu, 2005) classifier based
on the linear kernel, the classic classifier XGBoost (Li et al., 2008), the
gradient boosting decision tree (GBDT) (Ye et al., 2009), the random
forest classifier based on bagging (Breiman, 2001), the k-nearest
neighbor algorithm (KNN) (Sun and Huang, 2010) and the logistic
regression (LR) method (Kleinbaum et al., 2002). Finally, we set LR as
the final classifier. Table 3 indicates that the LR classifier outperforms
the other six classifiers.

3.4 Performance analysis

Different from the general validation method of deep learning
such as n-fold cross-validation according to the experimental
parameters of the previous work (Gao et al., 2020), we split four
lncRNA-protein interaction datasets into the 5:5 and 4:6, which
denote the ratios of the training set and test set. This specific data
set division rule limits the application of BiHo-GNN to datasets with a
small amount of interactions. The performance of BiHo-GNN on four
datasets is listed in Table 4.

We applied unique data partitioning methods that differed from
traditional deep learning validation methods such as 10-fold cross-
validation, because of the particularity of the heterogeneous graph, the
training set and test set are not allowed to have a big difference in the
amount of data, we divided each data set into 5:5 and 4:6. Algorithm
convergence of the model under different data sets and partitions are
shown in Figures 5, 6.

3.5 Parameter sensitivity

We randomly shuffled the dataset and validated BiHo-GNN on
NPInter2.0 (5:5) to train BiHo-GNN for 50 epochs on each dataset. All
training processes are run on Windows 11 operation system, a single
NVIDIA GeForce RTX3060 GPU with 8 GB memory and Intel(R)
Core(TM) i3-12100F CPU @ 3.30 GHz. The hyper-parameter in the
model has an impact on the performance of the model. As shown in
Table 5, the harmonic factor α ∈ {0.1, 0.3, 0.5, 0.7, 0.9} with step length
0.2 is selected for investigating the lncRNA-protein
relationship. When α = 0.9, our framework achieves the best
performance on NPInter2.0 (5:5) and NPInter2.0 (4:6).

We implement BiHo-GNN with packages PyTorch 1.11.0 and
PyTorch-geometric. Adam optimizer is adopted for gradient
optimization. According to the scale of the dataset and the
computation complexity of our framework, we set the feature
dimension of the node to be 128. The learning rate is selected from
{0.001, 0.005, 0.01, 0.05, 0.1} to evaluate the model performance, and
verification results show that the proper learning rate is 0.001.
Moreover, the learning rate decay is the learning rate multiplied by
a hyper-parameter. When the training loss rises, the learning rate

FIGURE 3
The receiver operating characteristic curve for five methods.

FIGURE 4
The precision-recall curve for five methods.
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TABLE 3 Performance comparison of different classifiers.

Datasets Classifier AUC AUPR Recall Precision F1-score

NPInter2.0 (5:5) SVM 0.902 0.840 0.979 0.847 0.908

XGBoost 0.640 0.637 0.285 0.980 0.442

GBDT 0.556 0.553 0.117 0.957 0.209

Random forest 0.937 0.906 0.946 0.930 0.938

KNN 0.935 0.898 0.963 0.913 0.937

LR 0.950 0.899 0.919 0.886 0.902

NPInter2.0 (4:6) SVM 0.879 0.814 0.958 0.827 0.887

XGBoost 0.655 0.652 0.316 0.981 0.479

GBDT 0.581 0.577 0.174 0.941 0.294

Random forest 0.928 0.894 0.935 0.922 0.928

KNN 0.931 0.862 0.955 0.911 0.932

LR 0.944 0.893 0.920 0.901 0.899

NPInter3.0_H (5:5) SVM 0.816 0.763 0.792 0.831 0.811

XGBoost 0.640 0.637 0.285 0.980 0.442

GBDT 0.642 0.617 0.246 0.976 0.394

Random forest 0.830 0.808 0.710 0.934 0.807

KNN 0.803 0.772 0.698 0.889 0.782

LR 0.913 0.909 0.587 0.911 0.714

NPInter3.0_H (4:6) SVM 0.829 0.807 0.709 0.933 0.805

XGBoost 0.655 0.654 0.314 0.990 0.442

GBDT 0.619 0.604 0.240 0.996 0.386

Random forest 0.872 0.855 0.781 0.954 0.859

KNN 0.855 0.825 0.793 0.916 0.843

LR 0.923 0.935 0.682 0.927 0.786

NPInter3.0_M (5:5) SVM 0.825 0.741 0.997 0.741 0.850

XGBoost 0.652 0.652 0.305 0.995 0.468

GBDT 0.617 0.605 0.226 0.996 0.352

Random forest 0.904 0.887 0.872 0.932 0.901

KNN 0.915 0.876 0.924 0.907 0.915

LR 0.866 0.791 0.945 0.747 0.835

NPInter3.0_M (4:6) SVM 0.733 0.653 0.976 0.656 0.785

XGBoost 0.644 0.639 0.300 0.962 0.458

GBDT 0.603 0.582 0.218 0.994 0.327

Random forest 0.870 0.837 0.820 0.911 0.863

KNN 0.883 0.835 0.895 0.875 0.884

LR 0.803 0.679 0.741 0.709 0.725

RPI2241 (5:5) SVM 0.630 0.576 0.908 0.584 0.711

XGBoost 0.606 0.601 0.212 0.991 0.350

GBDT 0.616 0.589 0.195 0.982 0.356

(Continued on following page)
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decay is set to 0.9, and the results with NPInter2.0 (5:5) and
NPInter2.0 (4:6) are shown in Table 6.

Moreover, we evaluate different hidden dimensions of neural
networks on BiHo-GNN. As shown in Table 7, when the hidden
dimension at 128, BiHo-GNN achieves the best performance on

NPInter2.0 (5:5) and NPInter2.0 (4:6), we set the hidden
dimension to 128 to balance the cost of time and space of the
model.

TABLE 3 (Continued) Performance comparison of different classifiers.

Datasets Classifier AUC AUPR Recall Precision F1-score

Random forest 0.937 0.893 0.985 0.898 0.940

KNN 0.725 0.668 0.679 0.748 0.711

LR 0.757 0.657 0.634 0.695 0.663

RPI2241 (4:6) SVM 0.641 0.582 0.912 0.615 0.735

XGBoost 0.625 0.613 0.241 0.971 0.416

GBDT 0.626 0.612 0.253 0.964 0.375

Random forest 0.914 0.905 0.981 0.892 0.958

KNN 0.752 0.647 0.684 0.751 0.815

LR 0.775 0.689 0.684 0.705 0.694

Bold values are the best performance of each task.

TABLE 4 Performance of BiHo-GNN on four different datasets.

Datasets AUC AUPR Recall Precision F1-score

NPInter2.0 (5:5) 0.950 0.899 0.919 0.886 0.902

NPInter2.0 (4:6) 0.944 0.893 0.920 0.901 0.899

NPInter3.0_H (5:5) 0.913 0.909 0.587 0.911 0.714

NPInter3.0_H (4:6) 0.923 0.935 0.682 0.927 0.786

NPInter3.0_M (5:5) 0.866 0.791 0.945 0.747 0.835

NPInter3.0_M (4:6) 0.803 0.679 0.741 0.709 0.725

RPI2241 (5:5) 0.757 0.657 0.634 0.695 0.663

RPI2241 (4:6) 0.775 0.689 0.684 0.705 0.694

FIGURE 5
Algorithm convergence of the model under different data sets.

FIGURE 6
Model loss curve.

TABLE 5 Performance and standard deviation with five harmonic factor α.

Datasets α AUC AUPR

NPInter2.0 (5:5) 0.1 0.9218 ± 0.0037 0.8152 ± 0.0041

0.3 0.9347 ± 0.0038 0.8451 ± 0.0034

0.5 0.9431 ± 0.0062 0.8652 ± 0.0045

0.7 0.9429 ± 0.0043 0.8632 ± 0.0037

0.9 0.9501 ± 0.0046 0.8994 ± 0.0025

NPInter2.0 (4:6) 0.1 0.9164 ± 0.0055 0.8027 ± 0.0043

0.3 0.9244 ± 0.0126 0.8371 ± 0.0152

0.5 0.9348 ± 0.0036 0.8582 ± 0.0046

0.7 0.9326 ± 0.0052 0.8569 ± 0.0028

0.9 0.9442 ± 0.0042 0.8933 ± 0.0058

Bold values are the best performance of each task.
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3.6 Case study

In this section, we mask lncRNA-protein interaction in database
NPInter2.0 (Yuan et al., 2014) to infer possible potential associations
and verify our result by publications. The predicted top 10 lncRNA-
protein interaction is described in Table 8. From the table, we can
observe EWSR1 is interacting with NONHSAG029787,
NONHSAG008595, and NONHSAG008586, which is associated
with non-small-cell Lung, lymphoma, and malignant glioma
diseases (Paronetto et al., 2014). NONMMUG000162,
NONHSAG055885, NONMMUG038556, and
NONMMUG039105 can affect the transcription of the protein
AGO4. Urinary bladder neoplasms, uterine cervical neoplasms, and
thyroid cancer can be activated by the above interaction pairs (Yuan
et al., 2014).

4 Conclusion

LncRNAs are responsible for the regulation of many critical
biological processes, such as protein transcription. These two
molecular interaction information are closely related to multiple
human diseases. It is a significant work to predict potential lncRNA-
protein interaction and to study heterogeneous network learning.

In this paper, we propose the novel framework BiHo-GNN for
predicting lncRNA-protein interaction. BiHo-GNN utilized bipartite
embedding generated by Bi-GNN Encoder. Our work first integrates
bipartite graph neural networks and homogeneous graph networks,
which strongly verifies the feasibility of heterogeneous graph networks in
predicting lncRNA-protein interaction and similar link prediction problems.

Model performance comparison and case study show that BiHo-
GNN outperforms state-of-the-art methods on all selected datasets in
this paper. Compared with other models using bipartite graph
features, BiHo-GNN can well integrate the features of
homogeneous networks and heterogeneous networks.

Data availability statement

Publicly available datasets were analyzed in this study. This data can
be found here: Publicly available datasets were analyzed in this study.
NPInter2.0 database can be found https://github.com/zhanglabNKU/
BiHo-GNN/tree/main/BiHo/dataset_preprocessing/dataset, NPInter3.
0 database can be found http://bigdata.ibp.ac.cn/npinter4/download/,
RPI2241 database can be found https://github.com/zhanglabNKU/
BiHo-GNN/tree/main/BiHo/dataset_preprocessing/dataset. Full codes
of the BiHo-GNN project are available at our GitHub repository https://
github.com/zhanglabNKU/BiHo-GNN.
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important intellectual content; providing approval for publication of the

TABLE 6 Performance and standard deviation with four different learning rate.

Datasets lr AUC AUPR

NPInter2.0 (5:5) 0.001 0.9357 ± 0.0039 0.8732 ± 0.0037

0.01 0.9501 ± 0.0046 0.8994 ± 0.0025

0.05 0.9285 ± 0.0024 0.8648 ± 0.0035

0.1 0.9159 ± 0.0072 0.8541 ± 0.0083

NPInter2.0 (4:6) 0.001 0.9235 ± 0.0051 0.8528 ± 0.0024

0.01 0.9442 ± 0.0042 0.8933 ± 0.0058

0.05 0.9157 ± 0.0036 0.8426 ± 0.0024

0.1 0.9014 ± 0.0039 0.8274 ± 0.0072

Bold values are the best performance of each task.

TABLE 7 Performance and standard deviation with seven different hidden
dimensions.

Datasets Hidden dimensions AUC AUPR

NPInter2.0 (5:5) 49 0.9325 ± 0.0057 0.8621 ± 0.0027

64 0.9356 ± 0.0083 0.8694 ± 0.0138

81 0.9423 ± 0.0034 0.8792 ± 0.0045

100 0.9449 ± 0.0057 0.8649 ± 0.0084

128 0.9501 ± 0.0046 0.8934 ±
0.0025

144 0.9258 ± 0.0075 0.8493 ± 0.0064

169 0.9136 ± 0.0063 0.8346 ± 0.0039

NPInter2.0 (4:6) 49 0.9285 ± 0.0047 0.8635 ± 0.0068

64 0.9263 ± 0.0043 0.8644 ± 0.0118

81 0.9385 ± 0.0085 0.8726 ± 0.0036

100 0.9358 ± 0.0038 0.8685 ± 0.0079

128 0.9442 ± 0.0042 0.8933 ±
0.0058

144 0.9155 ± 0.0039 0.8495 ± 0.0075

169 0.9025 ± 0.0085 0.8329 ± 0.0058

Bold values are the best performance of each task.

TABLE 8 The predicted top 10 potential lncRNA-protein interaction pairs with
BiHo-GNN.

LncRNA Protein Comfirmed PubMed

NONHSAG029787 EWSR1 Yes 24813895

NONHSAG008595 EWSR1 Yes 22955616

NONHSAG008586 EWSR1 Yes 22955616

NONMMUG000162 AGO4 Yes 29167373

NONHSAG055885 AGO4 No —

NONMMUG038556 AGO4 Yes 29167373

NONMMUG039105 AGO4 Yes 29167373

NONHSAG008584 EWSR1 Yes 22955616

NONHSAG008517 EWSR1 Yes 22955616

NONHSAG008516 EWSR1 Yes 22955616
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