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Many clustering techniques have been proposed to group genes based on gene
expression data. Among these methods, semi-supervised clustering techniques
aim to improve clustering performance by incorporating supervisory information
in the form of pairwise constraints. However, noisy constraints inevitably exist in
the constraint set obtained on the practical unlabeled dataset, which degenerates
the performance of semi-supervised clustering. Moreover, multiple information
sources are not integrated into multi-source constraints to improve clustering
quality. To this end, the research proposes a newmulti-objective semi-supervised
clustering algorithm based on constraints selection and multi-source constraints
(MSC-CSMC) for unlabeled gene expression data. The proposedmethod first uses
the gene expression data and the gene ontology (GO) that describes gene
annotation information to form multi-source constraints. Then, the multi-
source constraints are applied to the clustering by improving the constraint
violation penalty weight in the semi-supervised clustering objective function.
Furthermore, the constraints selection and cluster prototypes are put into the
multi-objective evolutionary framework by adopting a mixed chromosome
encoding strategy, which can select pairwise constraints suitable for clustering
tasks through synergistic optimization to reduce the negative influence of noisy
constraints. The proposed MSC-CSMC algorithm is testified using five benchmark
gene expression datasets, and the results show that the proposed algorithm
achieves superior performance.
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1 Introduction

The rapid development of microarray technology has generated
a large amount of gene expression data and mining the inherent
patterns in the massive gene expression data is a major challenge in
the current bioinformatics field (Bandyopadhyay et al., 2007;
Pirooznia et al., 2008). As an important unsupervised data
mining method, clustering has become a powerful tool for gene
expression data analysis. One of the main tasks of gene expression
data clustering is to identify co-expressed genomes, which is a useful
tool for further research on gene function (Bandyopadhyay et al.,
2007; Chen et al., 2019). Compared with the unsupervised clustering
methods, the semi-supervised clustering methods use prior
information to guide the clustering process through data labels or
pairwise constraints, which can effectively improve the performance
of clustering (Wagstaff et al., 2001; Bilenko et al., 2004; Yin et al.,
2010).

For semi-supervised clustering algorithms, the pairwise
constraints are usually used to describe if two data belong to the
same cluster. Specifically, the must-link constraint (ML) means that
two data must be divided into the same cluster, and the cannot-link
constraint (CL) means that two data must be divided into different
clusters. The quality of the selected pairwise constraints is of vital
importance, which significantly affects the performance of semi-
supervised clustering algorithms (Grira et al., 2008; Vu et al., 2012;
Masud et al., 2019; Abin and Vu, 2020). The pairwise constraints can
be generated by directly using part of the known data labels (Lai
et al., 2021) or by using an active learning method (Masud et al.,
2019). In practical, most gene expression data are unlabeled, for
which it is impossible to obtain pairwise constraints based on labels.
Vu et al. (2012) indicated that the generation of the pairwise
constraints should mainly focus on the data samples on the
cluster boundaries, which are more likely to be misclassified. To
this end, Basu et al. (2004) developed a farthest-first traversal
scheme-based active learning method to obtain pairwise
constraints. However, this method has been reported to be
sensitive to noise (Davidson and Qi, 2008). Grira et al. (2008)
proposed an active learning method to generate pairwise
constraints by determining cluster boundary data using
membership obtained by fuzzy clustering. Vu et al. (2012)
identified data in sparse regions based on k-nearest neighbor
graphs and constructed pairwise constraints. However, it was
claimed that some pairwise constraints might not be generated
by this method (Abin and Vu, 2020). Liu et al. (2018) proposed
an entropy-based query strategy to select the most uncertain
pairwise constraints. Abin (2018) proposed a random walk
approach on the adjacency graph of data for querying
informative constraints. Masud et al. (2019) used local density
estimation to identify the most informative objects as pairwise
constraints. Abin and Vu (2020) proposed a density tracking
method which takes into account the density relationship
between data, and uses the information about boundaries and
skeleton of clusters to generate the pairwise constraints.

Although the above methods can automatically mine and learn the
pairwise constraints of unlabeled datasets through different approaches,
there are inevitably noisy constraints, i.e., constraints inconsistent with
the ground-truth clusters, in the obtained pairwise constraints (Yin
et al., 2010; Lai et al., 2021). However, the existing semi-supervised

clustering algorithms are mostly based on the assumption that pairwise
constraints conform to real cluster information, and usually susceptible
to noisy constraints. Therefore, it is necessary to implement constraints
selection, where noisy constraints are filtered out, and only pairwise
constraints that are beneficial for semi-supervised clustering are
retained. In addition, most of the pairwise-constraints-based semi-
supervised clustering algorithms were developed for single-source
constraints, i.e., the pairwise constraints are obtained only from the
data itself. In real-world applications, many data also possess related
domain information. For example, Gene Ontology (GO) (Ashburner
et al., 2000), which describes gene products in terms of their associated
biological processes, cellular components and molecular functions, can
further provide gene annotation information for gene expression data.
In this paper, the multi-source constraints are the pairwise constraints
formed by the data itself and domain information. Apparently,
compared with the single-source pairwise constraints based solely on
gene expression data, the multi-source constraints formed by the fusion
of gene ontology can provide more comprehensive information about
the structure of gene clusters and help to guide semi-supervised
clustering to obtain more accurate clustering results.

Aiming at the unlabeled gene expression data and from the
perspective of reducing the negative impact of noisy constraints and
integrating multi-source constraints, a method called multi-
objective semi-supervised clustering algorithm based on
constraints selection and multi-source constraints (MSC-CSMC)
is proposed in this research. At first, the proposed algorithm uses
gene expression data and GO information to generate multi-source
pairwise constraints. Then, under the multi-objective optimization
framework of Non-dominated Sorting Genetic Algorithm-II
(NSGA-II), the constraints selection and the cluster prototypes
are collaboratively optimized to realize the selection of pairwise
constraints suitable for clustering with respect to the multi-source
constraints and to improve the accuracy of semi-supervised
clustering of gene expression data by reducing the negative
impact of noisy constraints.

2 Methods

In this section, the details of our proposed MSC-CSMC
algorithm are described. Our proposed method consists of two
parts. Firstly, multi-source pairwise constraints are generated by
integrating gene expression and gene ontology (GO) information.
Then, by using the improved penalty weights as well as mixed
chromosome encoding strategy of cluster prototype and constraints
selection, multi-objective semi-supervised clustering based on
constraints selection and multi-source constraints is performed to
identify co-expressed gene groups. The workflow of MSC-CSMC is
shown in Figure 1.

2.1 Generation of multi-source pairwise
constraints

Gene expression data and gene ontology (GO) describe gene-
related information from the abundance of mRNA of genes and gene
annotation. Compared with the method only using gene expression
data, the combination of these two aspects of information can help
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to further improve the clustering accuracy of gene expression data
(Giri and Saha, 2020; Li et al., 2022). In this paper, we use gene
expression data and gene ontology information to generate multi-
source pairwise constraints for semi-supervised clustering.

Inviewof the superior performanceof the density trackingmethod
(Abin and Vu, 2020), we use this method to generate the initial gene
expression constraint set. The method consists of three steps: density
estimation, density following, and constraints generation. Let X �
x1, x2, . . . xn{ }, xi ∈ Rd denote a d-dimensional gene expression
dataset with n genes. Gene xi’s density is obtained by

Density xi( ) � 1

max
xj∈Nb xi( )

xi − xj
���� ����2, (1)

where Nb(xi) is the set of b nearest genes of gene xi; ‖ · ‖2 is the
Euclidean distance. Based on the density in Formula 1, the density
tracking method constructs density chains according to the density
relationship between data. Specifically, starting from each gene xi,
the closest gene xj ∈ Nb(xi) whose density is greater than that of xi is
selected, and the relation between them is recorded as density chain
xi → xj. Then start from gene xj and continue the above density
tracking until there exists no gene whose density is greater than that
of the gene at the end of the chain. Consequently, the density chain
Chains (xi) can be denoted as xi → xj →/→ xe. After constructing
all the density chains, the total times of gene xi appearing in all the
chains is referred to as centrality and denoted by Centrality (xi). The
sum of centrality with respect to all genes in a density chain is used as
the centrality of the density chain. All density chains with a common
endpoint are considered connected density chains and the points
belonging to them are considered to be in the same density
group. Besides, the impurity of gene xi is defined as follows:

Impurity xi( ) � 1 − ∑|Groups|

g�1

∑
xj ∈ S

I Group xj( ) � g( )
b + 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 1 − Density xi( )

Density xe( )[ ] (2)

with |Groups| being the total number of groups, S = {xi ∪ Nb(xi)},
Group(xj) being the group index of xj, I being the indictor
function.

According to the density, impurity, density chain, and density
group of the data, the density tracking method proposes three
assumptions for mining informative pairwise constraints. Let Ω
denote the pairwise constraint set, whose elements satisfy the
following key assumptions: (1) providing feasible information
about the boundary data of clusters; (2) providing feasible
information about the boundary between various clusters; (3)
providing feasible information about the skeleton of clusters.
Among them, assumptions (1) and (3) are used to generate the
must-link constraint setΩML, assumption (2) is used to generate the
cannot-link constraint set ΩCL. With the subsets ΩML and ΩCL, the
penalization can be constructed for the cost function of the
clustering. The workflow of density tracking method is given in
Figure 2. The initial gene expression constraint setΩ =ΩML ∪ΩCL is
generated as follows.

1. For each gene xi, calculate its Density(xi) and Impurity(xi).
Construct density chain Chains(xi) and density group
Group(xi), get the centrality of density chain. Initialize ΩML =
∅, ΩCL = ∅;

2. Select gene xi in descending order of Impurity (xi), query the
nearest neighbor gene xj that is not in its density group Group
(xi), and add the pairwise constraint (xi, xj) into the cannot-link
constraint set, i.e., ΩCL = ΩCL ∪ {(xi, xj)}.

3. Select gene xi in descending order of Impurity(xi), and find the
next gene xj along its density chain Chains(xi). Let ε > 0 denote
the density drop rate. If Density(xj) ≥ε× Density(xe), then add the
pairwise constraint (xi, xj) to the must-link constraint set,
i.e., ΩML = ΩML ∪ {(xi, xj)};

4. Select the density chain Chains(xi) in descending order of the
centrality of the density chain, start from the starting gene xi,
select the gene xjwith an interval, and add the pairwise constraint
(xi, xj) to the must-link constraint set, i.e.,ΩML =ΩML ∪ {(xi, xj)}.

For a set of genes to be analyzed, each gene can be annotated
with several GO terms. Thus, the functional similarity between genes
can be deduced based on the term similarity. In the proposed MSC-
CSMC algorithm, we adopt the aggregate information content (AIC)

FIGURE 1
Workflow of MSC-CSMC. (A) Generation of multi-source pairwise constraints. (B) Multi-objective semi-supervised clustering.
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(Song et al., 2014) to measure the semantic similarity of GO terms t1
and t2:

simAIC t1, t2( ) � ∑t∈Tt1∩Tt2
2 × SW t( )

SV t1( ) + SV t2( ) (3)

with

SW t( ) � 1
1 + exp −1/IC t( )( ), SV t( ) � ∑

t′∈Tt

SW t′( )
Here, Tt is the set of ancestors of term t in the GO graph, p(t) is the
frequency of the term appearing in the GO database, IC(t) = − log
p(t) is the information content of term t. The higher the annotation
frequency, the more general the information contained and the
smaller the corresponding IC value. SW(t) normalizes the
knowledge reflected by 1/IC(t), describing the semantic weight of
term t. Consequently, the functional similarity of genes xi and xj can
be obtained as follows:

simGO xi, xj( ) �
∑

t2∈ann xj( )
sim xi, t2( ) + ∑

t1∈ann xi( )
sim xj, t1( )

ann xi( )| | + |ann(xj)| (4)

where

sim xi, t2( ) � max
t1∈ann xi( )

simAIC t1, t2( )

is the similarity of gene xi and term t2. ann(xi) and ann(xj)
represent the sets of GO terms that annotate the two genes,
respectively. The cardinalities of ann(xi) and ann(xj) are
denoted by |ann(xi)| and |ann(xj)|, respectively.

The gene function similarity obtained through GO can also
reflect the pairwise constraint relationship between genes to a
certain extent. In the proposed MSC-CSMC algorithm, gene pairs
with a similarity of more than 0.9 constitute the GO must-link
constraint set ΩML* , gene pairs with a similarity less than
0.1 constitute the GO cannot-link constraint set ΩCL* , and then
generate the GO pairwise constraint set Ω* � ΩML* ∪ ΩCL* . Finally,
the gene expression pairwise constraint set Ω and the gene ontology
pairwise constraint set Ω* together constitute multi-source
constraints for gene clustering.

2.2 Semi-supervised clustering objective
functions based on multi-source constraints

At present, multi-objective optimization has gradually become a
mainstream method for solving gene expression data clustering
problems, which can achieve better clustering results on gene

expression data compared with single-objective optimization
methods. In the unsupervised multi-objective clustering problem
of gene expression data, the cluster validity indices JFCM (Bezdek
et al., 1981) and XB (Xie and Beni, 1991), which measure the intra-
cluster compactness and inter-cluster separation respectively, are
commonly used as objective functions to realize the evolution of
decision variables based on two conflicting objectives
(Bandyopadhyay et al., 2007; Maulik et al., 2009; Mukhopadhyay
et al., 2013; Li et al., 2022). In this paper, the proposed MSC-CSMC
algorithm uses XB and the function based on quadratic-regularized
fuzzy c-means with constraint violation penalty, namely, JP (Mei,
2019), as the objective functions. Furthermore, the constraint
violation penalty weights in JP are improved to achieve semi-
supervised clustering of gene expression data based on the multi-
source constraints in the NSGA-II framework. The objective
functions of XB and JP are as follows:

XB �
∑k
c�1

∑n
i�1
u2
ic xi − vc‖ ‖22

n ×min
f≠c

vf − vc
���� ����22 (5)

JP � ∑k
c�1

∑n
i�1

uic xi − vc‖ ‖22 +
η

2
∑k
c�1

∑n
i�1

u2
ic −

β

2
∑n
i�1

∑n
j�1

wiju
⊤
i uj (6)

Here,

vc � ∑n
i�1uicxi∑n
i�1uic

is the cth cluster prototype. k is the number of clusters, parameters η
and β control the level of fuzziness and the contribution of the
penalty term during clustering, respectively. uic is the membership
degree of the datum xi belonging to the cth cluster, obtained by

uic � 1
k
+ 1
η

u
FCMq

ic + βuP
ic( ) (7)

u
FCMq

ic � 1
k
∑k
f�1

xi − vf
���� ����22 − xi − vc‖ ‖22 (8)

uP
ic � ∑n

j�1
wijujc − 1

k
∑k
f�1

∑n
j�1

wijujf (9)

where wij ∈ W is the penalty weight for violating pairwise
constraint (xi, xj). In order to simultaneously consider both the
gene expression constraint set Ω = ΩML ∪ ΩCL and gene ontology
constraint set Ω* � ΩML* ∪ ΩCL* , that is, the multi-source
constraints proposed in this paper, we improve the constraint
violation penalty weights through the following analysis: (1) if

FIGURE 2
Workflow of density tracking method.
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pairwise constraint (xi, xj) exists in both ΩML andΩML* , or in both
ΩCL and ΩCL* , it means that the same category information of gene
pair (xi, xj) can be obtained from gene expression and gene
annotation, so the weight of violating this constraint should be
increased; (2) if pairwise constraint (xi, xj) exists inΩML but not in
ΩML* , or exists in ΩCL but not in ΩCL* , it indicates that the category
information of gene pair (xi, xj) is not clear enough, thus the
penalty weight wij should be decreased; (3) if pairwise constraint
(xi, xj) exists in both ΩML and ΩCL* , or in both ΩCL and ΩML* , it
should be regarded as a contradictory constraint and removed
from the constraint sets Ω and Ω*. Based on the above idea, the
MSC-CSMC algorithm proposed in this paper improves the
constraint violation penalty weight as follows:

wij �

1 − θ, xi, xj( ) ∈ ΩML and xi, xj( ) ∉ ΩML*

−1 + θ, xi, xj( ) ∈ ΩCL and xi, xj( ) ∉ ΩCL*

1 + θ, xi, xj( ) ∈ ΩML and xi, xj( ) ∈ ΩML*

−1 − θ, xi, xj( ) ∈ ΩCL and xi, xj( ) ∈ ΩCL*
0, otherwise

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(10)

with θ > 0 being the GO action parameter. It can be seen that the
improved penalty weights can effectively integrate the gene
expression and Gene Ontology information, and provide
reasonable violation penalty for pairwise constraints in semi-
supervised clustering.

2.3 Mixed chromosome encoding strategy
used in MSC-CSMC

For the purpose of co-optimizing the constraints selection and
clustering in the process of multi-objective evolution, a mixed
encoding strategy combining the constraints selection and cluster
prototype is adopted, as shown in Figure 3. Let P denote the genetic
population, N be the population size, and s be the number of
pairwise constraints to be selected. Considering the existence of
noisy constraints in the initial pairwise constraint set and to improve
the search efficiency of the algorithm, 2s constraints are randomly
selected from the initial pairwise constraint set to generate the
candidate constraint set Ωp, and a serial number is assigned for
each pairwise constraint. For a gene expression dataset with k
clusters X � x1, x2, . . . xn{ }, xi ∈ Rd, the rth individual in the lth
generation Pr(l) consists of two parts: the cluster prototype P(v)

r (l)
and the constraints selection P(set)

r (l). Among them, P(v)
r (l) �

[vr,1, vr,2, . . . , vr,k] encode k cluster prototypes vr,c �
[vr,c1, vr,c2, . . . , vr,cd](1≤ c≤ k) with real numbers, P(set)

r (l) �

[gr,1, gr,2, . . . , gr,s] encode the serial numbers of s pairwise
constraints gr,j(1≤gr,j ≤ 2s, 1≤ j≤ s) selected from Ωp with
integers.

In the proposed algorithm, the two parts of the chromosomes
are initialized separately. For the cluster prototype part, in order to
ensure initialization quality and population diversity, half of the
individuals are encoded as the k cluster prototypes obtained by the
density peak method (Rodriguez and Laio, 2014), and the other half
are encoded from the randomly generated cluster prototypes. For
the constraints selection part of each individual, the components are
initialized with non-repeated random integers in [1, 2s].

2.4 Genetic operations

In the genetic evolution process of the MSC-CSMC algorithm,
the roulette wheel strategy is first used to implement the selection.
Since the NSGA-II algorithm tends to select individuals with lower
non-domination ranks, for the rth individual Pr(l) of the lth
generation, the selection probability (Zhou and Zhu, 2018) is
calculated as follows:

ps Pr l( )( ) � α 1 − α( )frank−1 (11)
Here, α ∈ (0, 1) is the selection parameter, frank is the non-
domination rank of individual Pr(l).

For the parent individuals Pr1(l) and Pr2(l), let the crossover
probability be pc, different crossover operators are used for the
cluster prototypes and constraints selection. Among them, P(v)

r1
(l)

and P(v)
r2
(l) generate offspring through the normal distribution

crossover operator (Zhang and Luo, 2009), and the offspring
cluster prototypes are:

of f sp v( )
1 � P v( )

r1
l( ) + P v( )

r2
l( )

2
+ 1.481 ×

P v( )
r1

l( ) − P v( )
r2

l( )
2

× |N 0, 1( )|
(12)

of f sp v( )
2 � P v( )

r1
l( ) + P v( )

r2
l( )

2
− 1.481 ×

P v( )
r1

l( ) − P v( )
r2

l( )
2

× |N 0, 1( )|
(13)

where N(0, 1) is a random variable of normal distribution. The
constraints selection P(set)

r1
(l) and P(set)

r2
(l) adopts the single-point

crossover operator, for a random integer randc in [1, s], the offspring
constraints selections are:

of f sp set( )
1 � gr1 ,1, . . . , gr1 ,randc, gr2 ,randc+1, . . . , gr2 ,s[ ] (14)

of f sp set( )
2 � gr2 ,1, . . . , gr2 ,randc, gr1 ,randc+1, . . . , gr1 ,s[ ] (15)

If repeated pairwise constraints appear after crossover, non-repeated
pairwise constraints are randomly selected from the candidate
constraint set Ωp as a replacement. For individual Pr(l), different
mutation operators are adopted for the two parts. The polynomial
mutation operator (Rousseeuw, 1987) is applied for P(v)

r (l), where
site vr,ci mutates with probability pm:

vr,ci′ � vr,ci + δ × vu − vl( ), 1≤ c≤ k, 1≤ i≤d (16)
where, vu and vl are the upper and lower bounds of the cluster
prototype, respectively. For normalized gene expression data, the
bounds are set to 1 and 0. δ is determined as follows (Deb and
Tiwari, 2008):

FIGURE 3
The mixed chromosome encoding strategy used in MSC-CSMC.
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δ �
2 × randm + 1 − 2 × randm( ) 1 − vr,ci( )ηm+1( ) 1

ηm+1 − 1, randm < 0.5

1 − 2 × 1 − randm( ) + 2 × randm − 0.5( )vηm+1r,ci[ ] 1
ηm+1, randm ≥ 0.5

⎧⎪⎪⎨⎪⎪⎩
(17)

Here, ηm is the distribution index, randm is a random number in
[0, 1]. For P(set)

r (l), random mutation is used, that is, first randomly
select a position in P(set)

r (l), and then replace its value with a random
integer in [1, 2s] that is not repeated with others. In summary, the
procedure of the MSC-CSMC algorithm is shown as follows:

Input: Gene expression dataset X, number of neighbors b,
density drop rate ε, population size N, maximal number of
generations Lmax, number of clusters k, fuzzy parameter η,
penalty parameter β, constraint number s, GO action parameter
θ, selection parameter α, crossover probability pc, mutation
probability pm, and distribution index ηm.

Step 1: Generate gene expression pairwise constraint sets Ω based
on density tracking method.

Step 2: Calculate the functional similarity of genes based on AIC,
and generate the gene ontology pairwise constraint set Ω*.
Then delete the contradictory constraints, and determine the
penalty weight matrix W corresponding to the multi-source
constraints based on Formula 10.

Step 3: Randomly select 2s pairwise constraints from the initial
constraint set to construct the candidate constraint set
Ωp, and initialize the population.

Step 4: When the genetic generation index is l(l � 1, 2, . . . , Lmax),
for each individual Pr(l) (1≤ r≤N), decode to obtain the
cluster prototypes and the selected pairwise constraints.
Update the membership degree according to Formulas 7-
9, and calculate the individual fitness values based on
Formulas 5-6.

Step 5: According to the individual fitness values, calculate the non-
domination rank and crowding distance of each individual.

Step 6: Apply selection, crossover, and mutation based on Formulas
11-17, and update the individual fitness values according to
Formulas 5-6.

Step 7: Merge the parent and offspring populations, and select the
next-generation according to the elite retention strategy.

Step 8: If l � �0. 5 × Lmax� or l � �0. 8 × Lmax�, update the penalty
parameter β = 2 × β to increase the penalty for violating the
currently selected constraints.

Step 9: Set l = l + 1, repeat Steps 4-8 until the maximal number of
generations Lmax is reached.

Output: The Pareto optimal solutions.

3 Results

3.1 Datasets

In this study, five benchmark gene expression datasets, namely,
Yeast Galactose Metabolism, Yeast Cell Cycle, Yeast Sporulation,
Serum, and Arabidopsis are used for the experiment.

The Yeast Galactose Metabolism dataset (Ideker et al., 2001) is
composed of 205 genes whose expression patterns reflect four

functional categories. The gene expression profiles were measured
with four replicate assays across 20 time points. The Yeast Cell Cycle
dataset (Cho et al., 1998) contains the expression levels of 384 genes
involved in yeast cell cycle regulation at 17 time points, and these
data are related with five phases of cell cycle. The Yeast sporulation
dataset (Chu et al., 1998) contains the expression levels of more than
6,000 genes measured during the sporulation process of budding
yeast across seven time points. The genes that showed no significant
changes in expression during the harvesting were excluded, and the
resulting set consists of 474 genes. The Serum dataset (Iyer et al.,
1999) contains the expression levels of 517 human genes. The
dataset has 13 dimensions corresponding to 12 time points and
1 unsynchronized sample. The Arabidopsis dataset (Reymond et al.,
2000) consists of 138 Arabidopsis Thaliana genes. Each gene has
eight expression values that correspond to eight time points. The
details of the datasets are shown in Table 1.

3.2 Model evaluation criteria and parameter
assignment

In order to evaluate the effectiveness of the model, the silhouette
index (Rousseeuw, 1987) is chosen as the evaluation criterion for the
clustering results. For gene xi, the silhouette width is calculated as
follows:

S i( ) � b i( ) − a i( )
max a i( ), b i( ){ }, 1≤ i≤ n (18)

Here, a(i) is the average distance from gene xi to other genes in the
same cluster, b(i) is the minimum average distance between gene xi
and genes in the other clusters. The silhouette index SI of dataset X is
the mean value of the silhouette widths of all genes, with
SI ∈ [−1, 1]. A greater SI value represents the algorithm with
better clustering quality. Besides, as suggested by (Saha and
Bandyopadhyay, 2013), the final solution of MSC-CSMS is
selected from Pareto optimal solutions by using the silhouette index.

According to (Mei, 2019) and (Abin and Vu, 2020), the
parameters of MSC-CSMC are assigned as follows: ε = 0.8, b =
10, η = 0.001, β = 0.1, N = 100, Lmax = 300, α = 0.3, ηm = 5, pc = 0.8,
pm = 0.1. The number of pairwise constraints s is chosen as 0, 5, 10,
15, 20, and 25. In gene expression data analysis, the determination of
the number of clusters k is an open problem. Generally, there are two
approaches to determine the value of k; one is to directly set it as the
true number of clusters (Yu et al., 2018; Zhao et al., 2021; Li et al.,
2022; Liu et al., 2022; Wu and Ma, 2022); The other approach is
applicable to the case where the true number of clusters is unknown,
in which the variation range of k is determined firstly, and the k
corresponding to the optimal value of an index (Silhouette index,
Dunn index, Davies–Bouldin index, etc.) can be chosen as the
optimal number of clusters (Gao et al., 2019; Acharya et al.,
2020; López-Cortés et al., 2020; Zhang et al., 2022). In this paper,
we adopt the first approach, and the number of clusters k is selected
according to Table 1. In order to analyze the impact of the GO action
parameter θ, we set θ from 0.1 to 0.9 at intervals of 0.1 under the
condition that the number of the pairwise constraints is 15. The
results are shown in Figure 4. It can be seen that the value of SI barely
changes as θ increases, which means that the algorithm is not very
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sensitive to the value of θ. For Yeast Galactose Metabolism, Yeast
Cell Cycle, Yeast Sporulation, Serum, and Arabidopsis, the θ values
are respectively set to 0.4, 0.7, 0.6, 0.5, and 0.4, which lead to the
optimal clustering performances.

3.3 Result analysis and model comparison

For the purpose of inspecting the performance of the proposed
MSC-CSMC algorithm, several advanced semi-supervised clustering
algorithms based on single-source constraints, including COP-
Kmeans (Wagstaff et al., 2001), PCKMeans (Basu et al., 2004),
MPCKMeans (Bilenko et al., 2004), PCCA (Grira et al., 2008),
PCFCMq (Mei, 2019) and MSC-CS (Zhao and Li, 2022), are
used for comparison. Among them, the MSC-CS algorithm is the
single-source constrained version of MSC-CSMC, which does not

consider the annotation information provided by GO. In the above
algorithms, the pairwise constraints are randomly selected from the
initial gene expression constraint set Ω. To avoid the influence of
randomness, each method is run for ten times under the same
number of pairwise constraints, and the mean value of the clustering
results is taken as the final result. The SI values of all seven
algorithms applied to five datasets are shown in Tables 2–6, the
optimal solutions in each row are highlighted in bold.

According to Tables 2–6, it can be seen that the proposed MSC-
CSMS algorithm and its single-source constraint version MSC-CS can
always achieve optimal and suboptimal clustering results on five gene
expression datasets, demonstrating the effectiveness of the constraints
selection. The mixed chromosome encoding strategy combining the
constraint selection and cluster prototype can find the pairwise
constraints suitable for clustering in the co-evolution process and
improve clustering accuracy, and the highly accurate clustering

TABLE 1 Description of datasets.

Dataset Number of genes Number of features Number of clusters

Yeast Galactose Metabolism 205 80 4

Yeast Cell Cycle 384 17 5

Yeast Sporulation 474 7 6

Serum 517 13 6

Arabidopsis 138 8 4

FIGURE 4
The impact of parameter θ on SI tested on different datasets. (A) Yeast Galactose Metabolism (B) Yeast Cell Cycle (C) Yeast Sporulation (D) Serum (E)
Arabidopsis.
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results can further improve the constraint selection ability of the
algorithm in turn. Conversely, the algorithms for comparison are
based on the assumption that the pairwise constraints conform to

the real cluster information and are easily affected by noisy constraints.
This is consistent with the analysis of the negative effects of noisy
constraints by (Yin et al., 2010) and (Lai et al., 2021). In addition, the

TABLE 2 SI values on Yeast Galactose Metabolism with different number of constraints.

s COP-Kmeans PCKMeans MPCKMeans PCCA PCFCMq MSC-CS MSC-CSMC

0 0. 384 0. 254 0. 305 0.525 0. 465 0. 566 0. 566

5 0. 423 0. 479 0. 258 0.348 0. 254 0. 583 0. 628

10 0. 460 0. 484 0. 471 0.144 0. 274 0. 592 0. 631

15 0. 458 0. 484 0. 463 0.198 0. 402 0. 645 0. 668

20 0. 459 0. 457 0. 370 0.383 0. 351 0. 645 0. 668

25 0. 445 0. 433 0. 413 0.351 0. 290 0. 645 0. 668

The bold values indicate the optimal solutions in each row.

TABLE 3 SI values on Yeast Cell Cycle with different number of constraints.

s COP-Kmeans PCKMeans MPCKMeans PCCA PCFCMq MSC-CS MSC-CSMC

0 0. 256 0. 252 0. 281 0.350 0. 408 0. 436 0. 436

5 0. 264 0. 250 0. 251 0.115 0. 385 0. 456 0. 497

10 0. 273 0. 227 0. 203 0.208 0. 409 0. 519 0. 542

15 0. 258 0. 275 0. 202 0.133 0. 408 0. 528 0. 594

20 0. 282 0. 263 0. 322 0.229 0. 408 0. 530 0. 606

25 0. 264 0. 261 0. 318 0.267 0. 409 0. 584 0. 607

The bold values indicate the optimal solutions in each row.

TABLE 4 SI values on Yeast Sporulation with different number of constraints.

s COP-Kmeans PCKMeans MPCKMeans PCCA PCFCMq MSC-CS MSC-CSMC

0 0. 329 0. 328 0. 345 0.400 0.364 0. 491 0. 491

5 0. 331 0. 354 0. 411 0.067 0.463 0. 520 0. 528

10 0. 324 0. 429 0. 404 0.164 0.420 0. 525 0. 531

15 0. 300 0. 404 0. 409 0.325 0.434 0. 565 0. 556

20 0. 324 0. 403 0. 405 0.235 0.416 0. 571 0. 592

25 0. 346 0. 396 0. 394 0.286 0.413 0. 592 0. 594

The bold values indicate the optimal solutions in each row.

TABLE 5 SI values on Serum with different number of constraints.

s COP-Kmeans PCKMeans MPCKMeans PCCA PCFCMq MSC-CS MSC-CSMC

0 0. 212 0. 208 0. 186 0.290 0.270 0. 312 0. 312

5 0. 210 0. 205 0. 211 0.080 0.264 0. 327 0. 325

10 0. 200 0. 202 0. 197 0.146 0.271 0. 341 0. 340

15 0. 200 0. 181 0. 184 0.235 0.264 0. 354 0. 362

20 0. 198 0. 206 0. 217 0.144 0.262 0. 368 0. 385

25 0. 193 0. 202 0. 185 0.238 0.269 0. 379 0. 403

The bold values indicate the optimal solutions in each row.
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MSC-CSMC algorithm is better thanMSC-CS in most cases, indicating
that using multi-source constraints can improve the performance of
semi-supervised clustering. The gene ontology used to generate multi-
source pairwise constraints in our MSC-CSMC algorithm can explain
gene expression profiles from the perspective of gene function. By
effectively integrating the gene expression and Gene Ontology
information, the proposed penalty weights can provide reasonable
violation penalty for pairwise constraints.

In the case of s = 0, that is, there is no pairwise constraint, both
MSC-CSMC and MSC-CS degenerate into unsupervised multi-
objective clustering methods, turning out the same result. Compared
with PCFCMq, which uses JP as the single objective function, the better
performance of MSC-CSMC and MSC-CS shows the advantages of
using multi-objective optimization in clustering gene expression data.

Among the comparison algorithms, the performance of the
PCFCMq algorithm, which is based on fuzzy clustering, is generally
better than the hard clustering-based COP-Kmeans, PCKMeans, and
MPCKMeans algorithms. According to (Gasch and Eisen, 2002), genes

may be co-expressed with different genomes under different
measurement conditions, and there is usually overlap between gene
clusters. Therefore, compared with hard clustering algorithms, fuzzy
clustering algorithms are more suitable for analyzing gene expression
data. Furthermore, due to the proposed constraints selection andmulti-
source constraint fusion strategy, the MSC-CSMC algorithm achieves
better clustering results than the PCFCMq algorithm. In terms of the
robustness of the clustering results, the performances of semi-
supervised clustering algorithms for comparison fluctuate with the
increase of pairwise constraints, which is mainly due to the quality
of randomly selected pairwise constraints. As stated by Lai et al. (2021),
even non-noisy constraints that conform to the real cluster information
may have a negative impact on the clustering results, which further
illustrates the necessity of constraints selection in semi-supervised
clustering algorithms. The proposed MSC-CSMC algorithm can
select pairwise constraints suitable for clustering based on the co-
evolution of the cluster prototype and constraints selection, which
guarantees both accuracy and stability of the clustering results.

TABLE 6 SI values on Arabidopsis with different number of constraints.

s COP-Kmeans PCKMeans MPCKMeans PCCA PCFCMq MSC-CS MSC-CSMC

0 0. 220 0. 223 0. 197 0.314 0.353 0. 358 0. 358

5 0. 207 0. 216 0. 192 -0.151 0.353 0. 368 0. 373

10 0. 212 0. 210 0. 206 0.046 0.353 0. 373 0. 387

15 0. 200 0. 201 0. 185 0.106 0.354 0. 375 0. 394

20 0. 197 0. 189 0. 185 0.308 0.344 0. 381 0. 396

25 0. 187 0. 187 0. 181 0.335 0.352 0. 389 0. 397

The bold values indicate the optimal solutions in each row.

FIGURE 5
Eisen plots of the gene clusters obtianed by MSC-CSMC. (A) Yeast Galactose Metabolism with the number of constraints s =5 (B) Yeast Cell Cycle
with the number of constraints s =10 (C) Yeast Sporulation with the number of constraints s =15 (D) Serum with the number of constraints s =20 (E)
Arabidopsis with the number of constraints s =25.
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FIGURE 6
Cluster profile plots of the gene clusters obtianed by MSC-CSMC. (A) Yeast Galactose Metabolism with the number of constraints s =5 (B) Yeast Cell
Cycle with the number of constraints s =10 (C) Yeast Sporulation with the number of constraints s =15 (D) Serumwith the number of constraints s =20 (E)
Arabidopsis with the number of constraints s =25.

TABLE 7 The three most significant GO terms and the corresponding p-values for each of the six clusters obtained by MSC-CSMC on Yeast Sporulation.

Gene cluster GO term p-value

1 meiotic cell cycle (GO:0051321) 1.42E-53

meiotic cell cycle process (GO:1903046) 4.33E-51

peptide biosynthetic process (GO:004304) 2.07E-48

2 sporulation (GO:0043934) 2.17E-45

translation (GO:0006412) 4.08E-44

sporulation resulting in formation of a cellular spore (GO:0030435) 1.02E-40

3 meiotic cell cycle (GO:0051321) 2.50E-30

meiotic nuclear division (GO:0140013) 3.85E-28

nuclear division (GO:0000280) 1.16E-26

4 cell cycle process (GO: 0022402) 7.37E-23

cell cycle (GO: 0007049) 3.67E-22

cell wall organization (GO: 0071555) 3.46E-22

5 cell development (GO: 0048468) 6.15E-20

ascospore formation (GO: 0030437) 1.45E-19

anatomical structure development (GO: 0048856) 3.53E-19

6 small molecule metabolic process (GO: 0044281) 2.51E-11

amino-acid betaine metabolic process (GO: 0006577) 3.16E-09

carnitine metabolic process (GO: 0009437) 3.15E-09
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To illustrate the consistency of the gene clusters obtained by the
MSC-CSMC algorithm, the Eisen plots and cluster profile plots
corresponding to the clustering results of five datasets are shown in
Figure 5 and Figure 6. In the Eisen plots, each row corresponds to a gene,
each column to a time point (sample), and each entry of the plot
represents the expression level of a gene at a specific time point by
coloring the corresponding cell. To illustratemore clearly the gene clusters
obtained by MSC-CSMC, the genes partitioned into the same cluster are
placed together. In the cluster profile plots, theX- andY-axis represent the
time points and gene expression values, respectively. The expression
values of genes partitioned into the same cluster are plotted in the same
subplot. In the subplots, each green line indicates the normalized
expression values of a gene over all time points, and the black line
represents the mean expression level of the genes in the corresponding
cluster. It can be seen in the Eisen plots that the color patterns (expression
levels) of genes in the same cluster are similar to each other, while genes in
different clusters show different color patterns. According to Figure 6, the
cluster profiles of different clusters are different from each other, and the
cluster profiles within a cluster reveal consistency.

In order to inspect the biological significance of the gene clusters
obtained by the MSC-CSMC algorithm, enrichment analysis is
carried out using the GO annotation database, which results in
the significant GO terms shared by genes in each cluster and their
corresponding p-values. Taking the case where the number of
pairwise constraints in the Yeast Sporulation dataset is 15 as an
example, we focus on the three most significant GO terms
(corresponding to the three lowest p-values) in each of the six
clusters obtained by each algorithm. Figure 7 shows the plot of the
average p-values. To illustrate the difference significantly, the p-
values are negative log-transformed and the clusters are sorted in
descending order according to the transformed values. Table 7
reports the three most significant GO terms and the
corresponding p-values in each cluster obtained by MSC-CSMC.

From Figure 7, it can be seen that the curve corresponding toMSC-
CSMC is higher than those of the other algorithms, indicating that
MSC-CSMC gains the result with the highest biological significance.

Moreover, all the p-values of the significant GO terms listed in Table 7
are far less than 0.01, indicating that the MSC-CSMC algorithm can
identify biologically relevant gene clusters.

4 Conclusion

Aiming at the problem that current semi-supervised clustering
methods based on pairwise constraints are easily affected by noisy
constraints and do not take the fusion of multi-source constraints into
account, in this paper, we propose a multi-objective semi-supervised
clustering algorithm based on constraints selection and multi-source
constraints (MSC-CSMC). The proposed algorithm uses gene expression
data and GO information to generate multi-source pairwise constraints
and applies themulti-source constraints to the semi-supervised clustering
process through improved constraint violation penalty weights. On this
basis, a collaborative multi-objective optimization framework for
constraints selection and cluster prototypes is constructed, and the
negative impact of the noisy constraints is reduced by selecting
pairwise constraints suitable for clustering. Experimental results on
multiple gene expression datasets show that the MSC-CSMC
algorithm effectively improves the performance of semi-supervised
clustering. The validity of the proposed method proposed is not
limited to the cluster analysis of gene expression data. Other semi-
supervised clustering studies with multi-source information or
constrained selection requirements can also be enlightened.

The effectiveness of the algorithm in this paper has been verified in
small and medium-sized gene expression datasets. With the increase in
the data size, the augment in the number of decision variables in the
process of multi-objective evolution will lead to a decrease in algorithm
efficiency and optimization performance. Therefore, the next step is to use
decision variable analysis and other methods to design a multi-objective
evolution strategy of the algorithm so as to further improve the
applicability of the algorithm in practical clustering problems. In
addition, we will also try to use various evaluation indices and design
a multi-objective optimization framework with variable coding length
(Rodríguez-Méndez et al., 2019) to optimize the number of clusters for
gene expression data.
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