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1 Introduction

The accurate discovery of DNA and RNA regulatory motifs and their combinations is still a
topic of active research, focusing to date mainly on the analysis of ChIP-Seq data (Kingsley et al.,
2019; Kong et al., 2020), on gene co-expression analysis (Rouault et al., 2014; Teague et al., 2021)
and on the general investigation of the properties of binding motifs (Zeitlinger 2020). Many
bioinformatics methods have been (Zambelli et al., 2013) and are still being developed (Bentsen
et al., 2022; Hammelman et al., 2022) to improve prediction accuracy and fully address the
advantages of novel experimental and computational techniques, such as that based on deep
learning (Auslander et al., 2021).

However, when it comes to the practical use of bioinformatic predictors, a researcher is
often puzzled, first by selecting an appropriate bioinformatic program and then by a huge list of
predictions that such programs usually produce. Once several programs are used to increase the
chances of one at least finding a real functional motif, the list of predictions becomes too long
for experimental verification (Deyneko et al., 2016), even though independently found similar
motifs are more likely to be correct and can be given higher priority (Machanick and Kibet,
2017).

The main problem that complicates the choice of a favorable approach for a specific task is
the insufficient number of comparative tests of the published methods, partly due to the
difficulty of defining a universal motif assessment approach (Kibet and Machanick, 2016). The
inadequate testing of many newly suggested algorithms has already been discussed (Smith et al.,
2013) and can be summarized as 1) an insufficient and subjective selection of methods for
comparison; 2) use of non-common metrics; and 3) use of non-standard datasets.

Nevertheless, many studies that present novel methods for motif detection repeatedly
appear without adequate comparative evaluation. The main issues include comparison against
no or only a single method, despite several comparable methods existing (Alvarez-Gonzalez and
Erill, 2021; Hammelman et al., 2022), the use of only one dataset, usually with unknown true
positives (Levitsky et al., 2022), and the use of uncommon statistical metrics (Zhang et al., 2019).
The last can be exemplified with a criterion of the correct prediction—if, within the top ten,
there is a motif similar (not identical!) to the original, the motif is counted as positively
recovered. In real applications, when the target motif is unknown, the reliability of such
predictions is far from being experimentally testable. In contrast, there are many methods with
well-performed comparisons, including novel deep learning methods (Bentsen et al., 2022;
Iqbal et al., 2022).

This work is addressed not only to researchers, who may use the presented principles to
better reveal the power of the software presented, but also to peer reviewers and journal editorial
boards, who may use it as a starting point for their own requirements for software articles.
Obviously, comprehensive comparative testing of new methods will not only reveal the best
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fields of application but, most importantly, will help wet-lab
researchers to navigate through bioinformatics topics.

2 Guidelines on comparative testing

Overall, the situation can be improved by introducing the
following three principles, schematically represented in Figure 1.

2.1 Selecting methods for comparison

There must be a clear logic as to why specific methods have been
selected for benchmarking; any subjective choice of certain programs
should be avoided. The easiest and most objective way is to use a
review article. The classical examples are the works of Sandve et al.
(2007) and Klepper et al. (2008), which additionally provide an online
system for methods comparison. Other reviews worth noting are Tran
and Huang (2014) and Jayaram et al. (2016).

Methods based on novel computational principles and/or
experimental data are always welcome, provided that their
performance is also properly evaluated against “old methods.” If,
by some modification of an input (output), such methods can be
adapted for testing, this should be carried out and the methods
included in the comparative list. Notwithstanding, the gold
standard for comparisons should comprise three methods and
preferably five—always preferring the most recent.

2.2 Selecting datasets

In its basic definition, DNA motif detection is a well-defined
problem about a dataset of nucleotide sequences—either long as
promoters or short as ChIP-seq segments. Therefore, it should
(almost) always be possible to run a new program on existing data,
and there are many such examples (Klepper et al., 2008; Deyneko et al.,
2013). Thus, the use of common and publicly available datasets should
be obligatory. Once a new algorithm requires additional information,
such as expression values, genome positioning, and conservation,
standard datasets can be complemented with reasonable values

required for a correct comparison. This will reveal how a new
method works on “old data,” ensure a fair testing against other
methods, and, most importantly, demonstrates the added value of
this additional information. For example, if gene expression values are
required, a sequence-only dataset can be modified by assigning “1s” to
foreground and “0s” to background sequences. This will clearly show
the performance gain with respect to the use of such additional
information.

The use of self-made datasets can only be accepted as
complimentary to standard ones. Even if a method is developed to
address a particular problem and does not operate promisingly on
standard datasets, the results should still be presented. This will clearly
show where a method outperforms other methods and on which data
it does not, so that an application niche is clearly defined. Authors
should not be afraid of a possibly very narrow application field for
their research. Instead, a clear definition will help practitioners find
and use the appropriate program before they give up in
disappointment after a series of unsatisfactory attempts.

In implementing new methods, researchers should also be
cautious about integrating multiple steps into one executable. It is
certainly very convenient to analyze the raw data in one go, but this
will greatly reduce the field of application. For example, giving human
gene names as input, instead of promoter sequences, makes it
impossible to analyze the genes of mice, plants, or bacteria.
Extracting specific genomic regions is today a trivial task, although
it may be implemented as an option for convenience.

2.3 Selecting performance metrics

Methods including ROC curves, false-positives, true-negatives,
selectivity and sensitivity, nucleotide correlation coefficients, and
positive predictive values are to be used as metrics (Vihinen 2012;
Jayaram et al., 2016). If a novel method or dataset does not allow
standard metrics, others may be used, provided that it is clearly
explained why standard metrics are not applicable. One should
avoid giving subjective assertions of performance like “Identified all
40 conserved modules reported previously” without mentioning how
many other modules (false positives) were also identified, or referring
to the literature as the only measure of correct predictions (El-Kurdi

FIGURE 1
Schematic representation of the proposed principles on the selection of methods, metrics, and datasets for comparative testing.
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et al., 2020). Reference to the literature is fully valid and useful,
provided that comprehensive statistics are given. It is notable that
statistical measures like p-values are often method-specific—they
depend on a method’s internal calculations. So, the p-values of
different methods should be compared with caution.

3 Good practices in comparative testing

As examples of thorough comparative testing, two programs will
be discussed—MatrixCatch for recognizing cis-regulatory modules
(Deyneko et al., 2013) and a predictor of acetylcytidine sites in mRNA
based on novel deep learning methodology (Iqbal et al., 2022).

MatrixCatch uses a database of known composite modules as the
basis for recognition. Three classes of comparisons were performed:
with methods based on the same principle, with statistical methods,
and on the recognition of cis-modules on a real dataset. Next, we
briefly discuss the three classes of comparative testing and how they
align with the suggested guidelines.

At the time of developing MatrixCatch, two other
methods—based on the same principle of using known examples of
composite modules—were available. They were compared against the
same sequence dataset, with ROC curves as a performance
characteristic.

The second type of comparison was performed against statistical
methods for motif detection. The difference from the previous
comparison is that the motifs and modules are found solely by
nucleotide frequency statistics. For such “de novo" modules, there is
no experimental (or any other) evidence for their functionality. The
advantage of such methods is their ability to find truly new motifs
and modules. In contrast, MatrixCatch uses a library of
experimentally verified modules and is therefore limited to its
known repertoire. Although these two types of method use
different principles, it is important from a practical point of view
to know which method(s) provides the best chance of finding real
motif(s) and explain, for example, a co-regulation of genes in an
RNA-seq experiment. The tests were performed according to the
benchmarking presented in a review by Klepper et al. (2008), which
includes six datasets of DNA sequences, nine methods, and several
performance characteristics common to all methods (methods based
on reviews—Figure 1).

Finally, testing was illustrated by the detection of cis-modules
on 11 sets of tissue-specific promoters (authors’ custom
data—Figure 1). Regulatory elements presumably existing in
promoters are unknown, and therefore, measuring such factors
as false positives, ROC, or otherwise cannot be calculated. The
performance was measured as the specificity of the best module
and equal to the ratio of the number of promoters with recognized
cis-module in a positive set to the respective number in the
negative set (authors’ custom metrics—Figure 1). Such a
definition is the most indicative in real applications, where a
researcher seeks to identify elements that occur preferentially in
the dataset of interest. Moreover, this measure can be applied to all
recognition methods despite their different search logics and
output formats.

Another example is a method for recognition of N4-acetylcytidine
sites in mRNA (Iqbal et al., 2022) based on novel deep learning
methodology. The method was tested on publicly available reference
data; ROC, precision–recall curves, and accuracy, specificity, and
sensitivity measures were used to evaluate the consistency of
classification. An interesting point is that the method was
compared to the three “old-style” machine learning methods,
including regression and support vector machine. This not only
serves as a bridge between new and conventional methods but also
shows its advantages over, for example, regression analysis available in
most statistical software.

4 Conclusion

The comprehensive testing of novel methods seems to be as
laborious as the developing methods themselves and thus requires
longer result sections in manuscripts. Publishing an “application note”
or similar with an imposed page limit forces authors to search for a
specific dataset or simulation settings for which their method works
better than existing ones. This leads to a very subjective presentation
and over-optimism in bioinformatics research—and disillusion in
practice (Boulesteix 2010). Following the aforementioned guidelines
will simplify and unify methods benchmarking designs and will reveal
their best application fields. Establishing similar practical
recommendations in other subfields of bioinformatics will facilitate
application by practitioners and true innovation by bioinformaticians.
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