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Breast cancer is the most commonly diagnosed cancer and a leading cause of
death in women worldwide. It is a heterogeneous disease, as shown by the gene
expression profiles of breast cancer samples. It begins in milk-producing ducts,
with a high degree of diversity between and within tumors, as well as among
cancer-bearing individuals. The enhanced prevalence of breast cancer is
influenced by various hormonal, lifestyle, and environmental factors, and very
early onset of the disease correlates strongly with the risk of local and distant
recurrence. Many subtypes are difficult to treat with conventional therapeutic
modalities, and therefore, optimal management and early diagnosis are the first
steps to minimizing the mortality linked with breast cancer. The use of newer
methods of nanotechnology extends beyond the concept of synthesizing drug
delivery mechanisms into the creation of new therapeutics, such as delivering
chemotherapeutics with nanomaterial properties. Exosomes, a class of
nanovesicles, are emerging as novel tools for deciphering the patient-specific
proteins and biomarkers across different disease models, including breast cancer.
In this review, we address the role of exosomal miRNA in breast cancer diagnosis
and treatment.
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Introduction

New estimates suggest that about one in 300 women are diagnosed with an aggressive
form of breast cancer before age 40 (DeSantis et al., 2019). Breast cancer is classified as either
specific [20%–25%] or non-specific ductal carcinoma [60%–75%] subtypes, which include
papillary, mucinous, lobular, and tubular tumors.

Its molecular classification is on the basis of the presence and absence of human
epidermal growth factor 2 [HER2], estrogen or progesterone receptor [ERBB2] (hormone
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receptor negative/ERBB2− [70%], positive/ERBB2+ [15%–20%],
and triple negative in which all the three markers are absent
[15%]), basal-like [ER-/HER2−], HER2 enriched [HER2+], and
combined luminal A and B [ER+/HER2−] (Johnson et al., 2020).

The triple-negative breast cancer (TNBC) subtype has a poor
prognosis and a maximum rate of systemic recurrence. Various
approaches have been applied to eradicate it, including modulation
of the tumor microenvironment to increase CTL activity and other
immunotherapy-based approaches like immune checkpoint
inhibition by neutralizing antibodies and neoadjuvant-based
immunotherapy (Jia et al., 2017).

These locally advanced and metastatic lesions show extensive
nodal involvement and an inflammatory phenotype. The prognosis
of these lesions is often unfavorable; despite an aggressive treatment
regime, it eventually leads to an enhanced mortality rate (Hapach
et al., 2021).

Newer innovations in systemic therapy, such as surgical
procedures, radiotherapy, and the development of new
advanced targeted agents, have improved the clinical
outcomes of this malignancy. Therefore, optimal
management and early diagnosis are the first key steps
toward minimizing the mortality linked with this
malignancy. Targeting molecular pathways and elucidating
the molecular cascade and their relationship with other
signaling molecules has led to the evolution of practical
combination therapies that have been proven successful to a
larger extent.

Currently, available cancer therapies are limited to surgery,
radiation, and chemotherapy, with a high risk of bystander
effect and damage to normal tissues. These conventional
therapies have side effects and chemo/radioresistant and
other toxicity-related issues. Nanotechnology-based methods
selectively target cancerous cells, minimizing therapy side
effects and enhancing the probability of survival. Exosomes,

a class of nanovesicles that mediate cellular communications
via delivering many types of biomolecules [oncogenes, protein
DNA, and RNA, including different pharmacological
compounds], are being explored to model the patient-specific
proteins and biomarkers across different disease models,
including breast cancer. An interesting aspect of these
nanocarriers is that they can serve as informative sources of
novel biomarkers, and their cargo can deliver therapeutic
molecules across the target sites. Many studies have signified
the role of exosomes in breast cancer biology, including the
identification of signature molecules and regulation of the
breast cancer tumor microenvironment. This comprehensive
review addresses the role of exosomal miRNA as a diagnostic
tool and treatment for breast cancer therapy.

The emerging role of liquid biopsy for
breast cancer diagnosis

Identification of stage-specific cancer biomarkers is a
prerequisite for early detection. Owing to the heterogeneous
nature, small sample size, and varied genomic profiles of
tumors, conventional biopsies often fail to reflect the whole
nature of primary or secondary metastasis. Moreover, frequent
tissue sampling from cancer patients for the identification of
tumor-associated genetic changes, therapy responses, and
investigating tumor dynamics is also a major concern.
Therefore, there is an unmet need for novel low-cost and
non-invasive sampling techniques and methods that could
improve early detection and screening. In this context,
identification of circulating tumor cells (CTCs) separated
from the original tumor bulk has been considered a gold
standard for identifying tumor-related evidence. However,
due to the reduced availability of CTCs, isolation of genetic
materials from the bloodstream or any other biological fluid is
an alternate option that is equally convenient and minimally
invasive.

Compared to direct tumor biopsies, collection from
bioliquids seems an attractive alternative source for clinical
application. In this context, the utility of exosomes has recently
been reviewed in different tumor models. Exosome-based
technologies offer several advantages over the existing
traditional methods of biopsies as they show a universal
presence across different biofluids, and the ease of isolation
and characterization of their cargo makes them attractive tools
(Wang et al., 2021).

Breast cancer is one of the topmost threats to women’s
health as diverse factors participate in tumorigenesis events.
Among them, cell proliferation, stemness, metastasis,
angiogenesis, epithelial-to-mesenchymal transition, and
chemoresistance are major contributors to malignancy and
reoccurrence. MicroRNAs that are specifically packed and
secreted in exosomes are known as “exosomal microRNAs
[miRNAs].” In contrast to different vesicular populations
present in the biological fluids like apoptotic bodies and
large vesicles, these exosomes more clearly represent the
information present on the tumor. In this review, we
summarize the utility and potential of small nanovesicles
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(exosomes) in different biological fluids, with a special focus on
breast cancer (Figure 1), and show the different exosomal
miRNAs in breast cancer progression.

Exosomal microRNAs in BC diagnosis

Cancer patients have more tumor-derived exosomes in
circulation than healthy individuals (Tavoosidana et al.,
2011). Exosomal miRNAs in blood have the potential to be
new circulating biomarkers for early detection and diagnosis
of many cancers, including breast cancer (Ogata-Kawata et al.,
2014). Figure 1 shows some exosomal miRNAs in the diagnosis
of breast cancer. Exosomal miR-1246 and miR-21 were reported
in plasma as functional measures for breast cancer diagnosis
(Hannafon et al., 2016; Singh et al., 2021). Li et al. (2018)
reported an exosomal miR106a-363 cluster as a novel
diagnostic biomarker in breast cancer (Li et al., 2018). Of
them, four exosomal miRNAs are plasma-derived [miR-106a-
5p, miR-92a-2-5p, miR-106a-3p, and miR-20b-5p], while four
are serum-derived [miR-20b-5p, miR-106a-5p, miR-92a-2-5p,
and miR-106a-3p] and showed higher expression in breast
cancer patients compared with healthy controls (Stevic et al.,
2018). The expression levels of exosomal miR-101 and miR-372
were higher in the serum of 50 breast cancer patients than in
12 healthy individuals (Eichelser et al., 2014). Of 435 breast
cancer patients, 224 were TNBC patients, and 211 were HER-2
positive. Analysis of their plasma for exosomal miRNA revealed
13 miRNAs were lower and five were higher in HER-2 positive
compared with the levels of TNBC patients (Stevic et al., 2018).
The expression levels of miR-223-3p of invasive ductal
carcinoma [IDC] patients were showing significantly many

fold changes from ductal carcinoma in situ [DCIS] patients as
well as from healthy controls (Yoshikawa et al., 2018). Ni et al.
(2018) also reported when the expression of exosomal miR-30b,
miR-16, and miR-93 were checked in 42 DCIS, 111 IDC patients,
and 39 healthy individuals, out of them exosomal miR-16 show
significant higher expression in plasma of BC patients as well as
in DCIS patients than healthy control while exosomal miR-93
showed higher expression in DCIS patients as compared with
IDC patients (Ni et al., 2018).

Exosomal microRNAs in BC for
chemoresistance

Almost 90% of chemotherapy failure occurs due to long-
term and repetitive usage of similar types of drugs, leading to
the chemoresistance that is a major hurdle for breast cancer
treatment. There is a need to understand the molecular
mechanism in chemoresistance to minimize the recurrence
rate. Many studies showed the role of exosomal miRNA in
the induction of chemoresistance in breast cancer
(Tang et al., 2021). Here, we review some signaling
pathways that are specifically targeted by exosomal miRNA
to regulate the particular drug sensitivity of breast cancer (see
Table 1).

Topoisomerase interactive agents

Doxorubicin is one of the commonly used drugs that
intercalate into the DNA double helix, inhibit topoisomerase II
enzyme activity, and attack mitochondrial and genomic DNA via
ROS induction (van der Zanden et al., 2021). A previous study
revealed a correlation between doxorubicin resistance and miRNA:
around 309 miRNAs decreased, and 66 miRNAs increased (Chen
et al., 2018). Akt is mainly involved in the signaling transduction
pathway to modulate cell proliferation and DNA repair. It
suppresses apoptosis, improves cell survival, and plays a
significant role in chemoresistance (Yamamoto et al., 2011).
Exosomal miR-221-3p regulates the PI3K/Akt/phosphoinositide-
3-kinase regulatory subunit 1 [PIK3R1] to acquire the doxorubicin
resistance (Pan et al., 2020). Meanwhile, exosomal miR-505
restores doxorubicin sensitivity by suppressing Akt3 activity
and increasing apoptosis (Yamamoto et al., 2011).
Mitoxantrone is also a commonly used topoisomerase II
inhibitor, a chemotherapeutic drug that blocks the cell cycle
(Evison et al., 2016). Increased expression of exosomal miR-328
was linked with increased sensitization of MCF-7/MX100 cells to
mitoxantrone via downregulating the breast cancer resistance
protein (BCRP/ABCG2) (Pan et al., 2009).

Platinum analogs: Cisplatin

Cisplatin causes double-strand DNA breaks by crosslinking via
direct binding to DNA (Dickson et al., 2011). In cisplatin-resistant
breast cancer cell lines, exosomal miR-194 and exosomal miR-132
inhibit the methyl-CpG-binding protein 2 [MECP2] (Cataldo et al.,

FIGURE 1
Role of exosomal microRNAs in breast cancer diagnosis and
progression.
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2016). Some exosomal miRNAs downregulate chemoresistance (Hu
et al., 2018). After cisplatin treatment, exosomal miRNA-302b
causes cell cycle arrest and induces apoptosis (Bockhorn et al., 2013).

Antimicrotubule agents

Paclitaxel and docetaxel are tricyclic compounds under
taxane that target the microtubules resulting in defects in cell
division (Willson et al., 2019). Paclitaxel resistance occurs via
exosomal miR-30c by modulating EMT-linked molecules,
including twinfilin 1 and interleukin-11 (Kutanzi et al., 2011).
Inversely, exosomal miR-125b inhibits the semaphorin 4C
(inducer of EMT) and enhances paclitaxel sensitivity.
BCL2 and BCL2 homologous killer/antagonist [BAK1] types
of apoptosis-linked molecules are also involved in the
exosomal microRNA-mediated chemoresistance. Exosomal
miR-125 modulates BAK1 and downregulates the paclitaxel-
induced apoptosis, and exosomal miR-16/BCL2 enhances
docetaxel sensitivity and results in increased apoptosis (Kastl
et al., 2012).

Hormonal agents

Tamoxifen inhibits estrogen-mediated growth (Cui et al.,
2015). PTEN regulates the PI3K/Akt/mTOR signal transduction
pathway. Loss of the function of PTEN (inhibitor of PI3K)
promotes chemoresistance (Nagata et al., 2004). Exosomal
miR-101 suppresses the PTEN, resulting in the activation of
Akt by regulating membrane-linked guanylate kinase [MAGI-2]
to impart tamoxifen resistance in breast cancer (Sachdeva et al.,
2011). Autophagy is also a crucial factor in maintaining
homeostasis and is linked to chemoresistance. Exosomal miR-

214 inhibits uncoupling protein 2 [UCP2]-dependent autophagy
and restores the tamoxifen response to cancer cells (Yu et al.,
2015). Exosomal miR-221/222 promotes fulvestrant resistance in
breast cancer cell lines by targeting β-catenin and TGF-β (Rao
et al., 2011). Exosomal miR-205-5p sensitizes breast cells to
trastuzumab by modulating ERBB2 and targeting the P63/
EGFR axis (De Cola et al., 2015) Figure 3) shows the role of
various exosomal miRNAs in breast cancer chemoresistance
(Figure 2).

Exosomal miRNAs in BC invasion,
migration, and metastasis

Metastasis is a pivotal factor for poor overall survival in
breast cancer patients. It has been reported that exosomal
miRNAs play a crucial role in almost every step of many
biological processes in breast cancer (Liu et al., 2019; Figure
3). Many studies have demonstrated the dual role of exosomal
miRNAs on breast cancer metastasis and related processes. In
Table 2, we have mentioned some exosomal miRNAs along with
their underlying mechanisms that are actively involved in
metastasis, invasion, and migration. Table 2 shows the
function of exosomal miRNAs in different hallmarks of BC,
including invasion, migration, metastasis, stemness, and
angiogenesis.

Exosomal microRNAs in the stemness
of breast cancer cells

Cancer stem cells are groups of undifferentiated cells that have the
potential to differentiate. Self-renewing populations of cells give rise to
tumor heterogeneity, promoting metastasis, therapy resistance, and

TABLE 1 Role of exosomal miRNAs in drug resistance.

Exosomal miRNA Drug Molecular targets Mechanism Reference

miR-221-3p, miR-25, miR-
505, miR-34a, miR-181a, and
miR-126a

Doxorubicin PI3K, Akt, ISL, HDAC1, HSP70,
K246, Bax, Bcl-2, and IL-33/IL13

↓ Proliferation and autophagy, ↑
Apoptosis, and modify tumor
microenvironment

Clarke et al. (2001), Yamamoto et al. (2011),
Zhu et al. (2013), Wang et al. (2014), Wu et al.
(2014), Deng et al. (2017), Hu et al. (2018),
Chen et al. (2020), and Pan et al. (2020)

miR-194, miR-132, miR-24,
and miR-302b

Cisplatin MeCP2, FIH1, BimL, E2F1,
and ATM

Chemoresistance, EMT and
stemness, and ┬ cell life cycle

Pogribny et al. (2010), Bockhorn et al. (2013),
Cataldo et al. (2016), and Hu et al. (2018)

miR-301, miR-101, miR-320a,
miR-214, and miR-451a

Tamoxifen PTEN, MAGI-2, Akt, ARPP-19,
ERR5, cMyc, Cyclin D1, UCP2,
and Erα/14-3-3C

Resensitize tumor, ↑ apoptosis, and ┬
autophagy

Sachdeva et al. (2011), Shi et al. (2011), Lü
et al. (2015), and Liu et al. (2016)

miR-30c, miR-125, miR-125b,
miR-200, and miR-16

Taxane BAK1, Sema4C, ZEB1/2,
E-cadherin, and BCL-2

↑ Apoptosis and ┬ Autophagy Cochrane et al. (2009), Shi et al. (2011), Kastl
et al. (2012), Zhang et al. (2014), Yang et al.
(2015), and Cataldo et al. (2016)

miR-328 Mitoxantrone BCRP and ABCG2 Modulates drug deposition Pan et al. (2009)

miR-221/222 and miR-101 Fulvestrant TGF-β, β-Catenin, and EZH2 Chemoresistance Rao et al. (2011) and Sachdeva et al. (2011)

miR-16 and miR-205-5p Trastuzumab ERBB2, p63, EGFR, FUBP1, and
Cyclin J

↑ Cytotoxic effect of the drug De Cola et al. (2015) and Venturutti et al.
(2016)

Let-7 Verapamil Ras, ESR1, CASP3, and HMGA2 ↑ Chemoresistance, and modulate
receptor expression EMT progression

Yang et al. (2015) and Guo et al. (2019)

↑- Increase/upregulation; ↓- Decrease/Downregulation; ┴- Inhibit/Prevent.
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FIGURE 2
Exosomal miRNAs in chemoresistance of breast cancer.

FIGURE 3
Illustrate the step of tumor growth into metastasis.
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tumor recurrence (Vlashi and Pajonk, 2015). Breast cancer stem cells
(BCSCs) mediate drug resistance and tumorigenesis because they are
mostly found in the quiescent G0 phase, have high DNA repairability,
and increase ABC transporter expression (Zhang et al., 2022). Exosomal
miRNAs play a pivotal role in cancer stem cell maintenance. Exosomal
miR-221/222 inhibits the PTEN activity that, in turn, activates the Akt/
NF-κB/COX-2 signal transduction pathway and promotes stemness-
like traits in breast cancer cells (Li B. et al., 2017). Exosomal miR-22
suppresses the TET/miR-200 axis via inhibiting TET [ten eleven
translocation-DNA demethylase family], resulting in increased
stemness and EMT (Song et al., 2013). Exosomal miRNAs target
stemness by modulating the function and expression of breast
cancer stemness-linked genes and their elements. Exosomal miR-34a
downregulates the NOTCH1 expression in breast cancer, leading to
decreased stemness in the mammosphere (Park et al., 2014). Sox9 is an
oncogenic transcription factor that induces the transformation of
mammary stem cells from differentiated mammary epithelial cells,
which is crucial for breast cancer initiation and malignancy (Guo et al.,
2012). Exosomal miR-140 decreases the expression of SOX2/SOX9 and
reduces the stem cell population and disordered stem cell renewal
(Wolfson et al., 2014).

Exosomal microRNAs in angiogenesis
of breast cancer cells

Exosomal miRNAs play a significant role in angiogenesis to
reduce the metastasis of breast cancer. Kong et al. (2014)
reported that exosomal miR-155 modulates the Von
Hippel–Lindau [VHL]/hypoxia-inducible factor and its
downstream genes, including pyruvate kinase isozyme type
M2, CD44, interleukin 6, and vascular endothelial growth
factor in an in vivo mice model (Kong et al., 2014).
Exosomal miR-132 enhances the sensitivity of endothelial
cells to VEGF by decreasing the activity of the RAS
suppressor, augmenting angiogenesis (Kontomanolis et al.,
2017). Exosomal miR-16 halts the expression of VEGF by
playing an anti-angiogenic role (Lee et al., 2013). Some
exosomal miRNAs also target the tumor microenvironment
and halt angiogenesis; for example, exosomal miR-503
regulates the expression of VEGFA and fibroblast growth
factor 2 and hampers angiogenesis (Zhou et al., 2013).
Exosomal miR-100 decreases the expression of human
umbilical vein endothelial cells [HUVECs] and targets

TABLE 2 Role of exosomal miRNAs in breast cancer invasion, migration, and metastasis.

Exosomal miRNA Parameters Molecular targets Mechanism References

miR-21, miR-10b, miR-373, miR-
1246, miR-17-5p, miR-96, and miR-
106b

Promotes invasion
and migration

PTEN, PI3K, mapsin, PDCD4,
HODX10, TBX5, DYRK1A,
Syndecan-1, CCNG2, CD44, HBP1,
TCF, LEF, ErbB2, FUT6, and Wnt/
β-Catenin

┬ Apoptosis, ┬ clone formation, ↑
Tumorigenesis, ↑ Migration, and
regulates cytoskeleton and
E-cadherin

Huang et al. (2008), Zhu et al.
(2008), Li et al. (2011), Ibrahim et al.
(2012), Chen et al. (2013), Eichelser
et al. (2014), Singh et al. (2014),
Feng and Tsao (2016), Hong et al.
(2016), Kim et al. (2016), Li et al.,
2016; Shi (2016), Li et al. (2017b),
and Xu et al. (2019)

miR-564, miR-10a, miR-34c, miR-
217, miR-1226-3p, miR-21, miR-19a-
3p, miR-148b-3p, miR-19b, miR-
1486-3p, miR-148a, miR-503, miR-
17/20, and miR-100

Suppresses
invasion and
migration

Akt, GNA12, GYS1, SRF, PIK/
MAPK, mTOR, GIT1, KLF5, FZD8,
Wnt-β-Catenin, AQP5, FOSL1,
mucin1, TRIM29, CCND2/CCND3,
E2F1, IL-8, and CCND1

Arrest cell cycle, ↑ apoptosis, ↑
Intracellular adhesion, and ┬ cell
survival and growth

Yu et al. (2010), Bovy et al. (2015),
Jiang et al. (2016), Mutlu et al.
(2016), Tao et al. (2016), Ke and Lou
(2017), Zhou et al. (2017), Yuan
et al. (2019), and Park et al. (2020)

miR-10b, miR-503, miR-122, miR-
200, miR-105, and miR-21

Promotes distant
metastasis

β-Catenin, Twist, HOXD10, ROCK,
c-Jun, XIST, STAT3, NF-ĸB, PD-L1,
PKM, GLUT1, Sec23a, YAP1, ZO-1,
LZTFL1, and EMT

┬ Growth, ┬ Local immunity, ↑
EMT, motility, modulates
cytoskeletal flexibility, and ↑ cell
proliferation

Ma, 2010; Ma et al. (2010), Korpal
et al. (2011), Liu et al. (2012), Yu
et al. (2013), Zhou et al. (2014),
Fong et al. (2015), Knirsh et al.
(2016), Xing et al. (2018), andWang
et al. (2019)

miR-193a, miR-124-3p, miR-720,
miR-31, miR-429, miR-124, and
miR-1

Suppresses distant
metastasis

Wnt-β-Catenin, ZEB1, CRKL,
CrKL, MMP-9, PDC D6,
E-cadherin, Fzd3, Rho A, ITGA5,
IL-11, Frizzled 7, TNKS2, BCL2,
EGFR, WTL, TWISR1, HER2,
Vimentin, and N-Cadherin

┬ EMT, ┬ cell motility, ↑
apoptosis, and impair
tumorigenesis

Barrett-Lee (2009), Lv et al. (2011),
Li et al. (2013), Li et al. (2014), Liu
et al. (2015), Ye et al. (2015), Xie
et al. (2017), Cai et al. (2018), Zhang
et al. (2018), Peng et al. (2020), and
Zhang et al. (2020)

miR-22, miR-221/222, miR-143,
miR-21, and miR-378e

Promotes stemness TET, PTEN, Akt, NF-ĸB, COX-2,
Sox2, Oct3/4, nanog, Zeb, and Snail

↑ Stemness biomarkers, ↑EMT,
and induces clonal expansion

Song et al. (2013), Li et al. (2017a),
and Donnarumma et al. (2017)

miR-34a and miR-140 Suppresses
stemness

NOTCH1, Sox2, Sox9 ┬ Stem cells, modulate stem cell
renewal, and shrink stem cells

Park et al. (2014), Wolfson et al.
(2014), Kim et al. (2016)

miR-155 and miR-132 Promotes
angiogenesis

VHL/HIF, RAS, and VEGF ↓ Pro-angiogenetic substrates Kong et al. (2014) and
Kontomanolis et al. (2017)

miR-16, miR-503, and miR-100 Suppress
angiogenesis

VEGF, FGF2, VEGFA, mtor, and
HIF-1α

Modulate expression of pro-
angiogenic molecules and ┬
angiogenesis

Lee et al. (2013), Zhou et al. (2013),
and Pakravan et al. (2017)

↑- Increase/upregulation; ↓- Decrease/Downregulation; ┴- Inhibit/Prevent.
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mTOR/[HIF-1α]/VEGF to decrease angiogenesis (Pakravan
et al., 2017). Figure 4 shows the role of different exosomal
miRNAs in different hallmarks (invasion and migration, distant
metastasis, stemness, and angiogenesis) of breast cancer.

Conclusion and future perspective

Exosomal miRNAs play a significant role in almost all
hallmarks of breast cancer, including chemoresistance,
metastasis migration, invasion, stemness, and angiogenesis.
Exosomal miRNAs show a dual mode of action w.r.t to
chemoresistance and drug sensitivity. As breast cancer has
many subtypes with different prognostic and clinicopathological
features, it is necessary to examine the specific miRNA for multiple
subtypes to evaluate the targeted therapeutic regime in breast
cancer. The exosomal content w.r.t. miRNA increases to varying
degrees that distinguish healthy controls from breast cancer
patients and TNBC from other subtypes. Exosomal miRNAs
may serve as an indication of the early stage of breast cancer;
for example, exosomal miR-221/222 is found in almost every stage
of breast cancer oncogenesis, and this exosomal miRNA-221 can
predict the breast cancer origin, progress, and treatment effect. In
stages I and II of breast cancer, miR-801, miR-127-3p, miR-148b,
and miR-409-3p increased significantly, which is helpful for early
detection.

The equilibrium types and numbers of exosomal miRNAs vary
in pathological conditions; they serve as useful biomarkers for breast
cancer prognosis and diagnosis. Exosomal miRNAs exert pleiotropic

impacts on breast cancer hallmarks and clinical implications. (Luo
et al. (2023) revealed the role of tumor-derived exosomes as a
messenger and communicator between tumor cells and their
microenvironment that can reshape and enhance tumor
development and metastasis. They enhance the development of
the pre-metastatic niche to promote tumor colonization and play
a pivotal role in the early diagnosis and evaluation of future
metastatic development (Luo et al., 2023). Exosomes are used as
drug carriers (e.g., chemotherapy and miRNA) and as biomarkers
because they exhibit antigen-presenting traits that have a crucial
function in cancer immunotherapy (Hosseinikhah et al., 2023).
Prakriti [phenotype-associated Ayurveda constitution] is linked
with other fields like genomics, physiology, psychology, and
therapeutics. It has a role in the evaluation of therapeutics such
as early diagnosis, indicating disease susceptibility, prevention of
diseases, drug design, and customization of therapy [lifestyle, drug,
and diet]. This holds great potential for personalized medicine
pharmacogenomics for predictive or preventive medicine
(Sharma and Prajapati, 2020). This review gives a new insight
that helps us examine prognostic, predictive, and diagnostic
markers at the cellular and molecular levels to fill research gaps
for novel therapeutic approaches and for future personalized
medicine.
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